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Q
uantum simulation, as proposed
by Feynman1 and elaborated by
Lloyd2 and many others,3�7 ex-

ploits the inherent behavior of one quan-
tum system as a resource to simulate
another quantum system. Indeed, there
have been several experimental demon-
strations of quantum simulators in various
architectures including quantum optics,
trapped ions, and ultracold atoms.8 The
importance of quantum simulators applied
to electronic structure problems has been
detailed in several recent review articles
including refs 9�13 and promises a revolu-
tion in areas such as materials engineering,
drug design, and the elucidation of bio-
chemical processes.
The computational cost of solving the full

Schrödinger equation of molecular systems
using any known method on a classical
computer scales exponentially with the
number of atoms involved. However, it has
been proposed that this calculation could
be done efficiently on a quantum computer,

with the cost scaling linearly in propagation
time.6 There is now a growing body of
theoretical work proposing efficient quan-
tum simulations of chemical Hamiltonians,
e.g., refs 14�24.
In contrast, experimental realizations of

quantum simulations of quantum chemistry
problems are still limited to small-scale
demonstrations and are only performed in
liquid-state NMR and photonic systems.
First experiments demonstrated the sim-
ulation of the electronic structure of molec-
ular hydrogen using quantum optics15 and
liquid-state NMR.25 Recently, the energy
of another molecule, the helium hydride
cation, was calculated in a photonic system
using a quantum variational eigensolver
algorithm.26 Besides the electronic struc-
ture, simulation of chemical reaction dy-
namics on an eight-site lattice was per-
formed in NMR.27

Recently, the nitrogen-vacancy (NV) cen-
ters in diamond attracted significant atten-
tion due to its unique optical and spin
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ABSTRACT Ab initio computation of molecular properties is one of the most

promising applications of quantum computing. While this problem is widely

believed to be intractable for classical computers, efficient quantum algorithms

exist which have the potential to vastly accelerate research throughput in fields

ranging from material science to drug discovery. Using a solid-state quantum

register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the

bond dissociation curve of the minimal basis helium hydride cation, HeHþ.

Moreover, we report an energy uncertainty (given our model basis) of the order of

10�14 hartree, which is 10 orders of magnitude below the desired chemical

precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important

step toward a fully scalable solid-state implementation of a quantum chemistry simulator.
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properties.28 The NV center consists of a substantial
nitrogen atom at the carbon site and an adjacent
vacancy. Its negative charge state forms a spin triplet
ground state, with ms = 0 and ms = ( 1 sublevels that
are separated by a zero-field splitting of D≈ 2.87 GHz.
This spin system can be initialized and read out via
optical pumping and spin-dependent fluorescence.
The NV center therefore does not suffer from signal
losses with increasing system size like NMR and avoids
challenges such as the need for high-fidelity single-
photon sources and detectors that are still beyond the
present capabilities in optical quantum systems.29

Progress to date demonstrates that the NV centers
are among the most accurate and most controllable
candidates for quantum information processing.30�41

Milestone demonstrations include high-fidelity ini-
tialization and readout,30�33 heralded generation
of entanglement,33�38 implementation of quantum
control,38,42,43 ultralong spin coherence time,40 non-
volatile memory,41 quantum error correction,33,39 as
well as a host of metrology and sensing experi-
ments.44,45 Several proposals to scale up the size of
NV systems currently exist, e.g., refs 38 and 46. This
makes the NV center an ideal candidate for a scalable
quantum simulator.
Here, we demonstrate the quantum simulation of an

electronic structure with the NV center at ambient
conditions. We use a quantum phase estimation
algorithm47 to enhance the simulations precision.
Our experimentally computed energy agrees well with
the corresponding classical calculations within chemi-
cal precision and a deviation of 1.4 � 10�14 hartree.
Furthermore, we obtain the molecular electronic po-
tential energy surfaces by performing the simulation
for different distances of the atoms.

RESULTS AND DISCUSSION

The chemical systemwe consider in this paper is the
heliumhydride cation, HeHþ (Figure 1a), believed to be
the first molecule in the early universe.48 While HeHþ is
isoelectronic (i.e., has the same number of electrons)
with the previously studied molecular hydrogen, the
reduced symmetry requires that we simulate larger
subspaces of the full configuration interaction (FCI)
Hamiltonian Hsim. Specifically, we consider

