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Abstract
We investigate the evolution of Internet speed and its implications for access to key
digital services, as well as the resilience of the network during crises, focusing on six
major Brazilian cities: Belo Horizonte, Brasília, Fortaleza, Manaus, Rio de Janeiro, and
São Paulo. Leveraging a unique dataset of Internet Speedtest® results provided by
Ookla®, we analyze Internet speed trends from 2017 to 2023. Our findings reveal
significant improvements in Internet speed across all cities. However, we find that
prosperous areas generally exhibit better Internet access, and that the dependence of
Internet quality on wealth have increased over time. Additionally, we investigate the
impact of Internet quality on access to critical online services, focusing on e-learning.
Our analysis shows that nearly 13% of catchment areas around educational facilities
have Internet speeds below the threshold required for e-learning, with disadvantaged
areas experiencing more significant challenges. Moreover, we investigate the
network’s resilience during the COVID-19 pandemic, finding a sharp decline in
network quality following the declaration of national emergency. We also find that
less wealthy areas experience larger drops in network quality during crises. Overall,
this study underscores the importance of addressing disparities in Internet access to
ensure equitable digital services and enhance network resilience during crises.

Keywords: Internet speed evolution; Digital inequality; Socioeconomic disparities;
Digital services access

1 Introduction
The widespread availability of Internet connectivity has transformed several aspects of
our lives. From communication and commerce to education and entertainment, access
to reliable, fast, and affordable Internet connectivity has become a critical factor for pro-
moting economic and social development [1–3]. Despite the large overall improvements
in technology and adoption witnessed over the last decades, we still observe huge gaps in
access to digital services and varying levels of digital literacy. The COVID-19 pandemic
has shown the impact of such digital divide and highlighted the importance of addressing
it. Indeed, during the acute phases of the crisis, as numerous activities rapidly migrated
online, unequal access to a reliable Internet connection affected the possibility to carry out
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activities from home, increasing the possible exposures to the virus for the unconnected
[4–7]. Particularly clear is the negative impact of Internet connectivity disparities on ed-
ucational achievement, access to tele-medicine, and adoption of remote working [8–15]

In this context, we aim to investigate how Internet connectivity has evolved over the past
years across regions and socioeconomic strata, its impact on the access to key services, and
its resilience to extraordinary events such as the COVID-19 Pandemic. As a case study,
we consider six major Brazilian cities: Belo Horizonte, Brasília, Fortaleza, Manaus, Rio
de Janeiro, and São Paulo. Brazil reports one of the highest GINI index in the world [16]
and inequality has been one of the main issues affecting its socioeconomic development
for decades. On the other hand, Brazil can compete with the most advanced areas in the
world when it comes to digital capabilities. Indeed, it hosts cloud services of some of the
most important providers, and it is home to several high-tech startups. However, the in-
equality observed in the socioeconomic dimension, is also reflected in the digital sector.
For instance, while the overall average broadband fixed access for every 100 inhabitants
is 24 [17] there is a significant heterogeneity among states. Some Brazilian States such as
Santa Catarina (36.15) outperform OECD countries (e.g., Italy, 32.1) while others such as
Acre (13.8), Amazonas (13.8), and Maranhao (9.9) report remarkably lower figures. Addi-
tionally, access and usage of digital tools is far from being inclusive and several areas, even
within wealthier states, face a dramatic digital inequality. For these reasons, Brazil con-
stitutes a perfect representation of the complex socioeconomic dynamics and challenges
that public and private sector face in addressing the digital gap.

To quantify Internet quality and its evolution in these cities, we leverage a unique dataset
provided by Ookla consisting of nearly 100M geolocalized Speedtest results, collected in
the time window spanning from 2017 to 2023. We split the analysis in two parts. In the
first, we focus on characterising the spatio-temporal evolution of Internet connectivity
by exploring differences across socioeconomic indicators. In the second part instead, we
study Internet connectivity indicators in the catchment areas of educational activities and
quantify the resilience of the digital infrastructure during the COVID-19 Pandemic.

