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An embedding-based distance for
temporal graphs

Lorenzo Dall’Amico 1 , Alain Barrat 2,3 & Ciro Cattuto1,3

Temporal graphs are commonly used to represent time-resolved relations
between entities in many natural and artificial systems. Many techniques were
devised to investigate the evolution of temporal graphs by comparing their
state at different time points. However, quantifying the similarity between
temporal graphs as a whole is an open problem. Here, we use embeddings
based on time-respecting randomwalks to introduce a new notion of distance
between temporal graphs. This distance is well-defined for pairs of temporal
graphswith different numbers of nodes anddifferent time spans.We study the
case of a matched pair of graphs, when a known relation exists between their
nodes, and the case of unmatched graphs, when such a relation is unavailable
and the graphs may be of different sizes. We use empirical and synthetic
temporal network data to show that the distance we introduce discriminates
graphs with different topological and temporal properties. We provide an
efficient implementation of the distance computation suitable for large-scale
temporal graphs.

Graphs are ubiquitous mathematical entities formed by a set of nodes
and one of the edges connecting pairs of nodes1–3. They can model a
wide range of interacting systems, such as social4,5, technological6,
spatial7, and biological networks8, and owe their popularity to their
ability to encode the complex relational structure of these systems.
Real-world systems, moreover, often have temporal properties that
cannot be encoded in static graphs and call for modeling based on
time-resolved network representations, known as temporal graphs9.
Examples of these include transportation10 and ecological networks11,
human close-range interactions12–16, collaboration networks17–19, etc.

Given their ubiquitous use in representing such diverse kinds of
systems, it is crucial to be able to compare them. In fact, defining and
computing a similarity measure between pairs of graphs20 underpins
many important applications and tasks, including machine learning
tasks such as graph classification. However, given the high dimen-
sionality of graphs and their structural complexity, many different
notions of distance can be devised, capturing different properties of
interest. Hence, many definitions of distance for static graphs were
introduced, as reviewed in refs. 21–25. One of themost straightforward
approaches is the edit distance26, which counts the number of ele-
mentary changes (edge or node removal or addition) needed to

transform one graph into another and only accounts for local infor-
mation. Approaches that probe the global graph structure are usually
based onmatrix inversion27,28 but generally have a high computational
cost and approximations are needed to achieve satisfactory compu-
tational performances. The above methods are all designed for com-
paring pairs of graphswith a known correspondence between nodes, a
case we will refer to as matched graphs. The more general case of
unmatched graphs entails defining distances for pairs of graphs for
which a mapping between nodes is unavailable, and the graphs may
have different numbers of nodes. In this case, one can either extract
and compare a suitable set of chosen graph features, as done in
Refs. 29,30, or leverage the spectral properties of appropriate matrix
representations31–34. In this case, the computational complexity is also
a bottleneck, and approximation heuristics are often required21.

In the case of temporal graphs, the temporal dimension adds to
the complexity of graph comparison. Many of the distance measures
mentioned above for static graphs were used to study temporal
graphs35, typically to compare the state of the graph at different points
in time and to identify anomalies and change points in the temporal
evolution of the graph36–40. Here instead, we study the problem of
comparing temporal graphs, each taken as a whole. Unlike the
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snapshot-based methods mentioned above36–40, we rely on a temporal
embedding with a dimensionality that is independent of the temporal
span of the graphs, so that we can compare temporal graphs with
arbitrary, and different, temporal spans. Few notions of distance were
proposed to compare temporal graphs with arbitrary time spans. In
particular, themethodof ref. 41 is basedon a set of features that canbe
tailored to a specific research question (similarly to ref. 29 for static
graphs). Ref. 42, on the other hand, addresses the same problem of
temporal graph comparison we tackle here, but it assumes the graphs
to be matched, and it is computationally inefficient (the graph dis-
similarity is obtained by solving an NP-hard optimization problem and
the authors propose an approximation running in Oðn3Þ operations,
where n is the number of graph nodes). Finally, ref. 43 only considers
the unmatched case and focuses on a specific property of temporal
graphs, namely the comparison of temporal paths’ statistics, to pro-
vide a definition of dissimilarity.

Here, we propose a computationally efficientmethod to compute
an actual distance metric between pairs of temporal graphs, con-
sidering both the matched and unmatched cases. We build our com-
parison on top of graph embeddings, leveraging ideas from the local
and global approaches mentioned above and encoding differences at
the topological and temporal levels. Commented Python code that
implements the approach described here is publicly available at the
link provided in ref. 44.

Results
Before delving into the details of our main contribution, we first state
some basic definitions.

Definition 1. (Temporal graph) A temporal graph GðV, E,WÞ is a tuple
ðV, E,WÞ, whereV is a set ofnnodes,E a set of temporal edges between
pairs of nodes, and W a set of edge weights. For a discrete variable t
denoting time, all temporal edges e 2 E have the form e = (i, j, t),
representing an interaction between nodes i and j at time t and we

indicates the positive weight of edge e. We say an edge (ij) is active at
time t if ði, j, tÞ 2 E. A node i is active at time t if it belongs to an active
edge at t.

