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E P I D E M I O L O G Y

Generalized contact matrices allow integrating 
socioeconomic variables into epidemic models
Adriana Manna1, Lorenzo Dall’Amico2, Michele Tizzoni3, Márton Karsai1,4, Nicola Perra5*

Variables related to socioeconomic status (SES), including income, ethnicity, and education, shape contact 
structures and affect the spread of infectious diseases. However, these factors are often overlooked in epidemic 
models, which typically stratify social contacts by age and interaction contexts. Here, we introduce and study 
generalized contact matrices that stratify contacts across multiple dimensions. We demonstrate a lower- bound 
theorem proving that disregarding additional dimensions, besides age and context, might lead to an underes-
timation of the basic reproductive number. By using SES variables in both synthetic and empirical data, we il-
lustrate how generalized contact matrices enhance epidemic models, capturing variations in behaviors such as 
heterogeneous levels of adherence to nonpharmaceutical interventions among demographic groups. More-
over, we highlight the importance of integrating SES traits into epidemic models, as neglecting them might lead 
to substantial misrepresentation of epidemic outcomes and dynamics. Our research contributes to the efforts 
aiming at incorporating socioeconomic and other dimensions into epidemic modeling.

INTRODUCTION
Contact matrices have become an integral part of realistic epidemic 
models for respiratory infections. They encode interaction patterns 
through specific contact rates describing how frequently and for 
how long individuals belonging to different categories or groups 
meet each other. Age has become the most commonly used variable 
to define these groups. This way of stratification allows models that 
capture heterogeneous mixing rates observed among individuals of 
different ages (1–6). Young adults, for example, are usually very ac-
tive and tend to interact more with other young adults (7, 8). El-
derly individuals, instead, tend to report the smallest number of 
contacts, and their role in the transmission dynamics of many respi-
ratory infections is less relevant (6). Furthermore, distinguishing 
individuals according to age allows accounting for heterogeneities 
in transmission rates and epidemic outcomes. The observation that 
transmission rates are strongly influenced by age grabbed the atten-
tion of disease modelers decades ago (9), as they were investigating 
so- called childhood infections. Accordingly, the first studies to 
 propose a deviation from the homogeneous mixing assumption ad-
dressed age- varying transmission rates given their practical impor-
tance for vaccination programs (10). More recently, age has also 
been identified as key in the case of COVID- 19. Since the beginning 
of the pandemic, outcomes of COVID- 19 infections were found to 
strongly depend on age, leading to a higher case fatality ratio in 
older populations (11).

Contact matrices can be stratified by considering other variables, 
beyond age. As the number and type of contacts considerably vary 
by location, the setting where interactions take place (i.e., household, 
workplace, school, and community) is another popular choice for 
stratification (3, 5, 12). Age and location are often considered jointly 
(3,  5,  12). Mixing patterns disaggregated by age and setting have 

been used to estimate age- specific and context- specific transmission 
parameters for epidemic models, guide public health policy, evalu-
ate intervention strategies, and assess the risk of infection across 
population groups (13–16).

Despite their essential role, however, age and context are far from 
being the only important variables shaping contact patterns, disease 
dynamics, and epidemic outcomes. Individual characteristics related 
to socioeconomic status (SES) such as wealth, race, ethnicity, occupa-
tion, and education, among others, have been shown to play a key role 
in the transmission of infectious diseases (17–20). From the influenza 
pandemics of 1918 and 2009 (21, 22) to the West African Ebola out-
break (23) and the COVID- 19 pandemic (20, 24–34) individuals ex-
periencing a lower SES have been consistently associated with higher 
rates of infections, deaths, as well as reduced access to care and ability 
to comply with nonpharmaceutical interventions (NPIs).

Despite the recognized importance of SES in the transmission dy-
namics of close- contact infections, the overwhelming majority of 
epidemic models neglect these dimensions (17–20). SES is often con-
sidered only a posteriori in analyses of models’ outputs (e.g., number 
of deaths or cases) but rarely enters the core of their formulation as 
age and location do. The roots of this shortcoming can be traced back 
to the lack of empirical surveys of social contact data including char-
acteristics of the respondents and their peers to account for SES 
(7, 35). The lack of data has also hampered the development and ex-
ploration of general modeling frameworks designed to include these 
features in their core (20).

Here, we present an epidemic framework featuring generalized 
contact matrices stratified by any number of dimensions (i.e., vari-
ables). As a first step, we study the mathematical properties of such a 
framework by considering age plus m other, unspecified, dimensions. 
We focus on prototypical susceptible- exposed- infectious- recovered 
(SEIR) compartmental models and derive a closed- form expression 
for the basic reproductive number R0. The derivation follows the 
next- generation matrix approach (36, 37) applied to a flattened repre-
sentation of generalized contact matrices. We quantify how much R0 
differs from the correspondent value computed in models including 
only one attribute (e.g., age). We prove a lower- bound theorem show-
ing how increasing the number of dimensions in contact matrices 

1department of network and data Science, central european University, vienna, 
Austria. 2iSi Foundation, turin, italy. 3department of Sociology and Social Research, 
University of trento, trento, italy. 4national laboratory for health Security, hUn- 
Ren Rényi institute of Mathematics, Budapest, hungary. 5School of Mathematical 
Sciences, Queen Mary University of london, london, UK.
*corresponding author. email: n. perra@ qmul. ac. uk

copyright © 2024 the 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. no claim to 
original U.S. 
Government Works. 
distributed under a 
creative commons 
Attribution license 4.0 
(cc BY). 