We find significant improvements in Internet quality across all cities considered be-
tween 2017 and 2023. Interestingly, we observe a trend towards a more homogeneous dis-
tribution of Internet speed, indicating reduced dispersion over the years. However, despite
this increased homogeneity, we find an increasing correlation between Internet speed and
wealth, with wealthier areas experiencing better Internet access and with this gap widen-
ing over time. Furthermore, we also find a noticeable increase in spatial autocorrelation of
Internet quality over the years, with the emergence of clusters characterized by high and
low speeds.

Furthermore, our analysis reveals that approximately 13% of catchment areas around
education facilities experience Internet speeds insufficient for accessing key digital ser-
vices such as e-learning. Additionally, these areas tend to exhibit lower wealth, suggesting
a compounding effect of inequality.

Finally, we assess the impact of the stress placed on the network following the declaration
of the COVID-19 national emergency in Brazil. We find that, on average, this caused a
–20% in download speed across all cities, with values ranging from –7% in Brasília to
almost –30% in Manaus. Our findings indicate that this impact was more pronounced in
less wealthy areas compared to more wealthy ones.
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Overall, this study highlights that while the evolution of Internet quality showed an over-
all progress, disparities persist, with socioeconomic factors playing significant roles. Ad-
dressing these disparities is crucial to ensure equitable access to digital services and to
enhance network resilience in times of crisis. This study demonstrates that despite the
resources allocated by the public and private sector to the strengthening of the Brazilian
digital infrastructure, investments are still needed, particularly in the less affluent areas.

2 Results
2.1 Internet speed evolution analysis
As a first step, our research aims to analyze the evolution of Internet quality, specifi-
cally measured by fixed download speed, across six major Brazilian cities: Belo Horizonte,
Brasília, Fortaleza, Manaus, Rio de Janeiro, and São Paulo. To accomplish this, we lever-
age a unique dataset consisting of ∼ 100M Internet Speedtest results. The data covers the
period between 2017 and 2023. Furthermore, it is geolocalized and provides the down-
load/upload speed (i.e., Megabits per second) and latency in milliseconds for fixed net-
works. In the Additional file 1 we show results considering mobile networks, which we
also discuss below.

It is important to highlight from the start how the data serves only as a proxy of Inter-
net quality. Indeed, due to the details of the software/tool used to make a measurement,
possible bottlenecks in home networks (e.g., routers), the number of devices connected
to a specific network, and selection biases (e.g., tests might be done when users are ex-
periencing connectivity issues or when users need to connect in a new location and/or
by more digitally aware users) the outcome of tests might differ from the real Internet
speed [7, 18]. Nevertheless, Ookla is the canonical network performance testing service.
It is widely used to infer the features of Internet connectivity across and within regions
by academic and governmental institutions [18–20]. Furthermore, as described below,
our analysis aggregates Speedtest results within specific geographical cells thus averag-
ing among many measurements. This allows to reduce the possible impact of the more
technical issues mentioned.

To ensure uniform spatial coverage we partition the geographical area of each city into
hexagonal cells, creating a regular grid (see Fig. 6A). Then, we calculate the Internet speed
within each of these units as function of time. This approach allows to explore different
resolutions and finer scales with respect to administrative partitions. We also compute
a proxy measure for wealth in each of these unit using the Relative Wealth Index (RWI)
provided by Meta [21]. For a more detailed description of our methodology, please refer
to Sect. 4.

