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Abstract

The emergence of SARS-CoV-2 variants of concern (VOCs) punctuated the dynamics of the

COVID-19 pandemic in multiple occasions. The stages subsequent to their identification have been

particularly challenging due to the hurdles associated with a prompt assessment of transmissibility

and immune evasion characteristics of the newly emerged VOC. Here, we retrospectively analyze

the performance of a modeling strategy developed to evaluate, in real-time, the risks posed by the

Alpha and Omicron VOC soon after their emergence. Our approach utilized multi-strain, stochastic,

compartmental models enriched with demographic information, age-specific contact patterns, the

influence of non-pharmaceutical interventions, and the trajectory of vaccine distribution. The models’

preliminary assessment about Omicron’s transmissibility and immune evasion closely match later

findings. Additionally, analyses based on data collected since our initial assessments demonstrate

the retrospective accuracy of our real-time projections in capturing the emergence and subsequent

dominance of the Alpha VOC in seven European countries and the Omicron VOC in South Africa.

This study shows the value of relatively simple epidemic models in assessing the impact of emerging

VOCs in real time, the importance of timely and accurate data, and the need for regular evaluation
1
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of these methodologies as we prepare for future global health crises.

1

The

Varia

onset r

immu

geogr

pand

T

propo

on es .

Thes

their

data ,

mobi r

the a

to ch

12]. T

recon

their

a cry

syste

T

is ess

emer

limite

strate

focus

the e -

world l

for im .

In pa

Alph )
Jo
ur

na
l P

re
-p

ro
of

Introduction

evolution of the COVID-19 pandemic was significantly marked by the emergence of SARS-CoV-2

nts of Concern (VOCs). While the virus’ mutations have been monitored since the pandemic’s

[1], certain lineages exhibited distinct characteristics in terms of transmissibility, mortality, o

ne escape, altering the global pandemic landscape. Many variants eventually subsided or remained

aphically contained. Others, like Alpha and Omicron, dramatically changed the course of the

emic.

o assess the initial risk of VOCs importation from one region to another, several studies have

sed models that integrate international and domestic traffic patterns [2–4]. Others have focused

timating the relative transmissibility of emerging VOCs compared to pre-existing strains [5–9]

e efforts have also assessed potential increases in the severity of the disease caused by VOCs and

impact on cases, hospitalizations, and fatalities [7]. To this end, researchers have harnessed genomic

and provided statistical analyses of VOCs’ detection [5, 6, 8]. By integrating data of social contacts

lity, and demographic indicators, other studies have adapted epidemiological models to account fo

ttributes of these novel VOCs [7, 9]. Furthermore, a significant body of research has been devoted

aracterizing the initial introduction and establishment of VOCs in different countries [4, 6, 10–

hese studies have predominantly leveraged phylodynamic analyses of large scale genomic datasets

structing the emergence of VOCs and quantifying their initial introduction thereby shedding light on

spatial dissemination [10–12]. This is particularly relevant given that many VOCs typically undergo

ptic initial phase where they spread silently without being detected by traditional surveillance

ms [13].

he development of parsimonious models able to synthesize intelligence from diverse data sources

ential to assess the risks and shape responses. However, during the initial phases of a VOC’s

gence and spread, the reliability of any analytical method is challenged by time constraints and

d information. In this context, we undertake a critical and retrospective analysis of the modeling

gy we developed in real-time during the emergence and spread of Alpha and Omicron. This study

es on detailing and assessing a mechanistic modeling approach developed and calibrated during

arly stages of VOCs onset, employing minimal data. We employed this framework in two real

scenarios providing: i) an early assessment of a VOC’s increased transmissibility and potentia

mune escape; ii) an early estimation of its relative prevalence and the timeline for its dominance

rticular, we provide a retrospective evaluation of our initial, real-time estimates concerning the

a variant’s timeline for dominance in seven European countries (made public on 23/02/2021 [14]
2
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and of our preliminary analyses of the Omicron variant’s transmissibility and immune escape potential

in South Africa (made public on 05/01/2022 [15]). The results reveal that for Alpha, the actual dates of
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nance fell within our model’s confidence intervals in most countries studied. In the case of Omicron

odel effectively mirrored its rapid rise in South Africa, with initial estimates of transmissibility and

ne escape closely matching later studies. However, data limitations at the time led to a broad range

dible values for these parameters, underscoring the challenges of modeling in real-time scenarios.

verall, our findings highlight the significance of relatively streamlined, yet robust, epidemic models

omptly responding to the challenges posed by emerging VOCs. The study not only validates ou

l results but also underscores the necessity for reliable data in the early stages of a VOC’s emergence

research contributes to the ongoing discussion on effective methodologies for gathering essentia

igence on new VOCs, affirming the value of mechanistic modeling approaches in understanding and

ging pandemic emergencies.

