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Abstract

Symptom-only case definitions are insufficient to discriminate COVID-like illness from acute

respiratory infection (ARI) or influenza-like illness (ILI), due to the overlap in case definitions.

Our objective was to develop a statistical method that does not rely on case definitions to

determine the contribution of influenza virus and SARS-CoV-2 to the ARI burden during

periods when both viruses are circulating. Data sources used for testing the approach were

weekly ARI syndrome reports from the Infectieradar participatory syndromic surveillance

system during the analysis period (the first 25 weeks of 2022, in which SARS-CoV-2 and

influenza virus co-circulated in the Netherlands) and data from virologically tested ARI

(including ILI) patients who consulted a general practitioner in the same period. Estimation

of the proportions of ARI attributable to influenza virus, SARS-CoV-2, or another cause was

framed as an inference problem, through which all data sources are combined within a

Bayesian framework to infer the weekly numbers of ARI reports attributable to each cause.

Posterior distributions for the attribution proportions were obtained using Markov Chain

Monte-Carlo methods. Application of the approach to the example data sources indicated

that, of the total ARI reports (total of 11,312; weekly mean of 452) during the analysis period,

the model attributed 35.4% (95% CrI: 29.2–40.0%) and 27.0% (95% CrI: 19.3–35.2%) to

influenza virus and SARS-CoV-2, respectively. The proposed statistical model allows the

attribution of respiratory syndrome reports from participatory surveillance to either influenza

virus or SARS-CoV-2 infection in periods when both viruses are circulating, but comparabil-

ity of the participatory surveillance and virologically tested populations is important. Portabil-

ity for use by other countries with established participatory respiratory surveillance systems

is an asset.
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Author summary

Internet-based participatory surveillance systems are valuable public health tools for mon-

itoring illness due to infectious diseases, but when two respiratory viruses are circulating

simultaneously, but lead to similar symptoms, case definitions cannot be used to distin-

guish the virus causing the illness. Our goal was to develop a statistical method that does

not rely on case definitions to determine the contribution of influenza virus and SARS-

CoV-2 to reported cases of acute respiratory infection. We tested the method using data

collected from the Infectieradar system during the 2021/2022 influenza season in the

Netherlands, in a period in which the omicron variant of SARS-CoV-2 was also circulat-

ing. Our study indicates that the model is able to attribute illness to the possible causes,

and is of potential value for other countries with established participatory respiratory sur-

veillance systems.

Introduction

Internet-based participatory syndromic surveillance systems have proven value for providing

(near) real-time information on the spread of seasonal influenza in the general population

[1,2,3], through voluntary self-reporting of respiratory symptoms that are consistent with

influenza-like illness (ILI). Trends in self-reported ILI have been demonstrated to correlate

well with trends in influenza virus infection as determined using other surveillance systems

[1,2,4].

As COVID-19 appears to be on the path towards becoming an established recurring infec-

tious disease, temporal overlap with seasonal influenza virus is inevitable. To maximise their

utility for tracking either infection, syndromic surveillance systems will ideally need to distin-

guish syndrome reports attributable to the two (or more) causal agents, especially as several

countries intend these systems to serve in the future as a monitor of the community spread of

SARS-CoV-2 infection in the absence of widespread testing and collection of incident case

data. For instance, in the Netherlands as of 11 April 2022, undergoing a confirmation PCR test

at a governmental facility was no longer advised following a positive self-test (rapid antigen

test).

Symptom-only case definitions are insufficient to discriminate between ILI and COVID-

like illness, due to the overlap in symptoms comprising the two case definitions (S2 Fig). This

issue is apparent for the Netherlands in 2022, where the influenza season [5] partially over-

lapped with a period in which the SARS-CoV-2 positivity rate from national surveillance also

exhibited a peak [6], but with different temporal dynamics.