Figure 1 shows the evolution of Internet speed, from 2017 to 2023 in the six cities. Across
the board, our analysis reveals a significant improvement in Internet speed throughout
all cities over the past six years. Specifically, Belo Horizonte exhibits the highest median
download speed (176mbps) in 2023, followed by São Paulo (146mpbs), Manaus (116mbps),
Rio de Janeiro (114mbps) Fortaleza (111mbps), and Brasília (105mbps). On the other hand,
Manaus experienced the highest growth during the period, marking a +1200% increase,
followed by Belo Horizonte (+1012%), Rio de Janeiro (+719%), Fortaleza (+685%), Brasília
(+677%), and São Paulo (+463%). Furthermore, in the same plot we show the coefficient
of variation of the distribution of Internet speed within each city across the years. The
coefficient of variation is a measure of dispersion defined as the ratio between standard



Gozzi et al. EPJ Data Science           (2024) 13:69 Page 4 of 15

Figure 1 Evolution of Internet speed, expressed in download speed (Mbps), across the six cities considered.
Boxplots show the distribution of Internet speed within each hexagonal unit in each city. The orange line
indicates the evolution of the coefficient of variation of the Internet speed distribution over the years

deviation and average of a statistical distribution. Our findings indicate a decreasing trend
in the coefficient of variation across the six cities, suggesting a persistent trend towards a
more homogeneous distribution of Internet speed. However, we acknowledge differences
among the cities examined. Brasília exhibits the highest dispersion in Internet speed distri-
bution in 2023 (CV = 0.80), while Fortaleza the lowest (CV = 0.28). More quantitatively,
in 2023, the ratio between the 3rd and 1st quartiles of Internet speed is 5.8 in Brasília,
whereas it is only 1.4 in Fortaleza.

It is important to highlight how, despite a general trend towards homogenisation, the
data still reveals persistent and even increasing disparities across socioeconomic strata.
Figure 2 shows the logarithm of the ratio between the average Internet speed measured
in cells with wealth higher than the 75th quantile and those with wealth lower than the
25th quantile. This metric is meant to compare and highlight the differences between the
wealthiest and the poorest units. A value close to zero indicates similar Internet quality for
both wealthy and less wealthy areas, while positive (negative) values denote better Internet
quality for the more wealthy (less wealthy). As detailed in Sect. 4, the wealth of each unit
is calculated using the Relative Wealth Index (RWI) provided by Meta [21].

Across various years and cities, our analysis reveals consistent trends: i) wealthy areas
generally experience better Internet quality, ii) disparities across areas increased. In the
case of Manaus and São Paulo cells characterized by higher RWI features better Internet
quality across the whole time horizon under study. This trend is observed also in Brasilia
with the exception of 2017. In Rio de Janeiro instead, only in the last two years Internet
quality in wealthy cells was better with respect to less wealthy areas, though the negative
values are closer to zero. Finally in Belo Horizonte and Fortaleza, the values are overall
smaller with respect to the other cities though positive in the last years. The association
between Internet quality and RWI is supported by the Pearson correlation coefficient be-
tween Internet speed and RWI, shown in Fig. 2. The coefficient has increased across all
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Figure 2 Logarithm of the ratio between Internet speeds measured in spatial units with wealth higher than
the 75th quantile and those with wealth lower than the 25th quantile. The orange line represents the Pearson
correlation coefficient between Internet speed and RWI of different spatial units. Circles indicate where the
coefficient is significant at the 5% level

cities in recent years, with all cities showing a positive correlation as of 2023, which is
significant at 5% level with the exception of Belo Horizonte and Fortaleza.

In the Additional file 1 we repeat the analyses presented in Fig. 1 and Fig. 2 for mobile
networks (Figure S3 and Figure S4). Also in that case, we find a significant overall im-
provement of speed over the period considered. Interestingly, we find that, while mobile
speed and wealth are also positively correlated. However, the observed trend is decreasing
in time, contrasting the findings for fixed networks.