Results

is section, we show the performance of our modeling approach, designed to address typical challenges

during the emergence of novel VOCs. Our methodology focuses on two primary objectives: i

cting an early assessment of a VOC’s increased transmissibility and potential for immune escape

timating its relative prevalence and the timeline for its dominance in its apparent source or in othe

ries.

ur modeling framework relies on an age-structured SEIR (Susceptible, Exposed, Infectious, Re

ed) compartmental structure, augmented with additional compartments to account for COVID-19

d fatalities, individuals infected with the newly emerged VOC, and vaccinated individuals (only

dered for the Omicron variant).

detailed discussion of our model, including its structure and the parameters used, is reported in

on 4.1 and in the Supplementary Information.

Estimate ranges of increased transmissibility and immune escape poten-

tial

prototypical example for the early assessment of the properties of a VOC, we consider the case

e emergence of Omicron in South Africa. Omicron, classified as lineage B.1.1.529, was first iden

in South Africa in November 2021 and rapidly spread to over a hundred countries [16, 17]. Its

global dissemination, even in regions with high vaccination rates, raised concerns about increased

missibility and immune evasion. Omicron’s numerous mutations, some linked to neutralizing anti

escape, were confirmed in preliminary studies to reduce the effectiveness of two vaccine doses [18]
3
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Additionally, data on breakthrough infections in South Africa suggested Omicron’s significant ability

to evade naturally acquired immunity [19]. Furthermore, the variant emerged while many high and
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r-middle-income countries were administering booster doses, several lower-middle and lower-income

ries were still advancing their primary vaccination campaigns [20]. Fortunately, existing vaccines

al immunity, and booster doses continued to provide substantial protection against severe disease

mes and deaths [17, 18].

order to estimate Omicron’s properties we adopted a multi-stage Approximate Bayesian Compu

(ABC) calibration process. As first step we fitted the epidemic trajectory prior to the emergence

icron considering confirmed deaths in South Africa in the period May 1st, 2021 – November 23rd

In doing so, we calibrated the model on the conditions where the VOC initially spread. Indeed

ng in May 2021, the country experienced a third pandemic wave fueled by the Delta VOC [19]

variant was able to replace Beta, which was responsible for the second wave. Hence, before the

arance of Omicron, Delta was responsible for the large majority of cases. From this standpoin

udied the characteristics of Omicron by performing a second calibration to constrain the model’s

mes to the number of cases reported in the country up to December 14th, 2021. We focused on cases

r than deaths because the latter being a lagging indicator were not yet reflecting the emergence o

ron at that time. The second calibration step allowed us to estimate posterior distributions of the

ron’s transmissibility advantage with respect to the previously circulating strain (η) and its immune

on potential (ν) due to the reduction of natural and vaccine induced protection against this VOC

etails on model calibration is provided in Sec. 4.6
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e 1: Posterior distribution (median, 50%, and 95% confidence intervals) of Omicron increased
missibility η and immune escape potential ν. We report results for a TG = 5.5 days (green) and
TG = 3.5 days (orange). We also show the estimated intervals for η and ν taken from subsequen
endent studies.

igure 1 shows the joint posterior distribution of η and ν, considering two different generation times
4



Journal Pre-proof

(TG): 5.5 days (represented by the green line and shaded areas) and 3.5 days (represented by the orange

line and shaded areas). Indeed, some works hinted to a possible shortening of the generation time of
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ron compared to previous lineages [21]. While large regions of the parameter space are rejected

e calibration, a plausible region that corresponds to the non-identifiable nature of both parameters

ges. Generally speaking, the higher the immune escape ν, the smaller η. Intuitively, a large value

mune escape can be compensated by changes in the relative transmissibility with respect to othe

s and vice versa.

the plot, we also display the ranges of η and ν obtained from subsequent independent studies

ded in more evidence. Specifically, for the range of η, we refer to Ref. [22], which presents a

ling study on the spread of COVID-19 in South Africa, including a comparison of transmissibility

g different variants of concern. As for ν, we consider the findings from a systematic review on the

g of SARS-CoV-2 immunity [23]. Our model’s credible region aligns with the ranges obtained from

endent studies, indicating the validity of our preliminary insights. Notably, the central estimate o

ranges falls within the 50% confidence interval of our model projections when using a TG of 5.5

and within the 95% confidence interval when considering a TG of 3.5 days.

Estimating VOCs’ potential and path to dominance

g the emergence of new VOCs, understanding their dynamics and pathways to dominance presents

ional challenges. In this study, we analyze the dynamics of both the Omicron and Alpha VOCs to

nstrate the effectiveness of our approach.

the case of Omicron, we modeled its growth within South Africa, which is the country where it was

reported. Hence, we introduced a number of initial Omicron seeds based on the evidence available

e time as initial conditions of the model [24].