The graph GðV, E,WÞ can be represented with a sequence of
weighted adjacency matrices, fWtgt = 1, ...,T , where T is the number of
time points. Each of these matrices has size n × n and entries
ðWtÞij =wði, j, tÞ>0 if ði, j, tÞ 2 E and ðWtÞij =0 otherwise. In the following,
we will refer to thesematrices as “snapshots” of the temporal graph at
given times and to T as the number of snapshots45. In a more general
description of temporal networks, each interaction may be repre-
sented with a tuple (i, j, t, τ) where τ 2 R+ is an interaction duration.
We adopt the former notation because it is simpler to handle in the
following. The two notations are completely interchangeable

whenever the time is discrete and afinite temporal resolution tres is set.
In fact, all contacts with a duration within tres are considered to be
instantaneous, and (i, j, t, τ) can be represented by a set of interactions
of unitary duration: {(i, j, t+δ)}δ∈{0, …, τ−1}. For this reason, Definition 1 is
sufficiently general, as it can also describe interactions lasting more
than one temporal unit. For increasing values of tres, the temporal
graph gets progressively more aggregated and loses information on
the temporal ordering of contacts within tres, but partial information
can be retained with edge weights expressing the fraction of tres in
which the edge was active.

Let us now introduce the concept of matched and unmatched
graphs.

Definition 2. (Matched graphs) Let G1ðV1, E1,W1Þ and G2ðV2, E2,W2Þ be
two temporal graphs with n1 and n2 nodes, respectively. We say that G1

and G2 are matched if n1 = n2 and there exists a known bijective func-
tion π : V1 ! V2 that maps each node of G1 to a node of G2. The two
graphs are otherwise said to be unmatched.

When two graphs have the same size, i.e., the same number of
nodes, there are always many possible mappings π between their
nodes, but for thematched approach to be valuable, a knownmapping
associated with an external notion of node identity across the two
graphs is necessary (e.g., nodes corresponding to the same persons in
two temporal social networks). An implicit consequenceofDefinition2
is that all graph pairs with a different number of nodes are considered
to be unmatched. We now state the requirements for our distance
measure and illustrate our main result.

In the following, we define two types of distance functions, dm,
du betweenmatched and unmatched graphs, respectively. The inputs
to these functions are two temporal graphs, G1 and G2, with poten-
tially different numbers of time points (snapshots) T1 and T2. In both
cases, the distances should fulfill the following standard
requirements46: (i) non-negativity; (ii) separation axiom; (iii) sym-
metry; (iv) triangle inequality. In addition, both distances should be
able by design to detect differences induced by the permutation of
time indices. The matched distance should also differentiate
between temporal networks differing only by a permutation of node
indices, while the unmatched one should be invariant under such
transformation.

Our proposed distances are computed in two steps: (i) we gen-
erate a temporal graph embedding, given by a matrix of size (n × d)
(with d independent of T), that encodes relevant topological and
temporal properties by leveraging time-respecting random walks on
the temporal network; (ii) we define the distance in the embedded
space, treating separately the matched and the unmatched cases. The
distance computationpipeline is illustrated in Fig. 1. The steps outlined
above are described in detail in the following two sections titled

Fig. 1 | Distance computation between two temporal graphs. The inputs to the
distance function are two temporal graphs G1 (top, orange nodes) and G2 (bottom,
green nodes), generally with a different number of snapshots (T1 = 5, T2 = 4, in the
example) and a different number of nodes n (here n1 = 6, n2 = 5). Each graph is
represented as a matrix P 2 Rn ×n, according to Eq. (1), with entry (ij) encoding the

probability that a random walker goes from i to j following a time-respecting path
(thewalker’s position at each time point is indicated in blue). Thematrices P1, P2 are
then embedded using the EDRep algorithm, mapping them to X 1 2 Rn1 ×d and
X2 =R

n2 ×d . Finally, the matched—Eq. (5)—and unmatched—Eq. (6) —distances are
calculated. Notice that a necessary condition to compute dm is that n1 =n2.
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Temporal graph embedding and Defining an embedding-based
distance.

Temporal graph embedding
Graphs are rich data representations and it is challenging to define
simple mathematical operations to manipulate them. Graph embed-
dings provide an interesting avenue for doing so, as they yield a
representation in vector space that preserves some of the graphs’
relevant properties47–50. In the case of temporal graphs, the additional
challenge of dealingwith their temporal dimension has been tackled in
many different ways: ref. 51 represents time as an additional dimension
of an adjacency tensor; in evolutionary spectral clustering52–56, a dif-
ferent embedding is obtained for each snapshot, and smoothness
conditions are implemented on their temporal evolution; more recent
work57–59 introduced approaches based on time-respecting random
walks, which encode temporal properties relevant for dynamical pro-
cesses occurring on temporal graphs; refs. 39,40 also build one
embedding per snapshot for studying the graph evolution and com-
paring different time points; the authors argue that a graph compar-
ison metric should depend on the whole graph structure and thus
define graph instead of node embeddings.

Following an approach similar to ref. 59, we start from time-
respecting random walks to generate temporal graph embeddings,
which we use to define a distance based on global temporal graph
properties. The embeddings are obtained as the solution to an opti-
mization problem. We define a loss function whose argument is a
transition matrix P that is the limiting distribution of time-respecting
randomwalks over the temporal graph G to be embedded. T being the
number of snapshots of G, we consider an ensemble of random walks
of length ℓ drawn uniformly at random between 1 and T, and starting
froma randomly chosen node at time t = T − ℓ + 1; at each time step, the
walker, situated, e.g., on node i, can eithermove to a randomneighbor
of i in the snapshot at time tor stay in placeon i; if thewalker is situated
on a node that is not active at time t, i.e., whichhas no neighbors in this
snapshot, the walker stays in place with probability one. The graph
snapshots on the left of Fig. 1 show examples of such time-respecting
random walks on the input graphs.