The main aim of this work is to propose a method using Bayesian statistical modelling to

perform syndrome attribution, which we test by combining data from the Infectieradar partic-

ipatory surveillance system in the Netherlands with data from virological testing of GP patients

with acute respiratory infection (ARI). This is an inference problem, the goal of which is the

estimation of the weekly numbers of ARI reports that are attributable to each cause. Carrying

out this inference within a Bayesian framework provides the flexibility to integrate additional

relevant data, such as the prevalence of symptom(s) highly specific for one of the causes. Like

broadly similar statistical approaches developed to attribute mortality to influenza virus and

other respiratory pathogens [7,8], ecological assumptions are required when the data indicat-

ing confirmed influenza virus and SARS-CoV-2 infection are not collected from the same par-

ticipants who self-report respiratory symptom(s). The ultimate goal of developing this
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methodology is two-fold: first, we wish to better estimate the incidence of both infections

(influenza virus and SARS-CoV-2) among persons with ARI in the community (not only

among people who consult their GP). Second, to support this effort, we would like to establish

an operational approach to provide a clear estimate of the number of virological tests that are

required to attribute respiratory syndrome occurrence to the causal agent. The latter is espe-

cially important for assessing the resources needed in terms of laboratory testing to implement

a cost-effective approach for syndrome attribution, while at the same time leveraging the scale-

up capabilities of participatory surveillance.

Methods

We consider the task of estimating the proportions of respiratory syndromes that are due to

influenza virus, SARS-CoV-2, or another pathogen/cause, as an attribution problem, which is

solved within a Bayesian framework by essentially inferring the relationships between varia-

tion in influenza positives and SARS-CoV-2 positives over time from virological testing, and

variation in the time-series of ARI syndrome reports from participatory surveillance. The anal-

ysis period was defined as ISO weeks 1–25 of 2022, and was chosen to encompass the 2021/

2022 influenza season, which lasted from week 8 through week 20 [5].

Data sources and case definitions

The method requires two main data sources: syndromic reports from participatory surveil-

lance systems and a second source consisting of virological testing of swabbed patients for

both influenza virus and SARS-CoV-2. Ideally the characteristics (e.g., demographic variables,

symptom severity) of the tested population should match the characteristics of the participants

self-reporting the syndrome of interest. This is not essential for presenting and developing the

methodology, but will be important in practice. Virological testing of hospitalised patients

could also serve as a viable data source, but then interpretation of the resulting attributions

must take into account differences in the severity of illness and testing strategies.

Syndromic surveillance

The Infectieradar web-based syndromic surveillance system (participatory surveillance) was

set up in mid-March 2020 and collates data on symptom occurrence, SARS-CoV-2 testing,

vaccination against influenza virus and COVID-19, absenteeism, etc. through weekly surveys

filled out by the respondents. As of June 2022, there were approximately 9000 active partici-

pants. From Infectieradar data, we calculated the number of submitted surveys per week that

matched the case definition used by the European Centre for Disease Control [9] for acute

respiratory infection. ARI is defined as at least one of the following symptoms: sore throat,

cough, shortness of breath, rhinitis, with sudden onset of symptom(s) indicated [10]. ARI was

chosen as syndrome case definition to match the study population of the virological testing

data (described below). As in previous studies of involving Infectieradar and other national

participatory surveillance systems belonging to the InfluenzaNet monitoring network [11],

exclusion criteria were applied to reduce the chance of selection bias (i.e., persons who only

registered and/or completed a single survey, likely because of prevalent symptoms) [4,12].

Namely, weekly surveys for which symptom onset date was prior to or on the date of registra-

tion were removed, and a participant’s first-ever weekly survey was excluded. Note that a given

participant can contribute data to multiple weeks of the analysis period if symptoms persist or

reappear; thus we model prevalent rather than incident syndrome occurrence.

Loss of smell or taste has a high specificity for SARS-CoV-2 infection [13] but occurs infre-

quently in influenza cases [14]. We retrieved the weekly prevalence of this ’joint’ symptom
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among Infectieradar ARI reports, to improve the positive predictive value of ARI for SARS--

CoV-2 (see below).