ig. 2A shows the evolution of the percentage of infections due to Omicron in South Africa as

ated by our models (median, 50%, and 95% confidence intervals) and as reported by official genomic

illance [25] in late 2021. It is important to notice how the genomic data plotted serves as independen

ation of the model’s output as it was not used in any stage of calibration. Fig. 2B, instead, shows

ate when Omicron was responsible for at least half of new cases as estimated by our model (50% and

confidence intervals) and as estimated on genomic surveillance data via a logistic fit (see Section 4)

threshold is generally regarded as the date of dominance and it is used to indicate when the VOC

vercome the previously circulating strain(s) in terms of share of cases. We can see that our mode

ccurately reproduce the extremely rapid growth of the VOC in the country (wMAPE = 13%), with

stimated date of dominance from genomic data that falls within 95% model’s confidence intervals, as

n also in Table 1. Here, we assumed a TG of 5.5 days for Omicron, in the Supplementary Information

so show results assuming a shorter generation time (3.5 days) obtaining minor differences.
5
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With respect to Omicron, our analysis of Alpha, started later relative to its first detection. At that

moment several studies, based on different approaches, already provided a picture of the characteristics
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e variant and its initial spread in the UK [26, 27]. Therefore, we focused on projecting its dynamic

ath to dominance in other countries outside of its apparent source. The Alpha VOC was firs

ted in the United Kingdom in September 2020 [28, 29] and identified as lineage B.1.1.7. Its emer

, associated with a surge in cases [30, 31], led to stringent non-pharmaceutical interventions such as

owns and travel bans [32]. Despite these measures, Alpha spread globally, becoming dominant in

al countries and challenging the initial stages of COVID-19 vaccination efforts, primarily impacting

nvaccinated population. At the moment of our analysis, the Alpha variant was already well estab

in several countries and the challenge was how to account for this prior dispersion in the modeling

ach. For this task, we used GLEAM, a global stochastic metapopulation model that simulates the

lity of people across more than 3, 300 sub-populations in about 190 countries and territories [33–36

e details on GLEAM in Sec. 4.3). To account for the stochastic nature of Alpha introductions and

eginning of local transmission, we considered a total of ∼ 300, 000 stochastic simulations generated

LEAM. Specifically, we only focused on the arrivals, in the target countries, of exposed individuals

n each age group. Indeed, at the time of Alpha’s emergence, travellers were required to exhibi

ative test and other checks to prevent symptomatic individuals from travelling were conducted in

rts. The first two specimens of the Alpha variant were collected on September 20 and 21, 2020 in

on and Kent areas, respectively. Since UK sequenced about 5% of positive cases [37], we assumed

itial cluster of Alpha variant infections in week 38 of 2020 drawn from a Poisson distribution with

an value of 40. As a second step, we modeled the local evolution of the newly emerged VOC once

unity transmission had started. We set the relative transmissibility η = 1.5 based on the available

nce at that time [26, 27], while maintaining the same generation time as the previously circulating

(s). In the Supplementary Information, we include a sensitivity analysis exploring different η val

The analysis reveals that lower values of η result in a slower replacement of the wild type (WT

e Alpha variant, whereas higher values of η lead to a faster replacement. Here with term wild

we indicate the previously circulating strain with respect to the VOC under examination. However

noteworthy that η = 1.5 generally yields more accurate results in terms of capturing the actua

ession of the Alpha VOC in the target countries. As discussed below however, for two countries

r values of η lead to better results.

e used this parametrization and initialization to model the growth of Alpha in seven European

ries (Denmark, Germany, Greece, Italy, Poland, Portugal, and Spain). The choice of countries was

ted by the risk of importing the VOC. Indeed, Germany, Greece, Italy, Poland, Portugal, and Spain

e six top countries with highest number of trips originating from London airports in October 2020

tionally, Denmark was the first country to report an Alpha infection after United Kingdom [38]
6
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Fig. 2C shows the evolution of the percentage of infections due to Alpha in the target countries as

simulated by our models (median, 50%, and 95% confidence intervals) and as reported by official genomic
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illance [25]. As for Omicron, we note how not only we did not use the genomic data in the calibration

any of the data points shown in the plots have been released only after our initial work. Indeed

alibration stopped on 14/02/2021. Here, we assume that after this date, contacts remained at the

observed in the last calibration week. In the Supplementary Information, we explore alternatives

e NPIs are relaxed, finding that the different NPIs scenarios considered have very limited impac

e estimated date of dominance. Fig. 2C also includes the weighted mean absolute percentage erro

APE) between model’s median and reported data. Overall, the model reproduced the rise of Alpha

e countries considered, with wMAPE values ranging from 7% in the case of Denmark to 35% in

ase of Poland and Portugal (average wMAPE is 23%). Despite some clear deviations (see Poland

and Portugal), most of points fall within the confidence intervals of our simulations. Fig. 2D

d, shows the dominance dates as estimated by our model (50% and 95% confidence intervals) and

timated from genomic surveillance. For Denmark, Germany, Greece, Portugal, and Spain the date

minance estimated from genomic data falls in the 50% confidence intervals of our model. The dates

minance for Italy, and Poland precede the model’s median but nonetheless fall within the 95%

ence intervals. Lower accuracy of the model for this two countries is also confirmed by the higher