In the case of Rio de Janeiro, we extend our analysis to include tests conducted both in-
side and outside favelas. The results of this analysis are presented in the Additional file 1
(Figure S1). Favelas are informal, densely populated urban settlements in Brazil, typically
characterized by substandard housing and a lack of basic services, arising from socioeco-
nomic disparities and rapid urbanization. Not surprisingly, we find that tests performed
within a favela generally exhibit lower Internet speeds. Additionally, this disparity has in-
creased over the years. In 2017, the median speed of tests conducted inside and outside
favelas was 13.7 Mbps and 14.3 Mbps, respectively, reflecting a 4% difference. By 2023,
these speeds had changed to 40.1 Mbps and 94.2 Mbps, respectively, resulting in a 57.4%

difference.
To investigate whether Internet speed has become more spatially autocorrelated over

time, we calculate the Moran’s I statistic for download speed in each hexagonal unit across
various cities for each year within the study period [22]. The Moran’s I quantifies the de-
gree of spatial autocorrelation of a quantity, indicating the extent to which similar values
cluster or disperse across geographical units. More in detail, a positive (negative) Moran’s
I indicates spatial autocorrelation (dispersion) in the dataset, meaning that similar (dis-
similar) values tend to cluster together in space. Our analysis reveals the emergence of
spatial clusters characterized by high or low Internet speed. This finding is exemplified
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Figure 3 Spatial Clustering of Internet Speed. A) Distribution of spatial units with significant local Moran’s I in
Rio de Janeiro in 2017, 2020, and 2023. Clusters of low (high) Internet speed are shown in red (blue). Figure
also reports the median RWI of high/low Internet speed clusters. B) Evolution of global Moran’s I in each city
between 2017 and 2023. Circles indicate where the statistic is significant at the 5% level

in Fig. 3A where we present the results for Rio de Janeiro in 2017, 2020, and 2023 (in the
Additional file 1 we show results also for other cities). The global Moran’s I values ex-
hibit a notable increase from approximately 0 in 2017 to 0.17 in 2020 and further to 0.40
in 2023. Visual inspection of the maps also reveals the emergence of spatial clusters of
high and low Internet speed over the years. Specifically, the maps indicate units where the
local Moran’s I statistic — measuring the spatial clustering pattern of individual obser-
vations — is significant at the 5% level, with units colored to denote low-speed (red) or
high-speed (blue) clusters. The figure also shows the median RWI for high- and low-speed
clusters. We observe that the difference between the two is more pronounced in 2023, with
the high-speed cluster having a median RWI of 1.10, compared to 0.73 for the low-speed
cluster. This supports the pattern of increasing correlation between Internet speed and
wealth, as discussed earlier. Furthermore, we analyze the evolution of the global Moran’s I
across different cities over the six-year period. The findings observed in the case of Rio de
Janeiro are consistent across cities, with the statistic generally demonstrating an increase
over the years. In more details, we observe how in all cities, with the exception of Belo
Horizonte, the last two years show the highest values of Moran’s I . Also, we note how in
Brasilia, Fortaleza, and São Paulo, the global Moran’s I , measured considering data col-
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lected in 2023, is smaller with respect to the previous year. The decreasing trend in the
last year is also observed, though to a lesser extent, also in the case of Manus and in Belo
Horizonte, though in the latter the value obtained it is not significant at the 5% level. In
the Additional file 1 we repeat this analysis for mobile network (see Figure S5). Also in
this case we find positive and significant spatial autocorrelation of mobile Internet speed,
event tough the temporal trend is less clear.