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 21, 2024

mailto:n.perra@qmul.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adk4606&domain=pdf&date_stamp=2024-10-11


Manna et al., Sci. Adv. 10, eadk4606 (2024)     11 October 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

2 of 11

cannot decrease R0. Furthermore, we prove that building generalized 
contact matrices via a random mixing assumption for the additional 
dimensions (i.e., contact rates are set proportional to the respective 
subgroup sizes) leads to the same R0 of lower dimensional contact 
representations. Conversely, we numerically observe that correlations 
in contact patterns, such as mixing assortativity and heterogeneous 
activity, increase the value of R0. In the second step of our analysis, we 
highlight the importance of integrating SES dimensions into epidem-
ic models and showcase how the proposed framework opens avenues 
in this direction. Starting from synthetic scenarios, we show how 
adopting generalized contact matrices allows quantifying heterogene-
ities in epidemic outcomes and estimating the impact of NPIs across 
socioeconomic strata. It enables accounting not only for differences in 
contact patterns but also for heterogeneities in adherence to NPIs 
across subgroups of the population. We then apply our framework to 
empirical data from Hungary. We quantify the possible misrepresen-
tation induced by neglecting SES in simulated outbreaks. The results 
confirm notable differences between models. The use of generalized 
contact matrices, which stratify contacts by age and one SES dimen-
sion, in agreement with the mathematical derivations, leads to higher 
values of R0 for a given disease, to lower values of attack rates for a 
given R0, and allows capturing heterogeneity in disease’s burden 
across SES groups. Overall, the proposed framework allows for more 
expressive epidemic models that can capture a broader range of key, 
and otherwise transparent, dynamics.

RESULTS
We consider a SEIR compartmental model where susceptible (S) are 
healthy individuals at risk of infection, exposed (E) are infected but 
not yet infectious, infectious (I) can spread the disease, and recov-
ered (R) are no longer infectious nor susceptible to the disease (38). 
Within this setting, we propose a modeling framework that extends 
classic approaches by including generalized contact matrices.

Generalized contact matrices
We define generalized contact matrices as multidimensional objects 
that stratify contact patterns across any number of dimensions. Be-
cause age is often considered the key variable in traditional approaches, 

in what follows, we focus on age and other categorical dimensions. 
Hence, we move from the prototypical contact matrices C, whose 
elements Cij describe the contact rates between individuals in age 
brackets i and j, to G, whose elements Ga,b capture the contact 
rates between individuals in subgroups a and b. Here, a = (i, α, β, …, 
γ) and b = (j, η, ν, …, ξ) are index vectors (i.e., tuples) representing 
individual’s membership to each category. We use Greek letters to 
highlight the difference between age and other dimensions, but the 
distinction among variables is not, in general, necessary. To provide 
a concrete example of a generalized contact matrix, we can imagine 
stratifying the population according to age (i ∈ [1, …, K]), income 
(α ∈ [1, …, V1]), and educational attainment (β ∈ [1, …, V2]). In this 
case, the generalized contact matrix G would describe the average 
number of contacts that an individual in age bracket i, income α, 
and education β has with individuals in age group j, income η, and 
education ν in a given time window (see Fig. 1). From this perspec-
tive, the matrix C can be thought of as an aggregation of contact 
rates at lower levels of stratification. As discussed in more detail in 
the Supplementary Materials, we can write Cij = N−1

i

∑

a�b
�Ga� ,b

�Na�. 
Here, a′ and b′ index all dimensions except age, Ni describes the 
number of individuals in age bracket i, and Na′ is the number of 
 individuals in subgroup a′. As with any aggregated metric, the ele-
ments of C are agnostic about the structure of contacts across the 
aggregated dimensions.

We denote with K the number of age groups, while with Vp (p ∈ 
[1, …, m]) the number of subgroups in other dimensions. In this 
work, we use the words dimensions and variables as synonymous. To 
avoid confusion, we refer to the number of groups in each dimension 
as their size. While the generalized matrix G is a multidimensional 
object, the use of T = K

∏m

p=1
Vp index vectors allows for a flattened 

representation in a squared two- dimensional (2D) matrix of size T × 
T. The formulation can easily include different contexts where inter-
actions take place, i.e., Ga,b =

∑

lωlG
(l)

a,b
, where ωl captures the relative 

importance of each social setting in the transmission (5).

Epidemic model
As mentioned above, we study diseases whose natural history can be 
described by an SEIR compartmental model. Similar results can be 

A B

Fig. 1. Generalized contact matrices. (A) Schematic representation of generalized contact matrices. We can transform a K × K age- structured contact matrix C (first 
matrix on the left) into a generalized matrix G with m + 1 dimensions. Such transformation can be done according to different generalization schemes discussed in Ma-
terials and Methods and the Supplementary Materials. in the plot, we consider m = 2. hence, the second matrix describes the stratification of contacts across a second 
dimension, i.e., α, β ∈ [1,2,3]. the third matrix describes a further stratification, i.e., γ, δ ∈ [1,2,3]. For simplicity, we show the stratification across the additional dimensions 
only for one entry of the lower level, respectively. (B) example of a flattened generalized contact matrix including three dimensions G (72 × 72).
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obtained for others such as the SIS and SIR models. To include the 
generalized contact matrices G, we define Xa as the number of indi-
viduals in groups a and compartment X where X ∈ [S, E, I, R]. The 
model dynamics is described by the set of differential equations

where Γ is the recovery rate, and Ψ is the rate at which ex posed indi-
viduals become infectious. The force of infection Λa(t) = Φ

∑

b
Ga,b

Ib(t)

Nb

 
describes the per capita rate at which susceptible individuals in cat-
egories a acquire the infection, and Φ is the transmissibility of the 
disease. For simplicity of exposition, we neglect demography (i.e., 
birth and death rates); hence, the size of the population is fixed. To 
avoid confusion with the indices of the additional dimensions, we 
denote the parameters regulating the disease dynamics with capital 
Greek letters.

Spectral properties of generalized contact matrices and the 
basic reproductive number
The basic reproductive number R0 is one of the most important 
quantities of epidemiological relevance (38). It is defined as the 
number of secondary infections generated by a single infected seed 
in an otherwise susceptible population. The R0 of an SEIR model, 
featuring a single- attribute contact matrix C defined, for example, 
by K age brackets, can be obtained using the next- generation matrix 
approach [see (36, 37) for overviews of this method]. The expression 
reads R0 =

Φ

Γ
ρ
(

C̃
)

, where ρ denotes the spectral radius of the matrix 
C̃ ∈ ℝ

K×K whose elements are C̃ij =
CijNi

Nj

 (see the Supplementary 
Materials for the full derivation). As mentioned above, Ni and Nj 
describe the number of individuals in age brackets i and j, respec-
tively. We can write C̃ = RN