PE between simulated and reported Alpha percentage incidence discussed above. The accuracy

e model in some instances might be less reliable due to several factors. For instance, the mode

sed a higher transmissibility rate for the Alpha variant, characterized by η = 1.5. As mentioned

value was derived from preliminary findings in the UK. However, it is crucial to note that the

lishment of the Alpha variant occurred in considerably diverse epidemiological contexts and unde

ent non-pharmaceutical interventions (NPIs). Consequently, relative transmissibility η may wel

across countries. A sensitivity analysis on plausible values of η is presented in the Supplementary

mation. The results indicate that higher values of η yield more accurate estimates for both Italy

oland. Secondly, sequencing data may contain biases resulting from alterations in testing policies

le methods, and sample sizes. Specifically, enhanced testing efforts directed towards the detection o

C could potentially skew estimates towards higher values. Third, it is important to acknowledge the

ent stochasticity of events like the initial emergence of a new VOC within a country. Such events

e influenced by a multitude of factors, random occurrences, and shifts in population behavior

ly, as shown in the Supplementary Information, it’s important to highlight that the proportion o

nced cases differs considerably among the countries under consideration. It is encouraging to see

our model performs particularly well in Denmark, a country that managed to sequence nearly half o

ported infections during the period in question. Conversely, our model’s performance was lower in

and Poland, the countries with the lowest sequencing rates. Both countries sequenced less than 1%
7
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of reported infections, which may have contributed to higher noise in reported sequencing and therefore

lower performance of our model in these contexts.
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s estimated by our model (median, 50%, and 95% confidence intervals). D) Date when Alpha
esponsible for at least half of new cases as estimated from genomic surveillance (grey dot) and as
cted by our model (50% and 95% confidence intervals).

Discussion

emergence of new SARS-CoV-2 VOCs has represented pivotal moments in the evolution of the

ID-19 pandemic. Characterizing the behavior of these variants is vital, yet the high degree o

tainty at the early stage of their emergence has presented substantial obstacles to formulating

ive responses. In these circumstances, computational epidemic models emerge as essential tools
8



Journal Pre-proof
Median CI 50% CI 95% Estimated on Data
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lpha
Denmark 2021-07 [2021-05; 2021-09] [2020-53; 2021-11] 2021-07
Portugal 2021-07 [2021-06; 2021-08] [2021-03; 2021-10] 2021-06
Germany 2021-09 [2021-07; 2021-11] [2021-03; 2021-14] 2021-08

Italy 2021-10 [2021-09; 2021-11] [2021-07; 2021-12] 2021-07
Spain 2021-08 [2021-07; 2021-08] [2021-06; 2021-10] 2021-07

icron South Africa 2021-45 [2021-44; 2021-45] [2021-44; 2021-46] 2021-46

1: Date when VOC was responsible for at least half of new cases as estimated from genomic
illance and as projected by our model (median, 50% and 95% confidence intervals). Dates are
ted in the format year, ISO week.

ng critical insights that combined with genomic data and phylodynamic analysis can contribute to

evelopment of better informed strategies for containment and mitigation [39].

he retrospective analysis of the early, and in real-time, results obtained with our modeling ap

h offers valuable insights and lessons. The results presented here show that our modeling approach

ded the correct probable ranges for two key epidemiological aspects of Omicron: its heightened

missibility and potential for immune evasion. Moreover, the models were effective in projecting the

sion of the Alpha variant across seven European nations. Notably, the actual dates when Alpha

e dominant were within our model’s 50% confidence intervals for five of these countries and within

5% confidence intervals for the remaining two. Similarly, our models precisely captured the rapid

of the Omicron variant in South Africa by matching both the observed growth and the date o

nance.

omputational epidemiological models are not without limitations. Indeed, they operate on certain

ptions and simplifications that may not always capture the complexity of real-world dynamics. One

challenge lies in the reliance on detailed data regarding epidemiological metrics and behavior, such

bility or contact patterns, to accurately isolate the impact of a new variant of concern from othe

rs. In our study, we employed data from the COVID-19 Community Mobility Report published

oogle LLC [40], to characterize shifts in behavior induced by NPIs and the spread of the disease

rtheless, this data may be biased due to variations in smartphone usage. Indeed, the availability and

ty of such data have exhibited heterogeneity across countries, geographical resolutions, and stages o

andemic [41]. In addition, we assumed that a given level of mobility translated into specific contac

, thus overlooking changes in the adoption of other NPIs, such as the use of face masks, which

potentially influence the spread of the disease. Furthermore, due to lack of data across all the

ries studied, our modeling of NPIs translated only in a modulation of the intensity of interactions

id not consider possible changes in the overall structure of contact patterns possibly resulting from

doption of social distancing measures. Our models operate at the national level, which limits

ability to account for heterogeneity at more localized levels in factors such as the epidemiologica
9
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situation, prevalence of variants, and the adoption of NPIs. Lastly, while our compartmentalization

setup is commonly used [35, 42, 43], it is relatively simplistic and does not explicitly account for factors
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as asymptomatic individuals. In addition to these limitations, modeling choices can also influence

esults. As shown in the Supplementary Information, variations in epidemiological parameters (e.g.