Virological testing

The laboratory testing study population we used to develop and test the attribution model con-

sisted of persons with ARI (consisting of primarily ILI patients, but also non-ILI ARI patients

were swabbed) consulting a general practitioner (GP) belonging to a long-established sentinel

network of GP practices (the Nivel Primary Care Database; [15]). ARI patients were judged as

such by the GP, and were neither systematically nor randomly sampled. GPs were requested to

sample at least two ARI patients per week, of which at least one with ILI and one younger than

10 years old. If no ILI patients presented, then ARI patients were sampled. Also, if patients had

tested SARS-CoV-2 positive at home using a rapid antigen test they would normally not be

coded as ARI but with a specific ICPC code for COVID-19 cases. Such patients would thus be

excluded from sampling for virological testing. We note that this sampling protocol is ade-

quate for purposes of developing the attribution method, but not for accurate attribution.

Swabs (nose and throat swab) were tested for influenza A virus (with subtyping for A(H1N1)

pdm09 and A(H3N2)), influenza B virus (with lineage determination for B/Victoria and B/

Yamagata), and SARS-CoV-2 at RIVM’s Centre for Infectious Disease Research, Diagnostics

and Laboratory Surveillance (IDS) (for further details on the virological testing procedure, see

[16]). Samples are additionally tested for RSV, rhinovirus, enterovirus, other human coronavi-

ruses (hCoV-229E, -OC43, -HKU1, -NL63), parainfluenza viruses (type 1, 2, 3, 4), and human

metapneumovirus. Over our 25-week analysis period a total of 1074 samples were tested

(mean of 43 samples per week; range 6 to 87).

The 2021/22 influenza season in the Netherlands began later than in a typical season, lasting

from week 8 through week 20, with mainly influenza virus type A being detected, of which A

(H3N2)

was dominant, with lower proportions of A(H1N1)pdm09 and influenza virus type B/Vic-

toria lineage detected [5]. The peak in ILI incidence was reached approximately in week 15.

The pattern for SARS-CoV-2 differed; from national surveillance of the weekly percent posi-

tive among tested persons, an earlier peak in week 10 (6.0% SARS-CoV-2 positive) was appar-

ent [6],

Attribution model

The attribution model consisted of the following set of equations, in which index i to refers to

week number of the analysis period, and the index c to refer to the (unknown) cause of the syn-

drome report.

We model the observed data, Zi, which is a summation of the (unknown) number of ARI

syndrome reports per cause (i.e., Yinfluenza,i + YSARS-CoV-2,i + Yother,i) using the sum sampler in

JAGS [17]:

Zi ¼
X

c
Yc;i ð1Þ

The weekly number of syndrome reports attributable to three ’cause categories’: influenza

virus, SARS-CoV-2, and other (which, besides other respiratory pathogens, may include con-

ditions such as allergies that can give rise to ARI symptoms), were each assumed to follow a

Poisson distribution (appropriate for modelling event counts within a given time interval). Ys,

a,i is the number of ARI syndrome reports in week i attributable to cause c.

Yc;i � Poissonðlc;iÞ ð2Þ
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The Poisson mean parameter, λc,i, is a function of the probability that the occurrence of the

syndrome is attributable to cause c, πc,i, and a scaling factor, δc, which can be interpreted as the

expected number of ARI reports per unit probability of an ARI case being attributable to cause

c. (Reliable estimation of δc requires only that the proportions positive for each cause category

from virological testing do not closely co-vary, and that there is variation over time.)