−1, where N is a diagonal matrix whose 
elements are the number of individuals in each age group, and R = 
NC is a symmetric matrix describing the total number of contacts 
for each pair of age groups. How does this expression change when 
we consider generalized contact matrices? As shown in detail in the 
Supplementary Materials, the next- generation matrix approach can 
still be used to find the answer. The only extra step required is flat-
tening the generalized contact matrix into a 2D matrix of size T × T 
(as defined above, T = K

∏m

p=1
Vp). In these settings, the expression 

for the basic reproductive number becomes R0 =
Φ

Γ
ρ
(

G̃
)

 where 
G̃ ∈ ℝ

T×T is the generalized contact matrix whose elements are 
G̃a,b =

Ga,b

Nb

Na. Na and Nb describe the number of individuals in sub-
groups a and b respectively. We can express this as the product of 
two matrices G̃ = RGN

−1
G

, where NG is a diagonal matrix describing 
the number of individuals in each subgroup and RG = NGG is a 
symmetric matrix describing the total number of contacts between 
any pairs of subgroups.

The expressions for R0 for single- attribute and generalized con-
tact matrices are analogous. They both hinge on the spectral radius 
of a given matrix whose size and composition are generally differ-
ent. Does this imply that the value of R0 is also different? In other 
words, what happens to R0 when we vary the number of variables 
used to stratify contact patterns? To answer this question, we can 

study what happens to R0 when we increase the number of dimen-
sions by 1. For example, let us consider the simplest case where we 
move from a single- attribute contact matrix to its generalization with 
an additional variable. In this case, but without loss of generality, the 
following theorem holds:

Theorem 1 (Spectral radius of generalized contact matrices). Let 
C̃ = RN

−1 ∈ ℝ
K×K be a single- attribute contact matrix where R is a 

symmetric, non- negative matrix, and N is a diagonal matrix, with 
positive diagonal elements. Let G̃ = RGNG

−1 ∈ ℝ
KV1×KV1 be a two- 

attribute generalization of C̃ defined such that 
∑V1

α,β=1

�

RG

�

iα,jβ
= Rij 

and 
∑V1

α,β=1

�

NG

�

iα,jβ
= Nij with RG being a symmetric, non- negative 

matrix and NG being a diagonal matrix with positive diagonal ele-
ments. By denoting with ρ(M) the spectral radius of a generic matrix 
M, it follows ρ

(

G̃
)

≥ ρ
(

C̃
)

.
While the theorem explicitly treats a generalization obtained by 

shifting from one to two dimensions, the result holds for shifts to 
higher dimensions. In other words, adding any further attribute in 
the definition of the generalized contact matrix cannot decrease its 
spectral radius. The theorem does not make any assumption on the 
sizes K, V1, and it can be easily adapted to generalized contact ma-
trices with multiple dimensions. We discuss this extension in the 
Supplementary Materials, alongside the theorem’s proof.

The theorem implies that a generalized contact matrix stratified 
across m + 1 dimensions has a spectral radius (hence basic repro-
ductive number R0) equal or higher than its s- dimensional counter-
part (1 ≤ s ≤ m). As we increase the number of dimensions used to 
describe contact patterns, R0 cannot decrease. Hence, the theorem 
defines a lower bound for R0. As a corollary, it can be proven that 
the strict equality can be attained under the random mixing hy-
pothesis, i.e., when the contacts across the additional dimensions 
are set proportional to the product of the subpopulation sizes (see 
the Supplementary Materials). Consequently, generalizing contact 
matrices by knowing only the number of individuals in a given sub-
group via a random mixing assumption does not change the epi-
demic dynamics but increases the complexity of the model. In 
general however, as shown in the next sections, the variables used to 
capture the stratification of contacts and the way interactions are 
aggregated (i.e., by age or other dimensions) might affect the de-
scription of epidemic processes, especially in the presence of non-
trivial correlations between explicit and implicit (i.e., aggregated) 
variables. Hence, the estimation of the spreading potential of a dis-
ease via a model is a function not only of the total number of con-
tacts but also of how these contacts are arranged across groups. This 
observation is one of the key insights from network- based epidemi-
ology: The epidemic threshold (i.e., R0) in two populations with the 
same number of individuals and number of contacts is drastically 
influenced by the way interactions are organized (i.e., the topology 
of the network) (39).

Numerical simulations: Synthetic data
First, we test the analytical results obtained in the previous section 
by considering synthetic generalized contact matrices. To ground 
the results with empirical observations, we build on prototypical 
contact matrices, where interactions are stratified only according 
to age. Here, we rely on empirical data from Hungary using a pre–
COVID- 19 contact matrix stratified by age (40). We report analo-
gous findings for a different country in the Supplementary Materials. 
We create generalized contact matrices by adding more dimensions 

dtSa(t)=−Λa(t)Sa(t)

dtEa(t)=Λa(t)Sa(t)−ΨEa(t)

dtIa(t)=ΨEa(t)−ΓIa(t)

dtRa(t)=ΓIa(t)

(1)
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to the empirical matrices and defining the contact rates in the add-
ed groups with a simple model. We explore two cases. In the first 
case, contact rates for the additional dimensions are set to be pro-
portional to the product of the population sizes of the different 
groups. This is the aforementioned random mixing assumption. In 
the  second case, instead, we investigate scenarios where parame-
ters define contact rates among subgroups. This allows us to intro-
duce correlations in contact patterns, such as assortativity, where 
members in a given group (e.g., in an SES class) are more likely to 
contact people in the same group. Furthermore, in the second case, 
we introduce activity parameters to adjust the activity (i.e., the 
share of contacts) of population groups. As shown below, when 
considering empirical data from Hungary with an additional di-
mension, nontrivial correlations and heterogeneities appear. We 
refer the reader to the Materials and Methods and the Supplemen-
tary Materials for details about constructing the synthetic general-
ized contact matrices. In Fig. 2A, we display the empirical contact 
matrix C for Hungary, which stratifies interactions in K = 8 age 
brackets. While until the 45-  to 60- year age group, the highest val-
ues of contact rates are within the same age bracket (i.e., diagonal 
elements), we observe strong off- diagonal values for age groups 
that range between 15 and 60 years. In Fig. 2B, we show the flat-
tened 2D representation of a generalized contact matrix where we 
have a second dimension, besides age. We imagine a simple case 
where the second dimension contains three groups, i.e., V1 = 3. For 
simplicity, we assume that 35, 45, and 20% of the population be-
long to these three categories across all age groups. The matrix is 
formed by K × V1 = 24 distinct groups.