ased transmissibility of Alpha, generation time of Omicron) and assumptions about the impact o

on contact patterns (in the case of Alpha) can affect the outcomes of the model.

is also worth acknowledging the fundamental role of accurate sequencing data, which delineates

nt prevalence. Our model’s assumptions were largely based on the analysis of such data, which also

rpinned several key studies informing public health responses [39]. This was particularly eviden

the Alpha variant, where our model performed better in countries with more robust sequencing

ilities. Finally, let’s stress that this type of data is also essential for conducting retrospective

ses like the one presented here.

espite potential limitations, it is crucial to highlight that the models we proposed yielded satisfactory

s with minimal information and assumptions about the VOCs under study. For the Omicron

nt, we determined a credible range for its key epidemiological characteristics by using a two-step

oximate Bayesian Computation calibration technique, relying solely on reported deaths and cases

Similarly, for the Alpha variant, our model relied only on VOC importation estimates derived from

AM and assumed a reasonable range for increased transmissibility based on available evidence a

ime. Despite the lack of precise data allowing a more detailed model structure and initialization

esults exhibited considerable accuracy in both cases, effectively capturing the growth dynamics o

OCs and identifying valid ranges for essential epidemiological parameters. When interpreting these

s, it is worth remarking that the models have not been re-calibrated to incorporate information tha

e available later, such as revisions and data backfills. This approach ensures a truly retrospective

ation of real-time analyses. The success of our approach can be attributed to its mechanistic nature

enabled us to dissect various factors influencing the VOCs’ growth, including transmissibility

ne escape, generation time, and behavioral changes. As we transition away from the emergency

of the COVID-19 pandemic, retrospective evaluations like ours acquire even more importance

nstrating how mechanistic epidemiological models can offer crucial insights into the initial growth

ure VOCs, and better equip the response to upcoming health threats.

Materials and methods

Epidemic model

onsider a SEIR compartmentalization setup. Healthy and susceptible individuals are placed in

artment S and can get infected by interacting with infectious individuals. When this happens
10
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they transition to the compartment of the Exposed (E). These are infected but not yet infectious.

Only after the latent period (ϵ−1) they become infectious themselves and transition to compartment I.

Infec

trans

group

use t

conta

age g

conta

perio

polic

imple

well.

In ,

the fo

conta

Rate

R). T

repor

a sea ,

and o

is equ

consi

Janu

s(t) =

param

W

vacci ,

IV OC t

trans

(IFR

with

Se

move

is att ,
Jo
ur

na
l P

re
-p

ro
of

ted individuals remain infected for the duration of the infectious period (µ−1), after which they

ition to the compartment of the Recovered (R). Additionally, we divide individuals into 10 age

s ([0 − 9, 10 − 19, 20 − 24, 25 − 29, 30 − 39, 40 − 49, 50 − 59, 60 − 69, 70 − 79, 80+]), therefore we

he notation Xk to indicate individuals in compartment X and age group k. We also introduce the

ct matrix C, whose elements Cij indicate the number of contact that, on average, an individual in

roup i has with individuals in age group j in a given time. We consider country specific synthetic

ct matrices from Ref. [44]. While the structure of C is not modified throughout our simulation

d, the overall intensity of contacts is modulated using proxy data on the impact of mitigation

ies, as explained in Sec. 4.2. Nonetheless, we acknowledge that non-pharmaceutical interventions

mented during the COVID-19 pandemic may have induced structural changes in contact matrix as

this context, the per capita rate at which susceptible individuals in age group k get infected (i.e.

rce of infection) is given by λk = β
∑

k′ Ckk′Ik′/Nk′ , where β is the transmission rate of a single

ct. Finally, we also calculate the number of deaths by applying the age-stratified Infection Fatality

(IFR) from Ref. [45] on the number of daily recovered (i.e., individuals transitioning from I to

o account for delays between the transition I → R and actual death due to hospitalization and

ting lags, we record deaths computed on recovered of day t on day t + ∆. The model has also

sonality term s(t) which is multiplied by λk to account for variations in humidity, temperature

ther factors which might affect transmissibility and contact patterns [46]. The seasonality term

al to si(t) = 1
2

[(
1− αmin

αmax

)
sin

(
2π
365 (t− tmax,i) +

π
2

)
+ 1 + αmin

αmax

]
here i refers to the hemisphere

dered [34]. The value tmax,i is the time corresponding to the maximum of s(t). It is fixed to

ary 15th in the northern hemisphere and six months later in the southern one, while we assume

1 in the tropical region (i.e., no seasonal modulation). We set αmax = 1 and consider αmin as free

eter.

e extend this framework with specific compartments to consider the emergence of a VOC and

nations. First, we add specific compartments for individuals infected by the VOC, namely LV OC