Specifically, given a temporal graph G, with Wt the snapshot
adjacency matrices at times t = 1, ⋯, T, we define for each snapshot
L̂t = ðDt + InÞ�1ðWt + InÞ, whereDt is the degreematrixDt = diag(Wt1n) of
the snapshot, In is the identity matrix of size n × n, and 1n is the n-sized
unity vector. We then define the matrix P as

P =
1
T

XT
τ = 1

L̂τ L̂τ + 1 � � � L̂T , ð1Þ

Thematrices L̂t and P are sometimes referred to as temporal transition
matrix and global transition matrix, respectively. Time-respecting
random walks depend on several properties of the temporal graph,
that may include, for instance, the presence of a non-Markovian
behavior, and of a broad distribution of the edge activity and inter-
event durations60. The limiting probability matrix P of time-respecting
random walks encodes the aforementioned properties, and it is
sensitive to the permutation of time indices. We remark that the
randomwalks we use can be of arbitrary length. Hence, thematrix P is,
in principle, sensitive to all time scales of the temporal graph at hand.

Given the above probability matrix P and a chosen embedding
dimensionality d, we now generate, for each node i of G, a unitary node
embedding vector xi 2 Rd . To this end, we define X 2 Rn×d as a
matrix where each row represents an embedding vector. We then
express the loss function as:

LP ðX Þ= �
X
i, j2V

Pij logQijðX Þ �
xT
i xj

n

" #
, ð2Þ

QijðX Þ=
ex

T
i xjP

k2Ve
xT
i xk

: =
ex

T
i xj

Z i
: ð3Þ

This loss function is the sum of the cross entropies between the dis-
tributions in the rows of P and the variational distributions in the rows
ofQ(X),with the additionof a regularization term. Since Zi is computed
inOðnÞ operations for each i, the functionLP requiresOðn2Þ operations
to be computed. We adopt the recently proposed EDRep algorithm61

that introduces an efficient approximation of Zi, optimizing LP inO(n)
operations. For further details, we refer the reader to the Methods
section.

Thematrix X obtained by optimizingLP defines the embedding of
the temporal graph G. In the following, we show how to leverage this
embedding to define a distance between temporal graphs.

Defining an embedding-based distance
We want to define a distance between temporal graph embeddings
satisfying the requirements stated above. Notice that the embedding
vectors x are defined up to an orthogonal transformation applied to
the rows of X. In fact, suppose R 2 Rd ×d is an orthogonal matrix, and
~xi =Rxi, then xT

i xj = ~xT
i ~xj and the loss function of Eq. (2) is

LPð~X Þ=LPðX Þ. Hence, our distancemust be invariant under orthogonal
transformations. Moreover, as discussed above, the distance for
unmatched graphs must also be invariant with respect to node
permutations.

Given these requirements, we now discuss separately our choices
for the the matched and unmatched cases. In the Evaluation with
empirical data section, we show the ability of our distances to dis-
criminate between temporal graph classes thatdiffer for topological or
temporal properties.

Distance definition formatched graphs. Let X1 and X2 2 Rn×d be the
embedding matrices of two matched temporal graphs G1 and G2. To
satisfy the invariance requirements discussed above, rather than
defining our distance directly in termsof thematrices X1 and X2, weuse
the auxiliary matrices MX 1

=X 1X
T
1 and MX2

=X2X
T
2 of size n × n. These

matrices are by construction invariant with respect to orthogonal
transformations of the embedding space and encode the global
structure of the corresponding temporal graphs, as the embeddings
are generated using the complete temporal network information. We
define the distance dm between matched temporal graphs as:

dmðG1,G2Þ := k MX 1
�MX2

kF , ð4Þ

where ∥ ⋅ ∥F is the Frobenius norm. Each matrix M encodes the simi-
larity in the embedding space between all pairs of nodes of the cor-
responding temporal graph, and dm quantifies thus the difference
between these similarity patterns. In theMethods section,we show that
we do not need to actually compute the large (n × n) MX 1

and MX2

matrices, but that the distance can be computed using the generally
smaller d × d matrices as follows:

dmðG1,G2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT
1 X 1

��� ���2
F
+ XT

2X2

��� ���2
F
� 2 XT

1 X2

��� ���2
F

r
, ð5Þ

We can easily verify that dm is a distance, as it satisfies all the
requirements mentioned above and is generally not invariant under
the permutation of node indices. Notice that, even if dm can be com-
puted for any pair of graphs with the same size, this distance is only
meaningful for matched graphs (i.e., with known matching). In Eq. (5)
indeed, the term XT

1 X2 implies that X1 and X2 have the same size and
that their rows are ordered according to the same node indices.
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Distance definition for unmatched graphs. In the case of unmatched
graphs, there is no correspondence between nodes, and the distance,
as we discussed, should also be invariant with respect to node per-
mutations. We, therefore, define the distance between unmatched
graphs using auxiliary vectors. Specifically, we denote with λ(A) the
vector of ordered eigenvalues of a matrix A and define our distance
between two unmatched temporal graphs as

duðG1,G2Þ= λ
XT
1 X 1

n1

 !
� λ

XT
2X2

n2

 !�����
�����
2

, ð6Þ

where X1 and X2 are, as before, the embeddings matrices of the two
graphs, with sizes n1 = jV1j and n2 = jV2j. The normalization of the
covariancematrices XT

1 X 1 and XT
2X2 is chosen so that their eigenvalues

are independent of the graph size.
In the Methods section, we show that the covariance matrices

XT
1 X 1 and XT

2X2 (of size d × d) are indeed an appropriate argument of
the distance function du, since they are independent of the ordering of
the nodes and any other orthogonal transformation applied to the
columns of X1 and X2. However, a direct comparison of the entries of
XT
1 X 1 and XT

2X2 would require a one-to-one correspondence between
the embedding dimensions, i.e., the columns of X1 and X2. This map-
ping is unavailable because the EDRep algorithm, like most vector-
space embedding techniques, makes no guarantees on the corre-
spondence between the dimensions of the embedding vectors related
to different graphs. To tackle this issue, we thus compare the spectra,
which are invariant with respect to orthogonal transformations of the
rows of the embedding matrices. This choice takes inspiration from
spectral distance definitions for static graphs, such as ref. 33, in which
graphs are compared by computing the distance between the ordered
sets of the eigenvalues of their matrix representations (adjacency,
Laplacian, non-backtracking, etc.)