Random mixing scenario
First, we assume contacts—when it comes to the second dimension—
to be proportional to the product of the population size in each 
group. Hence, they are the expected values of a random mixing pro-
cess. As mentioned above, this assumption leads to a generalized 
contact matrix with the same spectral radius as the original matrix. 
The effects of this property on an epidemic model, used to study the 
spread of a virus in the population, are shown in Fig. 2C. We plot the 
attack rate (i.e., epidemic size) as a function of R0 for (i) a model fed 
only with the contact matrix Cij (gray crosses), (ii) a model fed with 
the generalized contact matrix Ga,b described above (green squares), 
and (iii) a model fed with the matrix Cαβ where contacts are stratified 
only according to the second dimension (red circles). As a result, we 
observe, in perfect agreement with the analytical formulation, that 
R0 = 1 divides the phase space into two regions. For values below 
this threshold, the disease does not spread in any of the three mod-
els. Only for values larger than one, the disease infects a finite frac-
tion of the population. We observe that the threshold and the attack 
rates for different values of R0 are equal in the first two models. As 
expected, when assuming random mixing along the second contact 
dimension, the results of a model that either neglects or considers 
such additional dimension are equal. Hence, the fraction of infected 
individuals in the groups of the additional category follows the same 
trajectory (see Fig. 2D). We note, however, clear differences con-
cerning the third model (red circles) that features a 3 × 3 contact 
matrix capturing the stratification of contacts only for the additional 
category. A description of the epidemic in these settings leads to 
higher attack rates for any given R0 > 1. This observation confirms 

A B C D

E F G H

Fig. 2. Impact of generalized contact matrices on epidemic spreading. (A) example of a classic age contact matrix C (8 × 8); (B) and (E) generalized contact matrices 
with an additional dimension with three groups G (24 × 24) in the case of random mixing (B) and (e) assortative mixing in the second dimension; (F) depicts the case when 
we integrate the generalized contact matrix over all age classes. the ρ values indicate the spectral radius corresponding to each matrix. in (C), we show the attack rate as 
a function of R0 (main figure) and disease transmissibility (inset). in (D), we show, in the case of random mixing, the prevalence (main figure and top inset) and the fraction 
of recovered (bottom inset) as function of time. the colored lines and shaded areas in the main panel and in the bottom inset represent, respectively, the prevalence and 
fraction of recovered individuals in the three groups of the additional category (i.e., dim2); (G) and (H) are as the previous two plots but in case of assortative mixing with 
different levels of activity. Results refer to the median of 500 runs. epidemiological parameters: Γ = 0.25, Ψ = 0.4, and R0 = 2.7. Simulations start with a number I0 = 100 of 
initial infectious seeds.
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how within the same population the chosen stratification of contacts 
might affect the description of an epidemic unfolding in the system.

In the inset of Fig. 2C, we show the attack rate as a function of the 
transmissibility Φ. The vertical dashed line denotes the analytical 
critical value of Φ obtained by setting the expression for R0 equal to 
one for the model featuring the generalized contact matrix. The plot 
shows the equivalence between the first model and the second as 
well as the difference with respect to the third. More precisely, the 
critical value of Φ in the model featuring the matrix Cαβ is larger 
than the other two models. This implies a smaller value of R0, for a 
given value of Φ. The result is in line with the lower- bound theorem 
(Theorem 1). Cα,β is a lower dimensional representation of G. Hence, 
its spectral radius is either equal or smaller. It is important to stress, 
however, that Cαβ is obtained from G by aggregating across all age- 
dependent correlations. Hence, the corollary of the lower bound 
theorem, which is valid when the stratification along the additional 
dimension is obtained by random mixing, does not hold in general.

Assortative scenario
We now consider the second scenario: assortative mixing. In Fig. 2E, 
we display the 2D flattened generalized contact matrix obtained by 
assuming that 60, 50, and 65% of the contacts in the first, second, 
and third groups of the additional category take place within each 
group, this way inducing assortativity. Furthermore, we assume 
some levels of heterogeneity also in the activity of the different 
groups setting as 20, 40, and 40% the share of contacts of the three 
groups, respectively. Even a qualitative visual inspection of the gen-
eralized contact matrix shows how the introduction of assortativity 
and activity changes the contact rates (see Fig. 2E) with respect to 
the previous case of random mixing (Fig. 2B). This is confirmed by 
the value of the spectral radius which is about 46% larger, increasing 
from ρ

(

G̃ab

)

= 35.74 to 52.5. In Fig. 2F, we show the matrix Cαβ ob-
tained after integrating the generalized contact matrix over all age 
classes. As imposed by construction, the third group is character-
ized by a higher assortativity than the others. This group represents 
the smallest fraction of the population and is the most active (to-
gether with the second group). These characteristics explain the 
high diagonal value in the matrix describing the contact rate be-
tween individuals in that group. As a result, the spectral radius is 
24% higher 

[

ρ
(

C̃αβ

)

=43.89
]

 than the one of the contact matrix 
stratified by age [with ρ

(

C̃ij

)

= 35.74]. The impact of the different 
contact matrices on the simulated attack rate is shown in Fig. 2G 
where we plot it as a function of R0. The figure shows in each case 
that the critical point falls at R0 = 1, thus the analytical solutions 
match the numerical simulations very well.