lc;i ¼ dcpc;i ð3Þ

Virological testing data (weekly proportion of samples positive for cause c, where n = num-

ber of positives; N = number of tested samples) are assumed binomially distributed (i.e.,

describing the number of outcomes out of N trials); these data inform the probability parame-

ter pc,i, for which a non-informative Jeffreys prior, Beta(0.5,0.5), is specified:

nc;i � BinomialðNc;i; pc;iÞ ð4Þ

A vague half-normal prior is specified for the scaling factor δc (to ensure a positive density

over the non-negative real numbers), with large variance:

dc � half � Normalð0; 100000Þ ð5Þ

Next, we bring in further information on the weekly prevalence (previ) of highly-specific

symptom loss of smell/taste, updating pSARS−CoV−2,i, the prior probability of SARS-CoV-2 given

ARI as determined from virological testing (w = number of ARI reports with symptom; W =

total number of ARI reports), using Bayes’ theorem (e.g., [18]). This requires estimates of the

sensitivity (sens) and specificity (spec) of the symptom loss of smell/taste for SARS-CoV-2

infection; these parameters (0.487 and 0.954, respectively) were taken from a published analy-

sis of UK first wave data collected using the COVID Symptom Study app [13].

wi � BinomialðWi; previÞ ð6AÞ

p̂c;i ¼
ðsens∗pc;iÞ

ðsens∗pc;iÞ þ ð1 � specÞð1 � pc;iÞ
ð6BÞ

Because this updated prior applies only to individuals who reported loss of smell/taste in

week i, we define the probability that the ARI report was due to SARS-CoV-2 infection, πSARS

−CoV−2,i, as a weighted function of the prevalence of loss of smell/taste in that week, and we set

πinfluenza,i equal to pinfluenza,i.

pc;i ¼ ð1 � previÞpc;i þ previðp̂c;iÞ ð7Þ

Implementation

After discarding the first 10,000 iterations as burn-in, 3000 samples from the posterior distri-

bution were taken to allow inference of the model parameters. Three chains were run, and

results examined for adequate mixing and convergence (see Supporting Information, S4 Fig

for posterior densities for key parameters). We report (and plot) posterior median estimates

and define 95% credible intervals (CrIs) using the 2.5% and 97.5% quantiles of the posterior

distribution. Sampling was carried out within JAGS [17], accessed via the runjags package [19]

for R [20]. JAGS code is provided in the Supporting Information, S1 Code.

To prevent information flow from the observed data on weekly ARI syndrome reports to

the posterior probabilities that the ARI report was due to influenza virus or to SARS-CoV-2

infection (i.e., the posterior distributions for the parameters πinfluenza,i and πSARS−CoV−2,i should

reflect the number of positives and number of tests only), virological testing data are
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introduced in a separate JAGS ’data block’. As only one (random) sample from the parameters

pc,i are taken per model run (in the JAGS data block), we aggregated the posterior samples

from 200 runs of the model, from which the posterior medians and 95% CrIs were extracted.

Given that the Infectieradar weekly survey also queried whether participants had under-

gone testing (SARS-CoV-2 PCR/antigen test) since their previous survey, we could compare

the modelled proportion of ARI patients attributed to SARS-CoV-2 infection to the observed

proportion of Infectieradar participants matching the ARI case definition who in the same

week (or in the subsequent week, as they may not have tested immediately upon symptom

onset) reported a positive test result.

Sensitivity analyses

Sensitivity analysis 1. For application of the approach to other settings, it is of interest to

determine the impact of data availability–namely, as mentioned in the Introduction, the total

number of swabbed ARI patients from sentinel surveillance undergoing virological testing–on

the attribution estimates. This will allow estimation of the minimum weekly number of tested

patients required for the obtaining valid attribution estimates from the model. We conducted

a sensitivity analysis by successively reducing the total size of the testing dataset through the

range (90% through 10% of the original size, in steps of 20%) by randomly removing data

points (e.g., 90% of 1074 = 107 removed, 70% of 1074 = 322 removed, etc), and re-running the

model. For each step size, we ran the random removal procedure 20 times, aggregating the

posterior samples for the 20 runs, and then calculated the posterior median influenza virus

and SARS-CoV-2 attribution estimates and associated 95% credible intervals. We also calcu-

lated the root mean-squared error (RMSE), which quantifies the degree of discrepancy to the

attribution estimations derived using the full dataset (S1 Table). To give greater weight to

larger than smaller discrepancies, we chose RMSE as the loss function.