Computational complexity
As discussed in the Methods, the computational complexity of the
embedding step is O nd2 +d �minðn2, EÞ

� �
, where E =

P
t jEt j is the

total number of temporal edges, n is the number of graph nodes and d
is the embedding dimension. On top of this, the distance dm is then
obtained with Oðnd2 +d2Þ additional operations, while du requires
Oðnd2 +d3Þ additional operations.

Evaluation with empirical data
We now evaluate the distance definitions we introduced, particularly
with respect to their sensitivity to important topological and temporal
properties of empirical temporal graphs. We carry out three kinds of
evaluation tests using both synthetic and empirical temporal graph
data. We use, in particular, empirical data shared by the Socio-
Patterns collaboration (sociopatterns.org) describing time-resolved,

close-range proximity interactions of humans and animals in a variety
of real-world environments (see Table 1 of theMethods section). These
data are known to exhibit richmulti-scale network structures, complex
temporal activity patterns, correlations between these two, and other
complex network features62. Hence, they provide a natural benchmark
to assess the sensitivity of our distance definitions to several specific
properties of real-world temporal graphs. It is important to note that
these datasets are by no means an exhaustive sample of temporal
networks. However, our goal here is to show that the distances we
introduce are sensitive to complex properties of temporal networks
that we know are present in these particular datasets. Therefore, the
evaluations we outline below do not depend on testing our distances
on a comprehensive set of temporal networks but rather rely on
making tests using data that are well understood, have been and are
widely used by the scientific community, and are known to exhibit
many important properties of temporal graph data.
1. Discriminating between classes of temporal graphs. We consider

topologically different synthetic temporal graphs of different
sizes and we cluster them using our temporal graph distance du,
checking howwell the clusters we findmatch the known classes of
the generative method we used, irrespective of graph size. We
then carry out the same test using empirical graphs on human
proximity in school settings.

2. Detecting partial node relabeling. We consider a synthetic tem-
poral graph, select a fraction of its nodes, shuffle their indices and
compute the distance dm between the original and the relabeled
graphs. We investigate the behavior of the distance dm as a
function of the fraction of relabeled nodes.

3. Discriminating between temporal graph randomizations. We use
the empirical data to elucidate which of the many properties of
real temporal graphs are discriminated by the distances we
introduced. We proceed as follows: given an empirical temporal
graph, we apply to it a set of randomization operations, where
each operation is designed to preserve specific properties of the
original data (e.g., the activity time series of each node). We then
attempt to discriminate the randomized temporal graphs from
one another using our distance definitions and quantify the per-
formance of such discrimination tasks. We test both dm and du;
however, by design, this evaluation strategy compares temporal
graphs with the same number of nodes.

Discriminating between classes of temporal graphs. To test the
ability of our model to distinguish topological network features, we
proceed as follows. We consider four random generative models for
static graphs and generate 250 instances from each model with size
uniformly distributed between n = 200 and n = 1800 and constant
average degree. The models we use are (i) the Erdős-Renyi (ER)
model63; (ii) the stochastic block model (SBM), capable of generating

Table 1 | Summary properties of the SocioPatterns time-resolved proximity networks used here

Graph name Description n Duration T

Primary school76,84 Children of 10 classes of a primary school 242 2 days 194

High school 185 Students of 3 classes of a high school in 2011 126 4 days 453

High school 285 Students of 5 classes of a high school in 2012 180 7 days 1215

High school 386 Students of 9 classes of a high school in 2013 327 5 days 605

Baboons87 A group of baboons 13 27 days 3986

Households88 People of a village in Malawi 86 26 days 1926

Hospital89 Patients and health-care workers of a hospital 75 5 days 579

Conference13 People at a medical conference 405 2 days 190

Office90 Office workers in an office building 92 19 days 1646

Graph name is used to identify the graphs; Description provides concise information on the context where data were collected; n is the number of graph nodes;Duration is the temporal span of the
dataset, and T is the number of graph snapshots. The temporal resolution is tres = 10 min for all datasets.
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graphs with a known community structure64; (iii) the configuration
model (CM), yielding graphs with an arbitrary degree distribution65;
(iv) the geometric model (GM), which generates edges based on
proximity in a latent space66. Unlike the first three, the latter model
yields graphs with a high clustering coefficient. Details on these gen-
erative models are provided in the Methods section. We then turn
these graphs into temporal graphs by assigning an activity time series
to each edge of the static graph, i.e., a set of timestamps at which that
edge is active. Todo this,wecopy the activity time series of a randomly
chosen edge of an empirical temporal graph, namely the Conference
dataset, which has the largest number of nodes among the empirical
datasets we use. Details on the properties of this dataset are given in
Table 1. We then deploy our distance definition du to compute a
pairwise distance matrix between all these temporal graphs and use
this matrix as an input for an unsupervised clustering algorithm to
label each graph. The unsupervised clustering algorithmonly takes the
distance matrix and the number of clusters k (here k = 4) as inputs.
Here, we first perform a spectral embedding of the distance matrix
between graph pairs using non-negative matrix factorization (NMF)67

extracting k non-negative components and then applying the k-means
clustering algorithm with k classes68. We note that successively
embedding and clustering is a standard approach, and using NMF is
most suited here since the distance matrix is non-negative. Finally, we
compare the original temporal graph labels (i.e., the classes of our
generative model) with the partition labels yielded by unsupervised
clustering based on our distances: we quantify the match between the
true partition and the inferred one using the normalized mutual
information (NMI), which yields a performance metric ranging
between 0 (random guess) and 1 (perfect reconstruction).