Contrary to the previous case of random mixing, the attack rates 
of the model that is informed with the contact matrix Cij and the one 
with the generalized matrix Ga,b are different for R0 > 1. For a given 
R0 the strong assortativity of contacts constrains the spreading of 
the disease, resulting in a smaller infected population fraction (see 
the green squares). Furthermore, the most active group is also the 
smallest one in this setting. A similar behavior is observed in conta-
gion processes unfolding on explicit contact networks organized in 
clusters, where the local topological correlations might slow down 
the spreading of contagion processes that in turn do not evolve into 
an endemic state (i.e., SIR- like dynamics) (41). If the contacts are 
stratified according to the second dimension only (red circles), the 
attack rates are closer to those emerging from the generalized con-
tact matrices (green squares). In the inset of the figure, we show the 

attack rate as a function of the transmissibility Φ. The vertical dashed 
line denotes the theoretical prediction of its critical value when con-
sidering the generalized contact matrices. Because of the differences 
in the spectral radius of the various matrices, the critical values of Φ 
do not coincide. In the setting considered here, neglecting the as-
sortativity and activity across the second dimension in favor of sim-
pler representations focused only on age or the additional variable 
leads to a possibly large underestimation of the critical value of 
Φ. Assortativity and activity also introduce variations in the disease 
burden across the secondary dimension. Figure 2H shows how, in 
these settings, individuals in the third class are affected earlier and 
more intensely than the others. This is due to their high activity and 
assortativity. The result is confirmed by looking at the evolution of 
the fraction of recovered as a function of time (bottom inset of Fig. 
2H) where we see how individuals in the third class are substantially 
more affected by the disease. Last, in the top inset of Fig. 2H, we 
show the prevalence for three models for a fixed value of R0 = 2.7. 
Contact matrices stratified only by age feature a smaller and later 
peak with respect to the other two. Even though these results are 
driven by the assumptions made when building the generalized con-
tact matrix, they show how modeling outcomes, based on models 
that include or neglect further stratification of contacts besides age, 
might be extremely different. These differences cannot be observed a 
posteriori. For example, estimating the prevalence in a subgroup, by 
simply considering its share of the population, cannot account for 
differences in peak timing or heterogenities in epidemic outcomes. 
Moreover, the corollary of the lower- bound theorem highlights how 
even more refined attempts to include extra dimensions into epi-
demic models might not be helpful. In the absence of empirical 
contact data, it might be tempting to use subgroup sizes and build 
generalized contact matrices via a random mixing assumption. How-
ever, our results formally demonstrate that this would inevitably 
lead to the same epidemic dynamics of lower dimensional repre-
sentations. In the Supplementary Materials, we report an extensive 
exploration of the parameter space, confirming our analytical solu-
tions’ validity. We also include scenarios that consider additional 
dimensions. The results confirm that the analytical expression for R0 
provides a good description of the epidemic dynamics even in gen-
eralized contact matrices with three dimensions.

Modeling the adoption of NPIs
As mentioned above, epidemic models featuring generalized con-
tact matrices are more expressive than traditional approaches. They 
allow capturing possible heterogeneities in behaviors that might 
span from NPI adoption to vaccination uptake across diverse popu-
lation subgroups. The COVID- 19 pandemic has given a stark re-
minder that the ability to comply with NPIs or vaccine uptake is far 
from homogeneous. They correlate and are influenced by many so-
cioeconomic variables (17,  18,  24,  34). Standard models can only 
partially describe such heterogeneities, considering, for instance, 
contact reductions as a function of age and location (42).

To showcase the potential of generalized contact matrices in this 
context, we explore hypothetical scenarios where a given popula-
tion, featuring an additional dimension beside age, changes behav-
ior following the introduction of NPIs. We assume the ability to 
reduce contacts to be associated with the membership to a par-
ticular population group. We start with a pre- epidemic baseline 
where 33, 50, and 60% of the contacts in the first, second, and third 
groups of the additional category take place within each group. In 
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the baseline 25, 45, and 30% are the shares of contacts of the three 
groups. For simplicity, we assume an equal population distribution 
across the three groups. In Fig. 3A, we show the prevalence of a dis-
ease that spreads unmitigated by any NPI in our baseline popula-
tion. Individuals in the second group are the most affected because 
of their higher activity. This is confirmed in the bottom inset where 
we plot the fraction of recovered as a function of time. The second 
group is more affected than the other two. The top inset shows 
the estimation of the overall prevalence considering, as before, the 
three epidemic models featuring generalized contact matrices (green 
line), age- stratified matrices (gray line), and contact matrices strati-
fied only for the second dimension (red line). In these settings, the 
first model peaks a bit earlier, but the three curves are overall very 
similar.

Then, we imagine two scenarios where at time t* = 50, because of 
NPIs, the population changes behaviors. We refer to the Supplemen-
tary Materials for the details about the implementation. In Fig. 3B, 
we show what would happen to the epidemic in case of a homoge-
neous reduction scenario when all groups would be able to reduce 
their contacts by 35%. The impact of the NPIs is quite strong and 
induces a clear reduction of the peak across the three groups of the 
population. The top inset of Fig. 3B shows how in this scenario the 
overall prevalence, estimated with a model featuring generalized 
contact matrices (green line), peaks earlier and higher than with the 
other two. The model fed with age- stratified contact matrices (gray 
line) is very similar. The third model (red line) instead is rather dif-
ferent as the peak is not only lower but also delayed. This is another 
reminder of how the representation of contacts, the choice of which 
variables are considered or integrated, might affect the estimation of 
the epidemic dynamics. Moreover, as noted above, such differences 
in peak time cannot be observed by considering the additional di-
mensions only at posteriori. In the bottom panel of Fig. 3B, we plot 
the fraction of recovered population as function of time. We observe 
how the implementation of NPIs reduce the burden of the disease 
with respect to the baseline, but as before individuals in the second 
subgroup of the additional dimension are the most affected.

In Fig. 3C, we explore a scenario where the first group (e.g., rep-
resenting for example the lowest SES class) is not able to protect it-
self as the other two manage to afford. We model this by reducing 
the overall number of contacts by 35% but assuming that the NPIs 

introduce changes in both assortativity and activity. We imagine 
that, because of the NPIs, 50, 60, and 70% of the contacts in the first, 
second, and third groups of the additional category take place with-
in each group. Hence, across the groups, assortativity increases but 
more substantially for the second and third group. Furthermore, we 
imagine that the NPIs shift activities to 37, 37, and 26% across the 
three groups. Hence, while activity decreases for the second and 
third groups, it relatively increases for the first. Observing the preva-
lence curves, we see how the NPIs bring a general reduction, but the 
changes in the contact patterns affect the first group more negative-
ly. We observe a switch from a baseline where this group was the 
least affected to a scenario where it becomes the most affected (to-
gether with the third group). This is confirmed in the bottom inset 
of the figure where we plot the fraction of recovered individuals as a 
function of time for the three subgroups in the additional dimen-
sion. The top inset of the figure shows the overall prevalence for the 
three models that is very close to the previous.