2.2 Access to e-learning
In the second part of our analysis we investigate whether the disparities in Internet quality
highlighted in the previous section may impact access to key services. While acknowledg-
ing the diversity and variety of these, in the following we use e-learning as a concrete
and arguably important example. Indeed, as mentioned in the Introduction, extant re-
search has highlighted the positive relationship between Internet quality and educational
attainment [9]. We note how e-learning is a general term referring to both synchronous
and asynchronous learning activities. These span from access to dedicated platforms to
ability of exploring broader online resources for homework. Our approach is as follows.
First, we gather the locations of educational facilities across the six cities under consider-
ation using data from OpenStreetMap [23]. Next, we conduct a Voronoi tessellation for
each city, with the positions of educational facilities as centroids. This process allows us
to obtain the catchment area of each educational facility. By construction a catchment
area describes the closest educational entity for people living in that region. Subsequently,
we compute the Internet speed within each catchment area by aggregating the download
speeds of all tests performed within. For this analysis, we consider the most recent data
from 2023. Our aim is to focus solely on recent data to accurately characterize the cur-
rent disparities in access to essential services. Additionally, we calculate the RWI for each
area. Further details on our methodology are available in Sect. 4. In Fig. 4, we present the
distribution of fixed download speeds across all catchment areas in the six cities. We also
highlight a threshold of 80 Mbps (approximately 10 megabytes per second) as the min-
imum speed required to access e-learning services [24]. Remarkably, across all cities we
find that nearly 13% of catchment areas have speeds below this threshold. Nonetheless,
we observe a significant variability across cities. In Belo Horizonte, none of the catchment
areas exhibit an Internet speed below the 80 Mbps threshold. Following closely is Brasília,
with only 4.8% falling below, then São Paulo (6.8%), Fortaleza (7.4%), and Manaus (8.3%).
In stark contrast, nearly 24% of catchment areas in Rio de Janeiro fall below this threshold.
activities. These span from access to dedicated platforms to ability of exploring broader
online resources for homework. Our approach is as follows. First, we gather the locations
of educational facilities across the six cities under consideration using data from Open-
StreetMap [23]. Next, we conduct a Voronoi tessellation for each city, with the positions
of educational facilities as centroids. This process allows us to obtain the catchment area
of each educational facility. By construction a catchment area describes the closest ed-
ucational entity for people living in that region. Subsequently, we compute the Internet
speed within each catchment area by aggregating the download speeds of all tests per-
formed within. For this analysis, we consider the most recent data from 2023. Our aim is
to focus solely on recent data to accurately characterize the current disparities in access to
essential services. Additionally, we calculate the RWI for each area. Further details on our
methodology are available in Sect. 4. In Fig. 4, we present the distribution of fixed down-
load speeds across all catchment areas in the six cities. We also highlight a threshold of 80
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Figure 4 Internet Speed in Catchment Areas of Education Facilities. Distribution of Internet speed, measured
as download speed (Mbps), in catchment areas of education facilities across all cities (2023). The portion of
the distribution where speed is lower than 80 Mbps is colored in red. In the inset of each plot, RWI distribution
of catchment areas of education facilities featuring a download speed above and below 80 Mbps is shown.
The asterisks indicate a significant difference between the two RWI distributions assessed using t-test with
significance level of 5%

Mbps (approximately 10 megabytes per second) as the minimum speed required to access
e-learning services [24]. Remarkably, across all cities we find that nearly 13% of catchment
areas have speeds below this threshold. Nonetheless, we observe a significant variability
across cities. In Belo Horizonte, none of the catchment areas exhibit an Internet speed
below the 80 Mbps threshold. Following closely is Brasília, with only 4.8% falling below,
then São Paulo (6.8%), Fortaleza (7.4%), and Manaus (8.3%). In stark contrast, nearly 24%

of catchment areas in Rio de Janeiro fall below this threshold.
Additionally, in the inset of each plot in Fig. 4, we display the RWI distribution of catch-

ment areas below and above the 80 Mbps threshold. Across all cities, our analysis indi-
cates that, on average, catchment areas below the threshold are 15% less wealthy than
areas above the threshold. We assess the differences in RWI distribution between the two
cases using a t-test, finding a significant difference in the case of Rio de Janeiro, São Paulo,
and Manaus (significance level 5%). This observation points to a compounding effect of
inequality. Indeed, students facing higher challenges in accessing key digital services such
as e-learning may already be foreclosed from other opportunities due to their socioeco-
nomic disadvantage.