Hsim ¼ Te þWee þ VeN(R)þ EN(R) (1)

in a minimal single particle basis with one site per
atom. Here, Te and Wee are the kinetic and Coulomb
operators for the electrons, VeN is the electron�nuclear
interaction, and EN is the nuclear energy due to the
Coulomb interaction between the hydrogen and the
helium atom. The last two terms depend on the inter-
nuclear distance R.
In this work, we consider the singlet (S = 0) sector of

the electronic Hamiltonian in aminimal single-electron
basis consisting of a single site at each atom given by

contracted Gaussian orbitals. After taking symmetries
into account, the Hamiltonian can be represented as
a 3� 3matrix in the basis (Ψ1,Ψ6,

1/21/2(Ψ3�Ψ4)). Each
term of the Hamiltonian in the single particle basis
(e.g., Æχi|(Te þ VeN) |χjæ) is precomputed classically at
each internuclear separation R using the canonical spin
orbitals found via the Hartree�Fock (HF) procedure
which often scales as a third order polynomial in the
number of basis functions.
After obtaining Hsim through this (typically) efficient

classical computation, we perform the quantum simu-
lation of this molecule on a single-NV register, which
consists of an electronic spin-1 and an associated 14N
nuclear spin-1 forming a qutrit pair (Figure 1b). The
electronic spin-1 of the NV system acts as the simula-

tion register through mapping the molecular basis
(Ψ1, Ψ6,

1/21/2(Ψ3 �Ψ4)) onto its ms = (1, 0, �1) states.
Such a compact mapping is more efficient in that the
states of simulated system and of the simulation
system are simply enumerated and equated. The 14N
nuclear spin-1 is used as the probe register to read out
the energies using the iterative phase estimation
algorithm (IPEA),47 as shown in Figure 1c. The simula-
tion is realized by three steps: (i) preparation of the
system into an ansatz state |ψæ, which is close to an
eigenstate of the simulated Hamiltonian Hsim; (ii) evo-
lution of the simulation register under the molecular
Hamiltonian Hsim to generate phase shift on the probe
register; and (iii) readout of the phase shift on the probe
register to extract the molecular energy (Figure 2a).

Figure 1. Calculation of HeHþ molecular energy with NV
spin register in diamond. (a) HeHþ, molecule to be simu-
lated. It consists of a hydrogen and a helium nucleus and
two electrons. The distance (bond length) between the
nuclei is denoted by R. Dot-dashed line, straight line, and
dotted arrows indicate the nucleus�nucleus, electron�
nucleus, and electron�electron Coulomb interactions, re-
spectively. (b) Nitrogen-vacancy center in diamond, used as
a quantumsimulator. The electron spin is used for simulation
and the nuclear spin as the probe qubit for energy readout.
(c) Energy level diagram for the coupled spin system formed
by the NV electron spin and associated 14N nuclear spin.
Optical transitions between ground and excited state are
used to initialize and measure the electron spin state.
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In the first step, an ansatz state is prepared that has
an overlap with the corresponding eigenstate |enæ that
decreases at most polynomially as the system size
grows. The phase estimation algorithm49 can then be
used to project the ansatz state into the exact eigen-
state with sufficiently high probability. One possible
approach to realize this requirement is to use adiabatic
state preparation,14,25,50 the performance of which
depends on the energy gap during the entire evolution
process. An alternative approach is to approximate the
eigenstate with a trial state. In our demonstration,
the simulation register is initialized in a trial state
|τæ ∈ { |þ1æ, |�1æ}. Each state is easily found to be close
to one eigenstate of themolecular HamiltonianHsim by
looking at its matrix representation. In more general
cases such trial states can often be prepared based on
classical approximate methods. The probe register is
first initialized into state |0æ and then prepared in the
superposition state |ψ(0) æ = (|0æþ |�1æ) /21/2 through a
π/2 pulse to obtain a phase shift in the evolution.
In the next step, a controlled-U(t) gate for different

times t, where U(t) = exp(�i Hsim t), is applied on the
simulation register to encode the energies into a relative
phase of the probe register, resulting in the state

jψ(t)æ ¼ 1ffiffiffi
2

p ∑
k

ak(j0æþ e�iEktj �1æ)jekæ (2)

where the trial state is expressible as a superposition
of all the Hsim eigenstates |τæ = ∑kak|ekæ. The reduced
density matrix of the probe register

Fprobe(t) ¼
1
2

1 ∑
k

jakj2e�iEkt

∑
k

jakj2eiEk t 1

0
B@

1
CA (3)

obtains a phase shift (off-diagonal elements) that con-
tains the information about the energies. Finally, the
phase information is transferred to the electron spin for
readout by a nuclear spin π/2-pulse, followed immedi-
ately by selective π-pulses on the electron spin. To
measure the energy precisely, we perform a classical
Fourier analysis on the signal for different evolution
times (ts, 2ts, ..., Lts). This readout method can help to
resolve the probability |ak|