Numerical simulations: Empirical data
We applied the model to empirical data describing social contacts 
stratified by age and one SES variable (i.e., self- perceived wealth 
with respect to the average) in Hungary. The data have been col-
lected via computer- assisted surveys from 1000 respondents de-
scribing a representative sample of the Hungarian adult population 
in terms of gender, age, education level, and type of settlement (40). 
We refer the reader to Materials and Methods and the Supplemen-
tary Materials for more details about the data and its collection. In 
Fig. 4A, we show the traditional contact matrix that focuses only on 
age. Though similar, the structure of contact patterns differs with 
respect to the equivalent matrix for the same country shown above 
in Fig. 2A. This discrepancy is due to the different periods these ma-
trices represent. While the matrix in Fig. 2A has been collected be-
fore the COVID- 19 pandemic, data in Fig. 4A record typical contact 
patterns during the pandemic, specifically in June 2022. Although at 
that time the vaccination campaign was in full swing and the num-
ber of confirmed cases and deaths was relatively low, the previous 
wave had peaked only a few months before and some level of social 
distancing was still in place (for more details about the construction 
and normalization of this matrix, see the Supplementary Materials). 
The matrix confirms that children and young adults are the most 

A B C

Fig. 3. Modeling the adoption of NPIs. disease prevalence in (A) baseline scenario (B) and (C) with nPis introduced at t* = 50 that induce a reduction of 35% in total 
number of contacts with respect to the baseline scenario. in the case of (B), the three groups reduce the number of contacts equally, while in (c), the nPis induce a redis-
tribution of the number of contacts. curves in the main plot indicate the prevalence for the three groups of the additional dimension. the top inset shows the prevalence 
for models featuring generalized contact matrices (green line), standard age- stratified contact matrices (gray line), and contact matrices stratified by the additional dimen-
sion (red line). the bottom inset shows the fraction of recovered as a function of time for the three groups of the additional dimension. Results refer to the median of 500 
runs with confidence intervals. epidemiological parameters: Γ = 0.25, Ψ = 0.4, and R0 = 2.7. Simulations start with I0 = 100 initial infectious seeds.
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active and that their interactions are largely assortative. However, 
the matrix features a rather smaller spectral radius with respect to 
the prepandemic contact matrix. This highlights the reduction in 
contacts caused by the COVID- 19 emergency. In Fig. 4B, we show 
the stratification of contacts considering only the SES variable, 
which divides the population into three SES groups with Low, Me-
dium, and High wealth. Similar to other studies (43, 44), we observe 
a strong diagonal component, confirming high levels of assortativity 
within SES groups. The population experiencing mid- low SES fea-
tures lower assortativity and activity. Furthermore, the off- diagonal 
elements display higher levels of segregation for people experienc-
ing low SES, as individuals experiencing mid and high SES tend to 
interact more with each other. In Fig. 4C, we show the flattened rep-
resentation of the generalized contact matrix. ρ

(

G̃a,b

)

 is higher than 
the other two, but the difference is clearly more limited with respect 
to the synthetic case we discussed in the previous section. In Fig. 4D, 
we show the attack rate as a function of R0 for a disease spreading in 
a susceptible population described with each of the three contact 
matrices discussed. It is important to stress that these simulations do 
not aim to reproduce the evolution of the COVID- 19 pandemic in 
Hungary. Instead, they describe a hypothetical disease spreading on 
different representations of the contact patterns measured in June 
2022. Our goal is to showcase the possible variations in the descrip-
tion of an epidemic. The theoretical critical value for the basic repro-
ductive number (being at R0 = 1) well matches the numerical 
simulations. Furthermore, for a given value of R0 > 1 the attack rate 
estimated with a model featuring the generalized contact matrix 

(green squares) is always smaller than any of the two other models. 
Also in this case, the more realistic description of contacts across 
multiple dimensions constrains the unfolding of the disease with 
respect to scenarios that neglect one of the two dimensions. How-
ever, the model featuring the contact matrix stratified by SES only 
(red circles) leads to higher attack rates than the model featuring an 
age- stratified contact matrix. The inset confirms the validity of the 
mathematical formulation and highlights how a higher spectral ra-
dius results in a lower critical value for Φ. In Fig. 4E, we plot the 
prevalence of the disease for the model with a generalized contact 
matrix, splitting the three SES groups. We observe that individuals 
experiencing high SES are the most affected in terms of contracted 
infections. This is due to their higher contact activity. Those experi-
encing mid- SES follow very closely, partially because of the strong 
interaction activities with the first group. Individuals experiencing 
low SES, instead, are affected later and are subject to a lower preva-
lence. In this scenario, where the population is not subject to further 
NPIs nor spontaneously changing behavior during the epidemic, 
the higher level of segregation experienced by the low- SES group 
has the silver lining effect of shielding that group from the epidemic, 
in accordance with empirical observations in the country (45). 
These results are confirmed in Fig. 4F where we plot the fraction of 
recovered as function of time for individuals in different SES groups. 
In the inset of Fig. 4E, we show the overall evolution of the disease 
obtained by modeling the epidemic with each of the three contact 
matrices. The plot confirms how the chosen representation of con-
tacts influences the description of the disease. Considering different 

A B C

D E F

Fig. 4. Empirical generalized contact matrices. (A) Age contact matrix C (8 × 8); (B) SeS contact matrix Cαβ (3 × 3) and (C) generalized contact matrix with age and SeS 
G (24 × 24); (D) attack rate as a function of R0 (main figure) and transmissibility (inset); (E) disease prevalence in different SeS groups (main figure) and different represen-
tation of the contact patterns (inset); (F) fraction of recovered individuals in different SeS groups. in (A) to (c), ρ indicates the corresponding spectral radius. Results in (d) 
and (e) refer to the median of 500 runs. epidemiological parameters: Γ = 0.25, Ψ = 0.4, and R0 = 2.7. Simulations start with I0 = 100 initial infectious seeds. the matrices 
have been computed using the contact diaries coming from the MASZK data collected in hungary during June 2022.
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numbers or types of dimensions, in this case, induces differences in 
the estimation of peak time, which is a key variable used to inform 
public health measures.