Sensitivity analysis 2. Prior distribution assumptions were assessed for the probability

parameters pc,i, by substituting the Jeffreys prior, Beta(0.5,0.5) with the uniform Bayes-Laplace

prior, Beta(1,1) (sensitivity analysis 2A), and for the scaling factors δc, by substituting the

vague half-Normal prior with an alternative, Jeffrey’s prior for the Poisson rate parameter

(which is proportional to δc
-0.5) (sensitivity analysis 2B), that also ensured a positive density

over the non-negative real numbers.

Results

A total of 11,312 syndrome reports fulfilled the ARI case definition during our 25-week analy-

sis period (per-week mean of 452), out of a total of submitted 229,299 surveys (per-week mean

of 9172). The age-group 45–64 years contributed the highest percentage of ARI syndrome

reports during weeks 1–25 of 2022 (54%), followed by the 15–44 years age-group (25%).

The proportions of influenza virus and SARS-CoV-2 positive results from virological test-

ing of ARI patients from the sentinel GP network, with fitted cubic smoothing splines, are

shown in Fig 1. In comparison with SARS-CoV-2, influenza activity appeared to rise more

steeply, peaking approximately 7–8 weeks later. Over the 25-week analysis period, influenza

virus and SARS-CoV-2 were detected in 30.6% and 7.8% of samples, respectively. Other

viruses were detected as follows: RSV (4.6%), rhinovirus (13.9%), enterovirus (1.2%), other

human coronaviruses (9.7%), parainfluenza viruses (7.5%), and human metapneumovirus

(1.9%) (NB. double infections could occur). The highest percentage of ARI patients swabbed

between 2021/week 40 and 2022 week 20 was for the age-group 15–44 years (approximately

35%), followed by the 45–64 years age-group (approximately 27%) [5].
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The model-estimated number of ARI syndrome reports per week attributable to infection

with influenza virus, SARS-CoV-2 infection, or to other causes is depicted in Fig 2. Of the total

ARI reports during the defined influenza season (week 8 through week 20), the model

Fig 1. Weekly observed proportions of influenza-positive and SARS-CoV-2 positive results among sampled ARI

patients from sentinel GP surveillance (i.e., number of virus-positive results divided by the number of samples

tested per week). Cubic smoothing splines (10 df) are superimposed.

https://doi.org/10.1371/journal.pdig.0000655.g001

Fig 2. Posterior estimates from the attribution model of the weekly number of ARI syndrome reports per cause, over the 25-week analysis

period.

https://doi.org/10.1371/journal.pdig.0000655.g002
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attributed 52.7% (95% CrI: 45.1–58.2%) and 21.3% (95% CrI: 14.6–29.9%) to influenza virus

and SARS-CoV-2, respectively. Fig 3 shows the estimated proportions of the total surveys sub-

mitted in each week that were attributed to influenza virus, to SARS-CoV-2 and to another

cause. Over the whole analysis period, 35.4% (95% CrI: 29.2–40.4%) and 27.0% (95% CrI,

19.3–35.2%) of ARI was estimated to be attributable respectively to influenza virus and to

SARS-CoV-2 (but we note the limitations–see Methods and Discussion –in interpreting the

attributed percentages given the protocol for selecting patients for swabbing, and differences

in healthcare-seeking behaviour between persons who tested SARS-CoV-2 positive using a

home test and those who did not). Influenza-attributable ARI reached a peak of 5.0% of all

submitted surveys (in week 11), whereas SARS-CoV-2 attributable ARI did not exceed 3.1%

(in week 8) within our analysis period (Fig 3).

Posterior estimates of the scaling factors, δc, were 707 (95% CrI: 579–806), 884 (95% CrI:

603–1269), and 252 (95% CrI: 209–300) per unit of attribution probability for influenza virus,

SARS-CoV-2, and other causes, respectively.