, RV OC and the related compartments for vaccinated individuals. The VOC can have a differen

mission rate βV OC , latent period (1/ϵV OC), infectious period (1/µV OC), and infection fatality rate

V OC). More in detail, we use the parameter η to describe the increased transmissibility of the VOC

respect to the wild type circulating (η = RV OC
0 /RWT

0 ).

cond, we model vaccinations as follows. Individuals who have received the first vaccine dose are

d into a novel compartment designated as SV 1. The susceptibility of SV 1 individuals to infection

enuated by a factor of 1−V ES1, where V ES1 is vaccine efficacy against infection. Upon infection
11
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their IFR is also reduced by a factor 1 − V EM1. Thus, the overall efficacy of the first vaccine dose

against death is V E1 = 1 − (1 − V ES1)(1 − V EM1). Subsequent to receiving the second dose, SV 1
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iduals transition to the compartment SV 2. The second administration has an efficacy agains

ion and mortality, denoted as V ES2 and V EM2 respectively, and its overall efficacy against fatality

2 = 1 − (1 − V ES2)(1 − V EM2). Additionally, all vaccinated individuals present a decreased

iousness by a factor of (1 − V EI) [47]. We assume that S, L, and R individuals are eligible fo

nation, and a delay of ∆V days is considered between the administration of the vaccine (both firs

econd doses) and the emergence of the vaccine’s actual effect. We consider the number of doses

nistered daily from Ref. [48] and we assume that the vaccine rollout proceeded prioritizing the

ly. More in detail, in the simulations we assign doses in decreasing order of age (starting from 80+)

all individuals aged 50 and above have received vaccination, we proceed by uniformly distributing

among those under 50, while excluding those under 18.

is important to underline that vaccinations are considered only in the case of Omicron and no

a. Indeed, Alpha emerged prior to the initiation of vaccination campaigns and reached dominance

rope at the outset of COVID-19 vaccination efforts. Furthermore, when we introduce the firs

ron infection we also move R individuals (i.e., individuals previously infected by the wild type) to

compartment R̂. We use a parameter ν to describe the ability of Omicron to escape natural and

ne acquired immunity. We assume that individuals in SV 1, SV 2, and R̂ compartments see thei

ction against Omicron provided by immunity reduced by a factor (1 − ν). We assume also tha

l protection of R̂ is equal to that of V2 individuals.

schematic representation of the full model (with deaths, VOC, vaccinations) is provided in Fig. 3

Modeling of mitigation policies

easure the temporal variations in contacts influenced by non-pharmaceutical interventions utilizing

OVID-19 Community Mobility Report published by Google LLC [40]. The dataset provides, fo

us regions, the percentage change, denoted as rl(t), in total visits to specific locations l on day t

ared to a pre-pandemic baseline. We convert this percentage into a contact rescaling factor, denoted

t) = (1+rl(t)/100)
2, under the assumption that the potential number of contacts per location scales

rtionally to the square of visitor numbers. When considering the Omicron variant, we calculate a

ω(t) by averaging the fields for workplaces, retail and recreation, and transit stations, which we then

to the overall contact matrix C. In the case of the Alpha variant, instead, we consider the differen

s of the contact matrix—home, workplaces, school, and the general community setting—separately

workplace contact layer is multiplied by ωl(t) computed from the workplaces field of the report

the general community settings are adjusted by ωl(t) derived from the average of the retail and

ation and transit stations fields. For school contacts, we use the ordinal index C1 School closing
12
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Figure 3: Model compartmental structure.

the Oxford Coronavirus Government Response Tracker [49]. This index spans from a minimum

(no measures) to a maximum of 3 (all levels required to close). We translate this into a contac

tion coefficient, represented as ωschool(t) = 1− C1 School closing/3, which we then apply to the

l layer.

Modeling the introduction of VOCs

odel the introduction of the Alpha VOC in the countries considered using GLEAM, a global stochas

etapopulation model that simulates the mobility of people across more than 3, 300 sub-populations

out 190 countries and territories [33–36]. Sub-populations correspond to the catchment area o

r transportation hubs. Mobility among them accounts for both long-range movements related to

l air travel and short-range commuting between adjacent sub-populations. For international airline

l, we used 2020 origin-destination data provided by the International Air Transport Association

fficial Airline Guide (OAG) [50]. GLEAM was calibrated using early international importations

RS-CoV-2 from China as well as the unfolding of COVID-19-related deaths in each country. The

l also accounted for travel restrictions, mobility reductions, and government interventions adopted

g the pandemic [36]. We use GLEAM to estimate the arrivals of Alpha exposed individuals, in the

t countries, within each age group considering ∼ 300, 000 stochastic simulations. Since the first two

mens of the Alpha variant were collected on September 20 and 21, 2020 in London and Kent areas
13
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and since UK sequenced about 5% of positive cases [37], we assumed an initial cluster of Alpha variant

infections in week 38 of 2020 drawn from a Poisson distribution with a mean value of 40.
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the case of Omicron, instead, we assumed an initial seeding in the first week of October 2021

ggested by preliminary evidences from phylogenetic analysis [51]. We sampled from a flat prio

bution (σ = [10 − 1000]) the number of initial seeds and distributed them in different age groups

rtionally to their size (more details in Sec. 4.6).