2 of each eigenstate |ekæ and
approximate the corresponding energy Ek. We choose
ts such that the sampling rate 1/ts > |En|/π. An example
for the experimental Fourier spectrum are shown in
Figure 2b. The position of the peak indicates the
eigenvalue of the molecular Hamiltonian.
To enhance the precision of the energy eigenvalues,

an iterative phase estimation algorithm is performed.
A central feature of this algorithm includes repeating
the unitary operator U to increase readout precision.
Expressing the energy as a string of decimal digits, Ek =
x1, x2, x3 ..., the first digit x1 can be determined by the

Figure 2. Energy readout through quantum phase estimation algorithm. (a) Experimental implementation of the IPEA
algorithm. The controlled gateU0 is realized using optimal control. The x, y phases in the last π/2 pulsemeasure the real and
imaginary parts of the signal, respectively, which yield the sign of the measured energy. The number of repetitions
N = 10k�1 depends on the iteration k. (b) Experimental results of iterative phase estimation algorithm to enhance the
precision of measured energy for the case of R = 90 pm. The Fourier spectrum of the first iteration (k = 1) fixes the energy
roughly between �10 and 0 hartree. The precision is then improved iteratively by narrowing down the energy range. In
each iteration, the energy range is divided into 10 equal segments. The red area indicates the energy range for the next
iteration. After each iteration at least one decimal digit, denoted by the number in the red area, is resolved. Note that the
value here is offset by tr(Hsim)/3 (see the Supporting Information for details). (c) The uncertainty of themeasured energy as a
function of the iteration number.
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first-round phase estimation process. Once x1 is known,
the second digit x2 can be iteratively determined by
implementing the unitary operator Up, where p = 10.
For the kth iteration, p = 10k�1. An increasingly precise
energy can be obtained through continued iterations.
However, in practice, the repetitions and therefore the
iterations are fundamentally limited by the coherence
time of the quantum system. Moreover, the accumu-
lated gate errors become a dominant limitation of the
energy precision as the repetitions increase. To avoid
such shortcomings, in our demonstration the time
evolution operators Up are realized and optimized with
optimal control theory, which can overcome several
difficult features found when scaling up the register
size.38 Although it cannot be applied in large registers
to generate the quantum gates directly, it can be used
to generate flexible smaller building blocks, ensuring
high-fidelity control in future large-scale applications.
In the present case, the method is unscalable because
we compute the unitary propagator using a classical
computer. However, by using a Trotter-type gate se-
quence to implement the propagators, e.g.,16 this can
be designed with polynomially scaling.
Figure 2b,c show the results of such an iterative

process in the case of internuclear distance R = 90 pm
with trial state |þ1æ. As the iterations increase, more
precise decimal digits of the ground-state energy
are resolved. After 13 repetitions, the molecular en-
ergy, with an offset tr(Hsim)/3, is extracted to be
�1.020170538763387 ( 8 � 10�15 hartree, very close
to the theoretical value, which is�1.020170538763381
hartree, with an uncertainty of (1.4 � 10�14 hartree.
To the best of knowledge, our results are four times
more accurate than the previous record.25

Once the energies have been measured, we can
obtain the potential energy surface of the molecule
by repeating the procedure for different distances R

(Figure 3). The ground-state energy surface is obtained
with the trial state |þ1æ, and the first excited state
energy surface is obtained with the trial state |�1æ. We
obtain the remaining eigenenergy (of the second ex-
cited state) without furthermeasurement by subtracting

the ground and first excited-state energies from the
trace ofHsim. The potential energy surfaces can be used
to compute key molecular properties such as ioniza-
tion energies and vibrational energy levels. An impor-
tant example is the equilibrium geometry: we found
the minimal energy for the ground state, �2.86269
hartree, at a bond length of 91.3 pm. In addition,
we obtained a binding energy of 0.07738 hartree in
our basis.
To improve theaccuracyof our resultswewouldneed

to simulate the system in a larger basis. Recent advances
in this direction show that we can enlarge the size of
the NV spin system by either including more coupled
nuclear spins associated with single NV electron
spin33,39 or correlating several electron spins mediated
through optical photons37 or through magnetic inter-
actions between them.36 The former method is able to
provide ∼6 nuclear spins for single NV node, and the
latter method currently is limited to two electron
spins.36,37 In both hybrid-spin systems the control is
shown to be universal.33,36,37,39 Combining these two
methods in principle could enlarge the NV system to
a 10-qubit quantum processor which is enough to
performmore complicated tasks. In these large systems,
the simulated propagators can be implemented using
Trotter sequences and should be accompanied by error
correction. Optimal control methods, as we have de-
monstrated here, should prove necessary to perform
these tasks with satisfactory precision.