Of those Infectieradar participants with ARI who also reported a linked SARS-CoV-2 PCR/

antigen test, 26.5% had a positive test outcome. Both model-estimated attribution probabilities

and the observed proportion of test-positives are plotted over time in S3 Fig, and indicate

broadly consistent temporal trends.

Integrating the prevalence of loss of smell/taste in the estimation of the probability of

SARS-CoV-2 given ARI made only a small difference to the results (27.0% of total ARI reports

Fig 3. Posterior estimates from the attribution model of the weekly proportions per cause (out of total weekly submitted surveys), over the 25-week

analysis period.

https://doi.org/10.1371/journal.pdig.0000655.g003
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over the 25-week analysis period was attributed to SARS-CoV-2 when loss of smell/taste was

included, compared to 22.6% if excluded), as the prevalence of these highly specific symptoms

for SARS-CoV-2 was low throughout the analysis period, reaching their highest levels of 7–8%

in week 7 (S2 Fig).

Sensitivity analyses

S1 Table shows the effect of artificially reducing the size of the virological dataset. The uncer-

tainty in the influenza and SARS-CoV-2 attribution estimates for the defined 13-week influ-

enza season tended to increase with decreasing size of the testing dataset. As well, the degree to

which attribution proportions differed from those estimated using 100% of the data, as quanti-

fied by RMSE, tended to increase as dataset size decreased. Between 50% and 30% of the origi-

nal size, there was a relatively large increment in RMSE for influenza virus, with a large

increment in RMSE at between 70% and 50% for SARS-CoV-2, which suggests that 70% of

our full dataset (i.e., mean of 30 tested ARI patients per week) is a practical minimum for

attributing respiratory syndrome to influenza or SARS-CoV-2 (S1 Table).

There was minimal influence from the choice of noninformative prior for the proportions

of influenza or SARS-CoV-2 positive lab test results, and the alternative prior choice for the

scaling factors δc also did not substantively alter the attribution estimates (S3 Table).

Discussion

We have presented a statistical modelling approach for the attribution of syndrome self-

reports from participatory surveillance to their cause during periods when influenza virus and

SARS-CoV-2 are co-circulating, which cannot be adequately distinguished using syndrome-

only case definitions. We tested the attribution method using data from Infectieradar and

from virological testing of ARI patients from sentinel GP surveillance. Conditional on limita-

tions related to the criteria and the protocol for swabbing ARI patients, the model suggested

that a much higher proportion of ARI reports were estimated to be attributed to influenza

(53%) than to SARS-CoV-2 (21%) over the 13-week 2022 influenza season in the Netherlands.

Influenza virus activity peaked around week 14–15 (based on the GP sentinel surveillance

ILI incidence rate and the test-positive proportion [5]; see Fig 1 in this reference), and there

were two COVID-19 peaks that occurred earlier than the influenza peak (according to the

weekly number of confirmed SARS-CoV-2 tests at public health service test locations): in week

5 and a smaller peak in week 10 [5]. The time-series of Infectieradar ARI syndrome reports

over weeks 1–25 of 2022 therefore reflect a mixture of these two circulating viruses, as well as a

sizeable contribution from other (unknown) causal agents (Fig 2). Among those Infectieradar

participants whose symptoms matched the ARI case definition who also reported being tested,

26.5% were SARS-CoV-2 positive. This is identical to our overall SARS-CoV-2 attributed pro-

portion (27.0%), and the temporal patterns were roughly consistent (S3 Fig). These similarities,

however, should not be interpreted as validation of the model-based attribution estimates

given the small proportion of Infectieradar participants who self-selected for, and reported,

testing, and the constraints on the sampling of sentinel GP patients and healthcare-seeking

behaviour already mentioned (see Methods).