Figure 2A shows the normalized mutual information (NMI)
between the known temporal graph classes (associated with the four
generative models) and the inferred cluster labels, as a function of the
embedding dimension d. The discrimination performance is low for
small values of d, but for d ≳ 8, the accuracy is high and becomes
insensitive to the specific value of d. The inset in Fig. 2A shows
the UMAP69 two-dimensional embedding of the vectors λ 2 R32 used in
the distance du. Each symbol corresponds to one temporal graph, the
color and marker shape indicate its generative model, and the marker
size is proportional to the number of graph nodes.Weobserve that the
graph size does not appear to affect distances systematically and that
the λ vectors used by the distance du allow us to discriminate between
all four generative models. Indeed, we verified that the distances du
between graph pairs and the Euclidean distances between their
respective UMAP embeddings are strongly correlated, with a highly
significant Spearman correlation coefficient of ~0.92.

We now carry out a test using the distance du on empirical tem-
poral graphs. We look at the challenging setting in which the graph
pairs considered have comparable sizes and time spans and are col-
lected in similar contexts. To do so, we use the SocioPatterns
datasets collected in schools Primary school, High school 1, High school
2, High school 3, described in Table 1, representing time-resolved,
close-range proximity interactions of individuals grouped in multiple
school classes, over several days.Weextract sub-temporal graphs from
these datasets and compare themwith one another using the distance
du. We associate the school classes with a label: Primary for all primary
school classes; Bio for the high school classes on biology;Other for the
remaining classes.

We consider a pair of classes (c1, c2) from the samedataset, andwe
build a sub-graph restricted to all the interactions on a given day “Day”
between the students of the classes c1 and c2. We finally compute the
two-dimensional UMAP embedding from the vector λ appearing in Eq.
(6). Figure 2B shows the result of this procedure for all possible triplets
(c1, c2, Day). Class labels are indicated by the markers’ color and style.
We observe a very high correlation between the distances du of graph
pairs and the Euclidean distances between their UMAP embedding
vectors, with a Spearman correlation of 0.88. That is, our distance
definition can tell apart the networks extracted from the primary
school dataset from those coming from the high school dataset.
Moreover, a weaker but still visible separation exists in the embed-
dings of (Bio-Other) with respect to the other triplets. This is likely
because biology classes were often held in school laboratories rather
than in classrooms, leading to different interaction patterns. Our dis-
tance can discriminate between temporal networks that are, in prin-
ciple, similar (school classes over one day) with no major structural or
temporal differences.

Detecting partial node relabeling. One required property for mat-
ched distance is to distinguish between graphs that differ only upon a
node relabeling. To evaluate the ability of our distance to accomplish
this task, we work with the synthetic temporal graphs defined in the
section Discriminating between classes of temporal graphs. For each
random graphmodel, we (i) generate an instance of the random graph
with n = 1000 nodes; (ii) randomly select a fraction α of nodes and
shuffle their labels; (iii) compute the distance between the original
graph and the partially relabeled one. This is repeated for 25 different
realizations of the partial relabeling. Figure 3 shows the distance dm
(rescaled by the graph size) as a function of α. The plots confirm that
the distance depends on partial node relabeling for all the considered
generative models, with a positive distance as soon as α >0, and
increases with the fraction α of relabeled nodes. Notably, the plot

Fig. 2 | Validation of the distances on graphs of varying size. A Accuracy of the
distance-based clustering against the ground truth classes in terms of normalized
mutual information (NMI), as a function of the embedding dimension d used in the
embedding step shown in Fig. 1. The clustering task consists of recognizing four
classes of synthetic temporal graphs with an unsupervised algorithm based on the
distance du. The classes are obtained by generating a graph from either of four
models (stochastic block model (SBM), configuration model (CM), Erdős-Renyi
(ER), and geometric model (GM)) with constant degree equal to 4.8, and the tem-
poral component isobtainedby sampling the edgeactivity of anempirical graph, as
detailed in the main text. Inset of panel A Scatter plot of UMAP dimensionality
reduction in two dimensions of the vector λ appearing in the definition of du given

in Eq. (6), with d = 32. Each point refers to a temporal graph; the color and marker
style refer to the generative model of its static component, while themarker size is
proportional to the number of nodes.B Two-dimensional UMAP embedding of λ for
the temporal graphobtainedby selecting two classes and aday of interaction for all
possible (c1, c2, Day) triplets in the SocioPatterns datasets describing temporal
graphs of human proximity in schools. Each point refers to a triplet, and the color
and marker style are assigned according to the class labels: the primary school
classes form a group on their own, and the other three groups (Other-Other, Bio-
Other, Bio-Bio) belong to the high school datasets, where Bio are the biology
classes, and Other the remaining ones. In all cases, the temporal networks are
aggregated over a scale of tres = 10min.
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suggests a high discriminative power even for small α values, as the
distance increases rapidly with α.

Discriminatingbetween temporal graph randomizations. Let us now
consider 9 empirical SocioPatterns datasets, whose basic proper-
ties are summarized in Table 1 of the Methods section. Following ref.
70, we select six types of randomization operations Ri (i = 1, …, 6),
described in detail in theMethods section. In all cases, we preserve the
number of nodes and the number of snapshots of the original tem-
poral graph. These six randomizations are chosen because they allow
us to inspect relevant temporal graph properties, including the inter-
action duration distribution, the node activation time series, the
strength distribution in the aggregated graph, or the presence of a
community structure. We can thus investigate graph properties both
at the topological and temporal levels.