2.3 Network resilience during crises
Finally, we aim to investigate the resilience of the network to external shocks and the po-
tential heterogeneous impacts of such events. As a case study, we consider the COVID-19
pandemic. With infections and deaths surging worldwide and restrictions being imposed,
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Figure 5 Network Resilience During the COVID-19 Pandemic. A) Daily median download speed in the six
cities between March and June 2020. The vertical dashed line indicates when Brazil declared the national
emergency. The percentage change in individuals staying at home as measured via Google Community
Mobility Reports is also shown. B) Drop in Internet speed following the national emergency declaration in the
top and bottom quartiles of the RWI in each city

the world moved online to maintain essential activities. Arguably, such an unprecedented
surge in demand may have affected network quality. In Fig. 5A, we present the median
daily download speeds in the six cities between March and June 2020. Additionally, we
mark the date when Brazil declared a national emergency with a vertical dashed line and
we show the increase in the percentage of individuals staying at home measured using
data from the COVID-19 Community Mobility Reports published by Google [25]. Across
all cities, we observe a sharp decline in network quality, as measured by download speed,
following the declaration of the national emergency. Concurrently, the fraction of popula-
tion staying at home increased. After the initial drop, we observe a gradual recovery, with
download speeds approaching pre-emergency levels by June 2020. Among the cities con-
sidered, Manaus experienced the most significant drop in median download speed com-
puted in periods March 1st-March 20th (pre-emergency) and March 20th-April 1st (post-
emergency), with a decline of –29%, while Brasília showed the lowest drop at –7%. The
other cities experienced declines ranging from Rio de Janeiro (–25%), Fortaleza (–21%),
São Paulo (–19%), to Belo Horizonte (–16%).

Furthermore, in Fig. 5B, we illustrate these drops for the top and bottom quartiles of the
RWI. More in detail, we select all spatial units in top and bottom RWI quartile and com-
pute median daily Internet speed in these two groups. Then, we aggregate speed in pre-
and post-emergency periods, and compute the percentage differences shown in Figure. We
observe that, with the exception of Brasília, more wealthy areas experienced smaller drops
compared to less wealthy areas. These differences are also significant across all cities when
compared using a t-test with a 5% significance level. When combined with the previous
findings, this suggests that besides experiencing slower Internet speeds, less wealthy areas
may also face more significant drawbacks during extraordinary stress on the network.

In the Additional file 1 we repeat this analysis for mobile network. Also in that case we
find that mobile Internet speed was significantly affected by the stress put on the network
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following national emergency declaration, even tough we do not observe a clear divide in
the drops experienced by more and less wealthy areas (see Figure S6).

3 Discussion
In this study, we analysed the spatio-temporal evolution of Internet speed in six Brazilian
cities spanning the years 2017 and 2023. Our analysis revealed a significant increase in
Internet speed across all cities, along with a trend towards more uniform distribution.
However, we also identified the emergence of spatial clusters characterized by high/low
Internet speed. Furthermore, we found an increasing correlation between Internet speed
and measures of wealth, indicating that more wealthy areas tended to experience higher
Internet speeds over time. Such inequality pattern was also reported by the analysis done
in the case of the favelas in Rio de Janeiro, which revealed an increasing Internet speed
gap with the rest of the city.

To further characterize the impact of such disparities, we considered two case studies.
In the first one, we focused on the Internet speed in catchment areas around educational
facilities in each city. Notably, we find that, as of 2023, approximately 13% of these ar-
eas may have encountered challenges in accessing key digital services such as e-learning.
We observed significant variations among cities, with Rio de Janeiro reaching a peak of
24% of these areas falling below the threshold for e-learning. Additionally, we showed
that these areas tend to be less wealthy, suggesting a potential compounding effect of in-
equality, where regions already facing limited access to opportunities may also encounter
challenges in digital access.

In our second case study, we examined the unprecedented stress placed on the network
due to the shift online driven by the COVID-19 pandemic. Our analysis showed a sig-
nificant decrease in Internet speed across all cities following the declaration of national
emergency. Moreover, we found that less wealthy areas generally experienced more pro-
nounced declines in Internet connectivity during the early weeks of the COVID-19 crisis.
This result is even more concerning when combined with findings from a recent study
that has shown how access to a fast Internet is an effective measure in case of exogenous
shocks such as the pandemic to limit the exposure to infections [7].