In the Supplementary Materials, we repeat the same analyses 
considering data collected at different time points of the COVID- 19 
pandemic, in April and November 2021. While the overall results 
confirm the picture that emerged here, models fed with standard 
and generalized contact matrices lead to estimations of the attack 
rates, for a given R0, which are closer to each other. Nevertheless, the 
model featuring generalized contact matrices allows capturing het-
erogeneities in the prevalence across SES groups, which are invisible 
to standard approaches and to analyses conducted integrating SES 
dimensions only at posteriori.

DISCUSSION
In this study, we presented a mathematical epidemic modeling 
framework featuring generalized contact matrices, that is, contact 
matrices that are stratified according to multiple dimensions such as 
variables linked to SES. The goal of our work is to highlight the im-
portance of moving beyond the traditional representation of mixing 
patterns, based on age- specific and/or context- specific contact rates, 
allowing for the development of structured epidemic models that 
incorporate multiple groups of the population at once.

First, we focused on the mathematical characterization of the 
modeling framework. We found that the basic reproductive number, 
R0, of a model featuring generalized contact matrices can still be 
obtained analytically via the next- generation matrix approach devel-
oped for traditional compartmental models (36, 37). We then intro-
duced a lower- bound theorem proving how the generalization to 
multiple dimensions leads to a value of R0, which is necessarily equal 
to or larger than for models featuring fewer grouping dimensions. We 
also found a corollary of the theorem proving that the R0 of a model 
fed with generalized contact matrices, obtained via a random mixing 
approximation for the additional dimensions, is necessarily the same 
as the correspondent value for models fed with lower dimensional 
contact matrices. We showed, numerically, how nontrivial correla-
tions of contacts across and within groups, such as assortativity and 
heterogeneous activity, increase the value of R0. We then explored 
how the modeling framework can be used to integrate and consider 
explicitly SES dimensions. Through numerical simulations, we showed 
how models featuring generalized contact matrices better capture 
heterogeneous behaviors across population subgroups, such as vary-
ing rates of adherence to NPIs across socioeconomic strata, as 
observed in reality (27, 29, 30, 46). By using both synthetic and em-
pirical data from Hungary, we demonstrated how neglecting SES di-
mensions in favor of simpler representations of social contacts may 
result in large misrepresentations of attack rates, epidemic thresholds, 
and disease burden across different population subgroups. Moreover, 
our results highlight how these misrepresentations cannot be simply 
corrected by integrating SES dimensions a posteriori.

The COVID- 19 pandemic has tragically reminded us that health 
emergencies do not affect populations equally and that social, eco-
nomic, and cultural forces fundamentally shape the outcome of 
disease outbreaks, reflecting the socioeconomic inequalities of 
the society at large (47–50). These observations are in stark con-
trast with the traditional structure of epidemic models, which often 
neglect all variables but age as the key demographic feature defin-
ing disease transmission in a population (38). Recent studies have 

highlighted the urgent need for modeling approaches that can 
 account for the multiple social dimensions that define the risk of 
infection and infection outcomes (17, 18, 20). In the wake of the 
COVID- 19 pandemic, research studies have introduced social con-
tact matrices stratified by alternative demographic groups, such as 
racial and ethnic subpopulations (51), but usually without consider-
ing more than one dimension at once. As an alternative, scholars 
have developed large- scale individual- based models that reconstruct 
synthetic populations of millions of agents with extreme realism, in-
cluding many key socioeconomic characteristics (16, 52–54). These 
models, however, require the availability of highly resolved mobility 
data derived, e.g., from mobile phone logs, and large computational 
infrastructures for data processing and simulations. Previous studies 
have compared different data representation methods, ranging from 
fully homogeneous mixing to temporal networks, to identify the rel-
evant trade- offs between compactness and realism (55–58). Our 
work attempts to strike a balance between traditional approaches 
that are too simplistic and the complexity of large- scale synthetic 
populations, providing a general and flexible scheme to define 
epidemic models with multiple interacting population subgroups.

As for any structured epidemic modeling approach, our model re-
quires data to parameterize social contact rates across subgroups. So-
cial contact surveys have been and will continue to be an important 
asset for the study of mixing behaviors both in normal conditions and 
during epidemic outbreaks (2,  35,  59–63). Future contact surveys 
could include additional demographic and socioeconomic dimen-
sions beyond the usual age/gender components. The work we pre-
sented here shows how these dimensions can be easily integrated by 
generalizing traditional epidemic models. In some cases, large- scale 
contact surveys including several population attributes can be unfea-
sible, especially in resource- poor settings. Alternative approaches 
could infer contact patterns from the analysis of demographic data 
that are routinely collected by census surveys (5, 12). Other proxies of 
contact rates, derived from mobility data, could be similarly used to 
infer contact patterns among different socioeconomic groups, as 
demonstrated by recent studies focusing on experienced segregation 
in large US metropolitan areas (64, 65).

It is important to mention the limitations of our work and the 
directions for future developments of our study. Admittedly, the 
model we developed to generate synthetic generalized contact ma-
trices does not attempt to reproduce empirical observations from 
real data but rather to provide a general test bed for investigation. 
This choice was guided by the lack of available data about the 
stratification of contacts across multiple dimensions in different 
countries. As described, we had access to empirical data only for 
Hungary. Arguably, one country is not enough to develop a gen-
eral model, and more work is needed to design and test other ap-
proaches. Similarly, the methodology we used to simulate the effects 
of NPIs was driven by simplicity rather than realism. We intended to 
showcase the potential of our model to capture possible heterogene-
ities in behaviors rather than reality. Data from Hungary contained 
limited information about the social contacts of children. Hence, we 
had to introduce a few assumptions about their structure. Another 
important assumption we made is about the independence of age 
and other socioeconomic dimensions. While this assumption was 
necessary to showcase our methodology in simple terms, future 
work is needed to investigate the impact of such correlations on the 
description of epidemic processes and to explore the applicability/
extension of methods for dimensionality reduction.
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Last, it is important to acknowledge important ethical and privacy 
concerns linked with data collection efforts that inspect individuals 
about several variables. By increasing the number of dimensions the 
size of each surveyed group rapidly decreases. Risks of reidentifica-
tion are real and of particular concern, especially for minorities and 
underrepresented groups (66). Progresses in the direction we have 
proposed here are necessarily linked to progresses in data collection 
and dissemination that reconcile the development of better public 
health tools on the one side with privacy rights on the other (67). 
Arguably, it is this unresolved tension that, among other reasons, has 
so far limited the collection and sharing of contact survey data in-
cluding more dimensions besides age. Nevertheless, the data we use 
demonstrate that such data collection is possible in an anonymous 
and privacy- protected way.