To quantify the discriminative performance of our temporal
graph distance, we proceed as follows, separately for each empirical
temporal graph: given the empirical temporal graph and a pair of
randomization operations (Ri, Rj), we generate a set of 250 realiza-
tions using Ri, labeled as 0, and a set of 250 realizations using Rj,
labeled as 1, for a total of 500 temporal graphs. We then compute the
matrix of distances between these 500 graphs and use it to cluster
them in 2 clusters, following the same procedure used for Fig. 2A.
Figure 4 reports the NMI values between the real labels and the
unsupervised algorithm result for each pair of randomizations (Ri,
Rj), and for both the matched distance dm (left panel) and the
unmatched distance du (right panel). Within each panel, each matrix
refers to one empirical temporal graph, and its entries are the NMI
values described above. A high NMI entry indicates that our distance
discriminates well between the temporal graphs generated accord-
ing to the two randomization procedures in the corresponding row
and column of the matrix entry, i.e., that the distance is sensitive to
the properties preserved by either Ri or Rj. LowNMI valuesmay either
correspond to an inability of the distance to capture those properties
or simply reflect that the empirical temporal graph is statistically
random as far as those properties are concerned, as observed in
particular for several pairs of randomizations in the Baboons dataset.
Thus, it is enough to find one empirical dataset for which the distance
can be distinguished between a pair of randomizations to conclude
that the distance is indeed sensitive to the corresponding graph
properties.

Discussion
We introduced a novel definition of distance between pairs of tem-
poral graphs. This definition entails two steps. First, the temporal
graphs are embedded in Euclidean space, and then a distance is
defined in the embedding space. For the first step, we use an

embedding based on time-respecting randomwalks over the temporal
graph. Such walks are known to depend on and to encode important
structural and temporal properties of time-varying graphs9,43,59,60,71. For
the second step, we proposed two possibilities for the distance defi-
nition: if a mapping is known between the nodes of the graphs to be
compared, we consider a distance definition that leverages such
mapping; in the more general case, when such a mapping is unavail-
able, we put forward a definition that makes it possible to compare
graphs with arbitrarily different sizes (numbers of nodes). In both
cases, since the size of the embeddingmatrix we use does not depend
on the graph’s temporal span, it is possible to embed temporal graphs
with different durations in the same embedding space and thus com-
pute a distancebetween them. The evaluationofour approachonboth
synthetic and empirical data shows that the proposed distance is
sensitive to structural differences (e.g., degree distribution, clustering
coefficient, or presence of communities) as well as to temporal dif-
ferences (e.g., burstiness or node activity patterns) of the temporal
graphs being compared.

Themethodologywedeveloped is verygeneral and customizable,
as several alternative choices are possible for both steps of our
approach, namely the chosen embedding method and distance. The
specific choices we study here aremotivated by two considerations: (i)
a theoretical one, given the importance of time-respecting random
walks in encoding information on temporal graphs, and thus in gen-
erating distributed representations of temporal graphs9,59,60,71; (ii) a
numerical one, which led us to choose the EDRep algorithm of ref. 61
because of its efficiency and scalability. Our evaluation results support
these choices a posteriori.

Some limitations of our approach areworthmentioning. First, the
part of our evaluation based on empirical data focused on a limited set
of temporal graphs, namely temporal networks describing the close-
range proximity of humans. However, these temporal graphs are
known to feature a broad variety of representative structural and
temporal features, such as time-varying community structures, bur-
stiness of edge activity, fat-tailed distributions of interaction dura-
tions, and more13,15. Second, we only considered the cases of fully
matched graphs (a bijective relation between nodes) or no known
matching. An interesting intermediate situation would be partially
matched graphs, in which only a subset of nodes are matched across
the two graphs. Tackling this challenging case would yield an inter-
esting extension of our work. Finally, our unmatched distance allows
us to compare graphs with sizes (number of nodes) that potentially
differ even by orders ofmagnitude. Even if our definition can deal with
such extreme cases, we believe that this kind of comparison calls for a
more profound question on what it means to compare entities that
differ somuch. This casemight require tailored definitions of distance
that leverage domain-specific knowledge.
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Fig. 3 | Detection of partial node relabeling. Normalized matched distance dm/n
between a temporal graph and itself, upon partial node relabeling, as a function of
the fractionαof relabelednodes. Theplots refer to the four generativemodels used
in Fig. 2A: stochastic block model (SBM), Erdős-Renyi (ER), configuration model
(CM), and geometric model (GM). with an average degree equal to 4.8. For each

graph, the temporal component is obtained by sampling the edge activity of an
empirical graph, as detailed in the main text. The barely visible shadow line is the
standard deviation of the distance across 25 randomizations of the partial
relabeling.
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Defining a distance between temporal graphs opens the door to a
wealth of potential applications, of which our evaluation only offers
possible examples. On the one hand, such a distance can support data
analysis of temporal graphdata byextending the procedureof Fig. 4 to
a richer set of randomizations51. Indeed, as discussed, the inability to
distinguish pairs of randomizations of a given temporal graph can be
regarded as an invariance property of the graph itself. On the other
hand, computing a distance between graphs can provide a crucial tool
for the validation of generative models that is often limited to com-
paring a set of statistical properties41, while our distance definition
enables us to carry out a comparison at the global level. In addition,
our distance could underpin the very process of generating synthetic
temporal graphs by enabling approaches such as GANS72 that depend
onaglobal distance andhaveprovedextremely powerful in generating
realistic data73,74. In particular, generating synthetic human proximity
data with realistic topological and temporal properties could be used
to better simulate infectious disease spread and other phenomena of
interest for public health research75–80. Finally, we know that empirical
(temporal) graphs are hard to anonymize79,81,82. Tominimize the risk of
node re-identification, performing some perturbation operations on

the graph might be necessary before making it publicly available.
However, such operations risk destroying essential patterns and
information of empirical data. The distance we introduced could help
tackle the trade-offs between re-identification risk and information
loss by better quantifying the latter.