Differences in the estimated scaling factors for influenza virus and SARS-CoV-2 can be cau-

tiously interpreted as between-pathogen differences in the chance that ARI symptoms develop

following infection with the particular respiratory pathogen. However, this interpretation

must be considered in the context of other possible–but not tested for–causes of the symptoms.

Given the ecological design and the constraints on swabbing ARI patients in our data, one
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cannot definitively say on the basis of a larger scaling factor estimated for influenza that influ-

enza virus infection leads to a higher chance of ARI symptoms compared with SARS-CoV-2.

Advantages of the present approach, which is similar to ecological regression methods

employed for attribution of respiratory-associated mortality or hospital admissions over multi-

ple seasons [3,7,21], is that it is relatively simple to implement and requires only virological

testing data from a comparable population. Sensitivity analysis 1 has suggested a lower limit

for the dataset size (i.e., a mean of 30 ARI patients tested per week) needed to attribute respira-

tory syndrome occurrence to the causal agent. Unlike additive regression approaches, data

from multiple seasons are not required for robust estimates. Furthermore, the Bayesian model-

ling framework propagates uncertainty from all data sources to the attribution estimates, the

prevalence of distinguishing symptoms is straightforward to incorporate, and the approach

allows further evidence to be integrated if available; for instance, a second source of weekly

SARS-CoV-2 testing data could easily be included.

The main limitation is the ecological approach to estimation, and the consequent key

assumption that the population sampled for virological testing is comparable–in susceptibility

to infection, symptom severity, and in demographic characteristics such as age–to the respon-

dents reporting the syndrome of interest. Implicit in the use of sentinel GP data is the assump-

tion that health-care seeking behaviour is not conditional on the cause; for instance, if one

strongly suspects SARS-CoV-2 infection and goes to a government COVID-19 testing facility

rather than to a GP, then the percentage of ARI attributed to SARS-CoV-2 will be under-esti-

mated. Because patients were advised to do a rapid antigen test before going to the GP, and

persons testing positive were neither recorded as ARI patients nor swabbed, our virological

testing dataset is biased against detecting SARS-CoV-2. Future work will address the validity

of the attribution model, as in the following (2022/2023) season a random sample of Infectiera-

dar participants were mailed a rapid antigen test which they were asked to use if they had

respiratory symptoms, and–if the result was SARS-CoV-2 positive–to send in the swab to IDS

for testing for other viruses including as influenza. This will provide data on SARS-CoV-2 and

influenza infection within a single study population.

The tested population from the sentinel GP network consisted of a comparable number of

ILI patients and non-ILI ARI patients [5], which may not provide an ideal match to the Infec-

tieradar ARI reports. In addition, because the absolute numbers of syndrome reports attrib-

uted to each cause will vary depending on the syndrome case definition (e.g., greater weekly

numbers of influenza- and SARS-CoV-2 attributed syndrome reports would be estimated

when based on COVID-19-like illness instead of ARI, or on the more specific ILI case defini-

tion; S1 Fig), the proportion of syndrome reports attributed to each cause is a more appropri-

ate outcome measure. We have made some simplifications for the purpose of illustrating the

method. Namely, the sensitivity and specificity of loss of smell/taste are likely variant-specific;

using the first wave (ancestral variant) estimates for the current omicron-era data will intro-

duce some inaccuracies. Finally, the time-series of both ARI syndrome reports and virological

testing are assumed to align; however, the onset of ARI (in both Infectieradar and sentinel GP

patients) may occur a few days before being tested.

In summary, the proposed method can assist in attributing respiratory syndrome reports

from participatory surveillance to either influenza virus or SARS-CoV-2 infection in periods

when both viruses are circulating. The approach is particularly interesting because it can be

easily exported to other countries with implemented participatory surveillance systems. The

estimated lower bound in the weekly number of swabs submitted for virological testing pro-

vided by sensitivity analysis 1 supports the feasibility of the present approach in other coun-

tries where participatory surveillance data are available but routine virological testing is less

well-established than in the Netherlands.
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