Overall, our work contributes to the literature by attempting to 
bring socioeconomic and other dimensions to the forefront of epi-
demic modeling. Tackling this issue is crucial for developing more 
precise descriptions of epidemics and thus to design better strategies 
to contain them.

MATERIALS AND METHODS
Synthetic generalized contact matrices
We developed a model to build synthetic generalized contact matri-
ces Ga,b. For simplicity and clarity of exposition, let us consider only 
two dimensions: age and an additional variable, for example one SES 
indicator. Let us denote with K the number of age brackets and V1 
the number of subgroups in the second dimension. In these settings, 
a = (i, α) and b = (j, β). The indices i and j refer to the age group 
while α and β to the SES of the ego and the alter, respectively. The 
model takes as input a real contact matrix C describing the contact 
rates between age brackets. As mentioned above, we can write C = 
N−1R where N is a diagonal matrix (with positive diagonal ele-
ments) describing the number of individuals in each age bracket, 
and R is a symmetric matrix describing the total number of contacts 
between age groups in a given period. The generalized contact ma-
trices G can be expressed as G = N

−1
G
RG where analogously NG is a 

diagonal matrix (with positive diagonal elements) describing the 
number of individual in each a and RG is a symmetric matrix cap-
turing the number of total contacts between any two a and b in a 
given period. To build generalized contact matrices, we need to de-
fine these two matrices. The first can be obtained by assuming a 
given population distribution for each a. The second requires more 
attention. The construction needs to respect two properties. The first 
is symmetry: (RG)iα,jβ = (RG)jβ,iα. In words, the number of contacts 
that individuals in age group i and SES α have with individuals in 
age group j and SES β must be equal to the number of contacts that 
individuals in age group j and SES β have with individuals in age 
group i and SES α. This property implies that, for all i = j, (RG)iα,iβ = 
(RG)iβ,iα. In general, this is not the case for i ≠ j. The second property 
is that Rij =

∑V1

α,β

�

RG

�

iα,jβ
. In words, by integrating across the sec-

ond dimension, we must obtained the initial matrix R. For a given 
pair i and j, (RG)iα,jβ is of size V1 × V1. Hence, for any i ≠ j, we need 
a model to set a number W = V 2

1
− 1 of elements in the matrix. Note 

how the minus one stems from the constraint introduced by the sec-
ond property. For all i = j instead, the symmetry of the matrix is 
such that we need to set only Y = V1 +

V1(V1−1)
2

− 1 elements. The 

first V1 comes from the diagonal (i.e., α = β), the V1(V1−1)
2

 are instead 

the off- diagonal values, and the minus one as before is due to the 
second property of such matrices. To reduce the number of param-
eters, we assume an independence between age and other dimen-
sions. In this case, because W > Y for all V1 ≥ 2, we can define the 
generalized contact matrix by setting W values. These can be ob-
tained via a simple model where, for any i and j pair, (i) each SES α 
is responsible for a fraction Pα of Rij connections, and (ii) a fraction 
qα of these are on the diagonal (i.e., in- group connections) and 1 − 
qα are instead off diagonal. This parameter controls the assortativity 
of connections within each group. The fractions Pα and qα are input 
parameters. By setting V1 − 1 values Pα (the minus one stems from 
the constraint 

∑V1

α
Pα = 1) and V1 values qα, we obtain a model with 

2V1 − 1 parameters. In case this number is equal to W, the con-
straints imposed by our assumptions allow us to define all the en-
tries of the generalized contact matrix. If instead W > 2V1 − 1 
(guaranteed for any V1 ≥ 3), other W − 2V1 + 1 free parameters 
(besides the values of Pα and qα) are required for each i and j pair. 
We refer the reader to the Supplementary Materials for more details 
about synthetic generalized contact matrices.

Empirical generalized contact matrices
We built generalized contact matrices stratified in two dimensions 
by using real data from the MASZK study (40, 68) (for more infor-
mation about the dataset, see the Supplementary Materials). The 
data provided us with a range of information about the anonymous 
participants including their perceived wealth with respect to the av-
erage, which is one SES variable we rely on. Information on social 
interactions have been collected in two different ways: (i) in an ag-
gregate form, such that each participant reported the number of 
contacts they had with individuals in each of the eight age brackets 
considered and (ii) in a diary in which each participant listed one by 
one the interactions they had on a given day by reporting some 
meta information of the contactee such as their age and SES. In par-
ticular, the average number of contacts of an individual in age class 
i, and SES α with an individual in age class j and SES β is Ga,b where 
a = (i, α) and b = (j, β). However, the MASZK data provided us with 
diary information only for the adult population (individuals older 
than 15 years old). For the children, their average number of con-
tacts is available only in the aggregate form for the eight age brack-
ets considered. Thus, we assigned the average number of contactees 
to the different SES as follow: Giα,jβ = Giα,juαβ, where Giα,j is the aver-
age number of contacts that individual of age group i and SES α has 
with all the individuals of age group j, and uαβ is a parameter that 
controls how these contacts are distributed among individuals of 
different SES.

Numerical simulations
To investigate the effect of the generalized contact matrices Ga,b on 
the transmission dynamics, we developed a stochastic, discrete- 
time, compartmental model where the transitions among compart-
ments are simulated through chain binomial processes. In particular, 
at time step t, the number of individuals in group a and compart-
ment X transiting to compartment Y is sampled from PrBin[Xa(t), 
pXa→Ya(t)], where pXa→Ya(t) is the transition probability.

Supplementary Materials
This PDF file includes:
Supplementary text
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