Methods
The EDRep algorithm
The EDRep algorithm61 was recently proposed to efficiently generate
embeddings given a probability matrix encoding the affinity between
the embedded items. This is done by optimizing the cost function of
Eq. (2) under the constraint ∥xi∥ = 1 and obtaining a low-dimensional
representation of matrix P. A known problem of this type of cost
function is the computational complexity because the normalization
constants Zi =

P
k2Ve

xT
i xk require Oðn2Þ to be calculated. However,

ref. 61 describes an efficient way to estimate all the Zi values in OðnÞ.
This is accomplished by first subdividing the nodes into q groups
based on the embedding matrix X. Here, q is a parameter of the algo-
rithm, and larger q values generally lead to a higher accuracy, but very
good results are already obtained for q = 1. Second, for each a = 1,…, q,

Fig. 4 | Distance-based graph clustering for ensembles of temporal graphs
generated according to different randomization techniques. Left panel: results
for the matched distance dm of Eq. (5). Right panel: results for the unmatched
distance du of Eq. (6). Within each panel, each matrix corresponds to one of the 9
SocioPatterns temporal graphs described in Table 1. The rows and columns of
eachmatrix correspond to the same set of six randomization techniques we used,
described in theMethods sections. Each input graph is represented as a sequence
of temporal edges (i, j, t) as per Definition 1. The randomizations act on the
temporal edges as follows. Random: preserves the number of temporal edges and
randomizes the node and time indices; Random delta: preserves the number of
temporal edges and interaction duration distribution; Active snapshot: preserves
the number of edges at each time step and the times at which each node is active,

i.e., at which it has at least one neighbor.Time: preserves the aggregatedweighted
graph structure, i.e., the number of times each edge is active in the temporal
graph; Sequence; preserves each snapshot’s adjacency matrix and randomizes
the order in which they appear; Weighted degree: preserves the total number of
temporal edges involving each node. For each pair of randomizations, we infer
the randomization method of each temporal graph via an unsupervised distance-
based clustering algorithm, and we compare the inferred randomization
method with the known true one. Each matrix entry reports (value and color
coding) the accuracy of the inferred labels (randomization methods),
quantified as the normalized mutual information (NMI) between the inferred and
true labels.
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one computes the mean μa and the covariance matrix Ωa of the set of
embedding vectors of the nodes in group a. Denoting the number of
nodes in group a by πa, one obtains the estimation of Zi as

Zi �
Xq
a= 1

πa exp xT
i μa +

1
2
xT
i Ωaxi

� �
: ð7Þ

Coming to the algorithm’s computational complexity, given that our
choice of P is the sum of matrix products, the algorithm can be
implemented in two forms: one in which P is never formally com-
puted and the sequence fL̂tgt = 1, ...,T is fed to the algorithm; and one in
which P is explicitly computed. Letting X 2 Rn×d be the matrix
storing the embedding vectors in its rows, the computational com-
plexity is determined by the matrix product PX needed to obtain the
gradient of LP defined in Eq. (2). In the former case, this is computed
in Oðnd2 +dEÞ operations, where E =

PT
t = 1jEt j is the number of tem-

poral edges. In the second case, instead, the complexity is given by
the number of non-zero entries of P, which cannot exceed n2. The
former implementation is particularly convenient when n is large and
the L̂t matrices are very sparse. This happens because P may be
dense, even if the snapshots are sparse, and for large values of n,
representing the matrix P in computer memory might be challen-
ging. Conversely, for small graphs, n2 may be smaller than the
number of temporal edges, making the latter implementation more
convenient.

Matched distance definition
From Eq. (5), we have

d2
mðX ,Y Þ=

X
i, j2V

ðMX Þij � ðMY Þij
h i2

=
X
i, j2V

ðMX ÞijðMX Þij + ðMY ÞijðMY Þij � 2ðMX ÞijðMY Þij
h i

=
ðaÞX

i, j2V
ðMX ÞijðMX Þji + ðMY ÞijðMY Þji � 2ðMX ÞijðMY Þji
h i

=
X
i2V

ðMXM
T
X Þii + ðMYM

T
Y Þii � 2ðMXM

T
Y Þii

h i
= trðMXM

T
X Þ+ trðMYM

T
Y Þ � 2trðMXM

T
Y Þ

=
ðbÞ

trðXXTXXT Þ+ trðYYTYYT Þ � 2trðXXTYYT Þ
=
ðcÞ

trðXTXXTX Þ+ trðYTYYTY Þ � 2trðYTXXTY Þ

=
ðdÞ k XTXk2F + k YTYk2F � 2 k XTYk2F ,

ð8Þ

where in (a) we exploited thatMX andMY are symmetric, in (b) we used
thedefinition ofMX,MY, in (c)we used thatproperty of the trace stating
that trðABÞ= trðBAÞ, and finally in (d) we applied the definition of the
Frobenius norm.

Properties of the unmatched distance
In this section, we show that the unmatched distance is invariant with
respect to node permutations, and, more generally, to any orthogonal
transformation applied to the columns of the embedding matrix. We
then show that theunmatcheddistance is also invariantwith respect to
any orthogonal transformation applied to the rows of the embedding
matrix. This is necessary because the EDRep loss function is invariant
under this type of transformation.