CONCLUSION

We have demonstrated the most precise quantum
simulation of molecular energies to date, which repre-
sents an important step toward the advanced level of
control required by future quantum simulators that will
outperform classical methods. The energies we ob-
tained for the helium hydride cation surpass chemical
precision by 10 orders of magnitude (with respect to
the basis). The accuracy of our results can be increased
by using a larger, more flexible single-particle basis set,
but this will require a larger quantum simulator that
eventually will require error correction schemes.18

Figure 3. Energy surfaces of the HeHþ molecule. The energy surface of the second excited state can be obtained by
subtracting energies of the ground and first excited states from the trace of Hsim and is not shown. All of the measured
energies are obtained in five iterations.
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Our study presents evidence that quantum simula-
tors can be controlled well enough to recover increas-
ingly precise data. The availability of highly accurate
energy eigenvalues of large molecules is presently far
out of reach of existing computational technology, and
quantum simulation could open the door to a vast
range of new technological applications. The approach

we took was based on iterative phase estimation47 and
optimal control decompositions38;these will form
key building blocks for any solid-state quantum simu-
lator. Even more generally, this study would suggest
that the techniques presented here should be em-
ployed in any future simulator that will outperform
classical simulations of electronic structure calculations.

METHODS.
Computation of Molecular Hamiltonians. The full configuration

interaction Hamiltonian is a sparse matrix, and each matrix
element can be computed in polynomial time. The N-electron
Hamiltonian is asymotpically sparse. For a basis set with M
orbitals, there are M4 terms in the Hamiltonian but the
Hamiltonian is of size ((M!)/(N! (M � N)!)) ≈ MN which is
exponential as the number of electrons grow. To generate the
Hamiltonian, we fix the nuclear configuration and then compute
the necessary one- and two-body integrals which parametrize
the FCI matrix at each fixed bond length in the standard STO-3G
basis,51 using the PSI3 electronic structure package.52 The mini-
mal basis HeHþ system has two spatial orbitals which we denote
as g(r) and e(r) and two spin functions denoted as R(σ) and β(σ)
which are eigenstates of the Sz operator. We combine these to
form four spin orbitals, χ1= g(r) R(r), χ2 = g(r) β(σ), χ3 = e(r) R(σ),
and χ4 = e(r) β(σ). There are six possible two-electron Slater
determinants,Ψ1 =A (χ1χ2),Ψ2 =A (χ1χ3),Ψ3 =A (χ1χ4),Ψ4 =
A (χ2χ3),Ψ5 = A (χ2χ4), andΨ6 = A (χ3χ4). More explicitly

A (χiχj) ¼
1ffiffiffi
2

p
�����
χi(r1σ1) χj(r1σ1)
χi(r2σ2) χj(r2σ2)

����� (4)

States Ψ1, Ψ3, Ψ4, and Ψ6 have total projected spin of Mz = 0,
whereas Ψ2 and Ψ5 have projected values of Mz = 1 and
Mz = �1 respectively. Only Ψ1 and Ψ6 are valid eigenstates of
the total spin operator S2; however, the symmetric and antisym-
metric combinations ofΨ3 andΨ4 yield thems = 0 triplet and an
additional singlet, respectively. When a computation
is requested on the singlet state, the PSI3 package com-
putes the symmetry-adapted FCI matrix in the basis of Ψ1,
Ψ3, Ψ4, and Ψ6. By combining Ψ3 and Ψ4 we obtained the
three HeHþ singlet states used in this experiment: Ψ1, Ψ6,
and 1/21/2(Ψ3 �Ψ4).

Sample Characteristics. We use a NV in high-purity diamond
grown bymicrowave-assisted chemical vapor deposition (CVD).
The intrinsic nitrogen content of the grown crystal is below
1ppb, and the 12C content is enriched to 99.9%. Experiments are
performed at room temperature with an applied magnetic field
of 11 gauss. The electron spin's coherence times are T2

* ≈ 80 μs
and T2 ≈ 600 μs, while the nuclear spin's coherence time is
limited by the relaxation time of the electron spin (on the order
of milliseconds).

Controlled U*(t) Gate Realization. To calculate U*(t), we use the
gradient ascent pulse engineering (GRAPE) algorithm to opti-
mize the pulse sequence, with the final fidelity always larger
than 0.99. For every controlled gate, the pulse sequence con-
sists of 10 pieces of 140 ns each. Two microwave frequencies
are applied simultaneously to control the electron spin, in the
observed hyperfine peaks of the |mI = �1, ms = 0æ f |mI = �1,
ms =þ1æ and |mI =�1,ms = 0æf |mI =�1,ms =�1æ transitions.
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