Model initialization

e case of the Alpha VOC we start simulations on 01/09/2020. The initial distribution of individuals

LWT (wild type latent), IWT (wild type infected), and R compartments, in each country, is obtained

GLEAM.

the case of the Omicron VOC, our approach is as follows. First, we consider Irep as the number o

ions reported in the week prior to 01/05/2021 (our simulation starting date). The initial numbe

ected individuals in the model (distributed between I and E proportionally to the time individuals

in each compartment), say Iini, is calibrated within the uniform range [Irep, 10Irep] to account fo

r-reporting. Similarly, for the R compartment, we place a total number of individuals between 1

0 times the cumulative infections reported up to 01/05/2021, which is also calibrated. We do no

lize individuals in vaccinated compartments, as South Africa had administered approximately 0.5

per 100 as of 01/05/2021.

Model implementation

l implementation is stochastic and transitions among compartments are modelled through chain

ial processes. In practice, the number of individuals transitioning from compartment Xk to Yk

e t is sampled from a binomial distribution PrBin(Xk(t), pXk→Yk
(t)), where pXk→Yk

(t) is the

ition probability. In case of multiple possible transitions from compartment X (e.g., X → Y and

Z) we consider a multinomial distribution PrMult(Xk(t), pXk→Yk
(t), pXk→Zk

(t)), where pXk→Yk
(t

Xk→Zk
(t) are the two transition probabilities. We consider an integration step δt of 1 day.

Model calibration

proposed epidemic models are calibrated using an Approximate Bayesian Computation (ABC

ique [52, 53]. In particular, we use a rejection algorithm that works as follows. First, we define

or distribution P (θ) on model’s free parameters θ. Then, at each iteration, a parameter set θ∗ is

led from P (θ) and an instance of the model is generated from it. An output quantity ϕ′ of the

l is compared to the corresponding real quantity ϕ via a distance metric d(ϕ, ϕ′). If d(ϕ, ϕ′) is

er than a predefined tolerance δ, then θ∗ is accepted, otherwise is rejected. This process is repeated
14
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until n parameter sets are accepted. The distribution of accepted θ∗ will be an approximation of the

true posterior distribution. Here, we consider the weighted mean absolute percentage error (wMAPE)
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tance metric.

ith regards to the Alpha variant, we conducted model calibration for the seven countries under

deration during the time frame 01/09/2020 − 14/02/2021 considering weekly deaths as outpu

tity. This allowed us to estimate posterior distributions of key free parameters including the re

ctive number, seasonality, and initial conditions (see Tab. 2) for a fixed value of Alpha increased

missibility η. Following this calibration, we generated out-of-sample projections on the growth o

a up to 08/05/2021 sampling from the obtained posterior distributions. In the out-of-sample period

sumed three different NPIs scenarios. The one presented in the main text, assumes a status quo

tion in which contact remains unchanged with respect to the last calibration week. In the Sup

entary Information, we propose two additional scenarios describing a conservative and a moderate

ation of social distancing and other NPIs.

ith regards to the Omicron variant, we conducted a two-stage calibration process. We first fitted

odel to weekly reported deaths in South Africa allowing just for one strain in the period May

021 – November 23rd, 2021. As mentioned, starting in May 2021, the country experienced a

pandemic wave fueled by the Delta VOC [19]. This variant was able to replace the Beta VOC

was responsible for the second wave. Through this first calibration step we obtained the posterior

butions for transmissibility, delay between deaths and their reporting, initial conditions, seasonality

ion fatality rates multiplier respect to the estimates from Ref. [45], and under-reporting in deaths

hen studied the impact of Omicron by assuming an initial seeding in the first week of October 2021

minary evidences from phylogenetic analysis suggested the median date of the common ancestor

available Omicron samples, in early October (90% CI: [30 September - 20 October 2021]) [51]

e did not have information about the number of initial seeds, we sampled a flat prior distribution

tial Omicron seeds. We distributed them in different age groups proportionally to their size. We

ed Omicron’s transmissibility advantage by setting η = ROmicron
0 /RDelta

0 as the ratio of the basic

ductive numbers for Omicron and Delta. The immune evasion of Omicron was introduced with

gle factor ν which describes the reduction of vaccine efficacy and protection from reinfection, as

ibed in Sec. 4.1. We explored the η×ν×σ parameter space and applied a second ABC calibration

ect values compatible with the number of confirmed cases up to December 14th, 2021. This choice

ade because deaths, as a lagging indicator, had not yet fully reflected the impact of Omicron a

time. For η and ν we explore, uniformly, the range [0.5, 3.0] and [0%, 100%] respectively. For σ, we

re uniformly the values 10, 50, 500, and 1000.