We consider a bijective node mapping π : V ! V. We let Q 2
Rn×n be the permutation matrix defined as Qij = δj,π(i). In the matrix
multiplication, Q swaps the entry i with π(i):

�Xia := QXð Þia =
X
j2V

QijX ja =
X
j2V

δj,πðiÞXja =XπðiÞ,a : ð9Þ

The matrix Q is orthogonal, in fact

ðQQT Þij =
X
k2V

QikQjk =
X
k2V

δk,πðiÞδk,πðjÞ = δπðiÞ,πðjÞ = δij , ð10Þ

where the last equality follows from π being a bijective mapping. As a
consequence, QQT =QTQ = In. The distance du depends on the embed-
ding matrix X only through XTX. We now show that this expression is
invariant under node permutation of the embedding matrix, or any
orthogonal matrix Q. Indeed, let �X =QX , then

�X
T �X =XT QTQ|ffl{zffl}

In

X =XTX : ð11Þ

We now show that the distance du is also invariant under the ortho-
gonal transformation applied to the embedding matrix rows. Let R 2
Rd ×d be an orthogonal matrix and let ~X =XR. Letting λi(M) be the i-th
smallest eigenvalue of M, then, for all i, λi(AB) = λi(BA) [Theorem
1.3.2283]. It follows

λið~X
T ~X Þ= λiðRTXTXRÞ= λiðRRT

Id|ffl{zffl}XTX Þ= λiðXTX Þ , ð12Þ

thus proving the claim.

Temporal graph randomizations
In Table 1wesummarize theproperties of the temporal graphsweused
to conduct our tests. Here we give a more detailed description of the
randomization techniques we adopted, defined in terms of the quan-
tities they preserve. According to the method, it may be more con-
venient to represent the temporal graph as a sequence of
instantaneous interactions (i, j, t), as a sequence of interactions with a
duration (i, j, t, τ), or as a sequence of weighted adjacency matrices
W(t)70. Before randomization, time is discretized at the scale of 10min
in each dataset, and the cumulative interaction time in each 10-min
window is used as weight.
1. Random. Temporal edges are represented as (i, j, t) and all three

indices are randomized, avoiding self-edges (i and j randomly
sampledwith replacement between 1 and n, and t between 1 and T).
Preserved quantities: number of temporal edges.

2. Random delta. Temporal edges are represented as (i, j, t, τ). Once
again, i, j, t are randomized (t is randomly sampled with replace-
ment between 1 and T − τ), while τ is preserved. Preserved
quantities: number of temporal edges and interaction duration
distribution.

3. Active snapshot. At each time step t, the edges are randomly
replaced between active nodes at t, i.e., that had at least one
neighbor in the original snapshot. Preserved quantities: number
of edges at each time step and activity pattern of each node.

4. Time. Temporal edges are represented as (i, j, t) andonly the index
t is randomly sampled with replacement. Preserved quantities:
aggregated graph structure.

5. Sequence. The graph is represented as a sequence of weighted
adjacency matrices W(t) and the indices t are shuffled. Preserved
quantities: the structure of each snapshot.

6. Weighted degree. Temporal edges are represented as (i, j, t) and all
three indices are randomized as in Random but with the con-
straint that each node appears in the same number of temporal
edges as in the original network. Preserved quantities: nodes
weighted degree.

Synthetic models
Wehere provide a formal definition of themodels used to generate the
synthetic graphs under analysis. Even though we considered four
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models, three of these can be generated from the degree-corrected
stochastic block model64 by changing its parameters.

Definition 3. (Degree-corrected stochastic blockmodel) Let V be a set
of n nodes and ℓ ∈ [k]n be a vector mapping each node to a class.
Further, let C 2 Rk × k be a positive symmetric matrix and θ 2 Rn be a
vector satisfying θT1n = n. The entries of the graph adjacency matrix
A∈ [0, 1]n×n are generated independently (up to symmetry) at random
with probability

PðAij = 1Þ= min 1, θiθj

C‘i , ‘j

n

 !
: ð13Þ

The vector ℓ contains the labels and gives a community structure
in the case in which Ca,a > Ca,b for b ≠ a, meaning that there is a higher
probability that two nodes in the same community will get con-
nected. The value θi is proportional to the expected degree of node i.
For this reason, if one chooses θ = 1n and ℓ = 1n, one gets the Erdős-
Renyimodel, in which every node has the same expected degree, and
there are no communities. The configuration model, instead, is
obtained by letting ℓ = 1n, but changing the value of θ to create an
arbitrary degree distribution that we choose to be a (properly
rescaled) uniform distribution between 3 and 10 raised to the power
4. Finally, the stochastic block model is obtained from a labeling
vector different from 1n and letting θ = 1n. We consider k = 5 com-
munities of equal size with Ca,b = 20δab + (1 − δab), with δ the Kroe-
neker symbol.

Let us finally introduce the random geometric model.

Definition 4. (Randomgeometricmodel) Let V be a set of n nodes. For
each i 2 V letxi 2 R2 be a randomvectorwith norm ∥xi∥≤1. The entries
of thegraphadjacencymatrixA∈ [0, 1]n×n aregenerated independently
(up to symmetry) at random with probability

PðAij = 1Þ= e�βkxi�xjk , ð14Þ

for some positive β.
Note that even though the entries of A are drawn at random, this

model can generate graphs with a high clustering coefficient because
the probability depends on the relative distance between fixed
embedding vectors. In our simulations, we set β = 20.

Data availability
All data used in this article are publicly available at http://www.
sociopatterns.org/datasets/ and at ref. 44.

Code availability
Commented Python code to reproduce our results is available at
ref. 44.
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