In the main text, we focused our analysis on fixed network. The main reason for this
choice is that, in the case of mobile Internet speed tests it is less reliable to assume that
the individual performing the test resides in the area being assessed. Furthermore, mo-
bile Internet speeds are generally lower, which can prevent activities such as reliable video
calls, which is a key focus of the section on e-learning access within this paper. Nonethe-
less in the Additional file 1 we repeat some of the analyses in the case of mobile networks.
Overall, our findings are confirmed also in this case. Additionally, we also show that fixed
and mobile Internet speeds tend to positively correlate in different cities. Interestingly,
however, in the case of mobile network we observe that over time, the correlation be-
tween wealth and speed showed a gradual decline. This phenomenon could be attributed
to the higher demand in economically disadvantaged regions for more affordable connec-
tivity options, such as mobile connections. Consequently, the evolution of mobile Internet
may have diverged from that of fixed Internet due to distinct demands and consumer seg-
mentation. Although this may provide a short-term fix, it could prevent long-term digital
growth and access.
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The present study comes with limitations. First, we used data from Internet Speedtest
results, which is only a proxy for Internet speed. As discussed, due to several factors, the
outcome of tests might differ from the real Internet. Nevertheless, Ookla is widely used
by academic and official institutions to measure Internet connectivity. Additionally, our
methodology aims at attenuating some of the possible issues deriving from the heteroge-
neous use of this service, as detailed in Sect. 4 and in Ref. [7]. In the Additional file 1 we
conducted an additional analysis on the sample size of Internet measurements, demon-
strating that it does not impact the robustness of the results (see Figure S2). We also pro-
vide the total number of Internet measurements (both fixed and mobile) across different
cities, years, and RWI segments (see Table S1 and Table S2).

Second, we use only proxy data to measure wealth. Indeed, we consider the Relative
Wealth Index published by Meta [21] to characterize wealth at the desired spatial granu-
larity, nonetheless such data come with inherent limitations, as is the case with all proxy
measures. Lastly, Internet speed and wealth are linked by a feedback loop that we do not
fully characterize due to data availability. As a result, our study mostly focuses on associa-
tions over time and space rather than causation or providing comprehensive explanations
of the current landscape.

Since 2020, about 28 USD billion have been invested in the telecom sector in Brazil [26].
Despite the significant amount of resources, the underlying efforts were not enough to
provide a level playing field for all Internet users. This study, indeed, has shown how the
poorest segments of population still experience a slower Internet connectivity compared
to the most wealthy and how this gap may widen in case of exogenous shocks. Such dis-
parity can have a significant impact on the socioeconomic development of the country
and requires a joint work of policy makers and the private sector to be solved. Specific
policies at the local level should be promoted to improve connectivity in the poorest areas
of towns, favoring the penetration of fiber to the Home (FTTH) technology, the afford-
ability of high-speed Internet packages and devices, the development of specific digital
skills through dedicated training and awareness programs. All these measures will sup-
port a more equal access to the Internet, ensuring that all individuals have access to a fast,
affordable, and reliable Internet connection.

4 Materials and methods
4.1 Measuring Internet speed
We characterize Internet quality using as proxy Speedtest Intelligence® data by Ookla [27].
Speedtest apps offer free analyses of Internet performance metrics. The tests are geolo-
calized and provide download/upload speed (expressed in Megabits per second). Here,
following a common practice, we consider download speed as a metric to assess the qual-
ity of Internet. The dataset includes nearly 100M tests performed between 2017 and 2023,
divided as follows: 47.5M in São Paulo, 24.1M in Rio de Janeiro, 8.1M in Belo Horizonte,
6.5M in Brasília, 6.1M in Fortaleza, and 4.9M in Manaus.