Table 2, we provide a list of parameters considered in our models for both the Omicron and

a VOC, including values from existing literature as well as those calibrated for the study along with
15
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min

∆ U(12, 25) U(10, 30)

initial infected GLEAM
1 to 10 times infections reported
in week prior to start simulation

initial recovered GLEAM
1 to 20 times infections reported

up to start simulation
% deaths reported N/A U(25%, 100%)

IFR multiplier N/A U(0.5, 2.0)

eased transmissibility (ν)
1.5 (main text)
1.3, 1.7 (SI)

U(0.5, 3.0)

une escape potential (η) N/A U(0%, 100%)
Initial VOC seeds (σ) GLEAM U(10, 1000)

Latent period WT, Alpha: 4 days WT: 3 days, Omicron: 3 and 2 days
Infectious period WT, Alpha: 2.5 days WT: 2.5 days, Omicron: 2.5 and 1.5 days

Infection Fatality Rate
(age-stratified)

Ref. [45] Ref. [45]

V E1 N/A 80%
V ES1 N/A 70%
V E2 N/A 90%

V ES2 N/A 80%
V EI N/A 40%
∆V N/A 14 days

2: Model parameters. WT stands for wild type, that we use to indicate the previously circulating
with respect to the VOC under examination. N/A stands for not applicable reflecting some

ional parameters used for Omicron but not for Alpha.

prior distributions. For a more in-depth discussion of the model’s parameters, we direct readers

e Supplementary Information, where we also report the estimated posterior distributions of key

arameters for both Alpha and Omicron. In the Supplementary Information, we also show fitted

s and cases resulting from the calibrations. We note how, in the case of Alpha, we consider a laten

d of ϵ−1 = 4 days and an infectious period µ−1 = 2.5 days for both Alpha VOC and the previously

lating strain [54, 55]. When studying the emergence of Omicron instead, we consider ϵ−1 = 3

and µ−1 = 2.5 days for the previously circulating strain (Delta) [56], while we test two possible

eters combination for the Omicron VOC (i.e., the second strain): ϵ−1 = 3 days and µ−1 = 2.5

(i.e., same as Delta) and ϵ−1 = 2 days and µ−1 = 1.5 days (shorter generation time as suggested

me works [21]).

Estimating the date of dominance from sequencing data

onsidered sequencing data obtained from GISAID [25], accessed through the ECDC website [57] for

lpha VOC, and from CoVariants [58] for the Omicron VOC. This data provides information on the

rtion of processed samples attributed to each specific virus variant in each country. Let sV OC(t

sent the fraction of samples associated with the VOC of interest at time t. To obtain more accurate

ates of the date of dominance and reduce the impact of noise, for each country we fitted a logistic
16
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curve of the form ŝV OC(t) = 1/(1+e−γ(t−t1/2)) to the actual fractions of VOC samples sV OC(t). Similar

approaches have been widely applied in the context of SARS-CoV-2 VOCs growth modeling [59, 60].
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fitting process was performed via least square using the python library scipy [61]. By employing

pproach, we determined the estimated value of t1/2 (the time at which the VOC achieves 50%

nance) as the actual date of dominance.
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es R Hinsley, Daniel J Laydon, Gavin Dabrera, Áine O’Toole, et al. Assessing transmissibility o

ARS-CoV-2 lineage B. 1.1. 7 in England. Nature, 593(7858):266–269, 2021.
17



Journal Pre-proof

[6] Thomas Y Michaelsen, Marc Bennedbæk, Lasse E Christiansen, Mia SF Jørgensen, Camilla H

Møller, Emil A Sørensen, Simon Knutsson, Jakob Brandt, Thomas BN Jensen, Clarisse Chiche-

L

D

[7] N ,

J ,

e ,

3

[8] K

t ,

O

[9] P -

i .

C .

E

[10] J ,

S

g

[11] J ,

R t

o

[12] M ,

G l

i

[13] B ,

V t

o

[14] N ,

N

V

[15] N

V

Jo
ur

na
l P

re
-p

ro
of

apierre, et al. Introduction and transmission of SARS-CoV-2 lineage B. 1.1. 7, Alpha variant, in

enmark. Genome Medicine, 14(1):47, 2022.

icholas G Davies, Sam Abbott, Rosanna C Barnard, Christopher I Jarvis, Adam J Kucharski

ames D Munday, Carl AB Pearson, Timothy W Russell, Damien C Tully, Alex D Washburne

t al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science

72(6538):eabg3055, 2021.

athy Leung, Marcus HH Shum, Gabriel M Leung, Tommy TY Lam, and Joseph T Wu. Early

ransmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom

ctober to November 2020. Eurosurveillance, 26(1):2002106, 2021.

aola Stefanelli, Filippo Trentini, Giorgio Guzzetta, Valentina Marziano, Alessia Mammone, Mon

ca Sane Schepisi, Piero Poletti, Carla Molina Grané, Mattia Manica, Martina Del Manso, et al
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erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R
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