We preprocess the data by excluding all tests displaying a download speed of 0 Mbps,
as these typically represent failed tests and do not provide informative insights into the
actual network quality. Additionally, to limit the impact of outliers, we filter out tests with a
download speed > 2 Gigabits per second, as this threshold is regarded the maximum value
for broadband technology. After preprocessing, we compute Internet speed following a
procedure similar to the one presented in Ref. [7].
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To compute Internet speed in a geographical area g over a timeframe (t1, t2), we gather
all tests conducted within that area during that period. Then, we calculate the median of
the results obtained from tests conducted by individual users. In other words, for each
user u, we compute the associated download speed as follows:

Mbpsu,g
(t1,t2) = medi(Mbpsu,g

i,(t1,t2))

This step is taken to prevent bias caused by users who utilize the service more frequently
than others. Finally, the download speed associated to area g in timeframe (t1, t2) is calcu-
lated as the median download speed across all users:

Mbpsg
(t1,t2) = medu(Mbpsu,g

(t1,t2))

4.2 Measuring wealth
We assess the socioeconomic status of different geographical regions using the Relative
Wealth Index (RWI) from Meta’s Data for Good Program [21]. This index, made publicly
available in 2021, offers micro-estimates of the relative standard of living within countries.
It is built considering non-traditional data sources such as satellite imagery and privacy-
preserving Facebook connectivity data, and it is validated by Meta through ground truth
measurements obtained from the Demographic and Health Surveys. The RWI covers ap-
proximately 93 low and middle-income countries globally, providing data at a high spatial
resolution (2.4km2 micro-regions). In this study, we aggregate the RWI at the desired geo-
graphical resolution by computing the average RWI of all micro-regions contained in the
considered geography. Specifically, for each hexagonal unit, we select the RWI tiles whose
centroids fall within that unit and compute the average RWI of those tiles, which we then
assign to the corresponding hexagonal unit.

4.3 Hexagonal grid
We partition the area of each city considered into an hexagonal grid. This allows us to ob-
tain a regular uniform spatial grid. More in detail, we follow a standard discrete global grid
system for indexing geographies into a hexagonal grid, called H3, initially developed by
Uber [28]. We consider a resolution of 7 such that hexagonal units have an area of approx-
imately 5.2km2. In this way, we balance granularity and sparsity, ensuring a reasonable
combination of both. Indeed, at resolution level 6 the average area covered is approxi-
mately 36.1 km2, which would result in an aggregation that is too coarse for our purposes.
On the other hand, at resolution level 8, the average area is only 0.7 km2, making the gran-
ularity too fine compared to the Relative Wealth Index (RWI) resolution. This would make
it impossible to unambiguously associate an RWI tile with a specific hexagon. Figure 6A
illustrates the resulting hexagonal grid for Manaus.

4.4 Voronoi tessellation
We collect the location data of educational facilities within the six cities under in-
vestigation from OpenStreetMap [23]. We include all entities categorized with the tag
“amenity=school”. We note that the tags ‘college’ and ‘university’ are excluded from our
analysis. Indeed, our primary focus is on lower-grade schools, which have a broader im-
pact on the entire population across all socio demographic groups. In contrast, higher
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Figure 6 A) Boundaries of Manaus and obtained hexagonal grid. B) Location of education facilities and
obtained Voronoi tessellation for Rio de Janeiro

education often interacts with other socioeconomic dimensions in complex ways. For this
reason, we chose to isolate lower-grade schools from higher education institutions to avoid
conflating different factors. Each facility is then condensed to its centroid, so that all facil-
ities are represented by a unique set of coordinates. To prevent excessive fragmentation,
we merge facilities located within a 1km radius of each other. Subsequently, we employ
Voronoi tessellation on the resulting centroids. This process generates a Voronoi cell for
each centroid, including all points on the plane that are closer to that seed point than to
any other. This approach allows us to define the catchment areas of each educational fa-
cility. Figure 6B illustrates the location of education facilities and the resulting Voronoi
tessellation for Rio de Janeiro.
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