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A B S T R A C T

Individuals’ perceptions of disease influence their adherence to preventive measures, shaping the dynamics
of disease spread. Despite extensive research on the interaction between disease spread, human behaviors,
and interventions, few models have incorporated real-world behavioral data on disease perception, limiting
their applicability. In this study, we propose an approach to integrate survey data on contact patterns and
disease perception into a data-driven compartmental model, by hypothesizing that perceived severity is a
determinant of behavioral change. We explore scenarios involving a competition between a COVID-19 wave
and a vaccination campaign, where individuals’ behaviors vary based on their perceived severity of the disease.
Results indicate that behavioral heterogeneities influenced by perceived severity affect epidemic dynamics,
in a way depending on the interplay between two contrasting effects. On the one hand, longer adherence
to protective measures by groups with high perceived severity provides greater protection to vulnerable
individuals, while premature relaxation of behaviors by low perceived severity groups facilitates virus spread.
Differences in behavior across different population groups may impact strongly the epidemiological curves,
with a transition from a scenario with two successive epidemic peaks to one with only one (higher) peak
and overall more numerous severe outcomes and deaths. The specific modeling choices for how perceived
severity modulates behavior parameters do not strongly impact the model’s outcomes. Moreover, the study
of several simplified models indicate that the observed phenomenology depends on the combination of data
describing age-stratified contact patterns and of the feedback loop between disease perception and behavior,
while it is robust with respect to the lack of precise information on the distribution of perceived severity in
the population. Sensitivity analyses confirm the robustness of our findings, emphasizing the consistent impact
of behavioral heterogeneities across various scenarios. Our study underscores the importance of integrating
risk perception into infectious disease transmission models and gives hints on the type of data that further
extensive data collection should target to enhance model accuracy and relevance.
1. Introduction

The propagation patterns of infectious diseases are shaped by hu-
man interactions, movements, and individual conduct. Reciprocally,
the dynamic unfolding of contagious illnesses can impact human behav-
ior [1–3]. Therefore, the interplay between disease spreading, human
behaviors, and interventions, both pharmaceutical and
non-pharmaceutical, has been largely studied in literature during the
last twenty years (for reviews see [3–5]). Several works have in-
tegrated these different elements in various mathematical modeling
frameworks, to gain quantitative insights and provide predictions and
projections. Nonetheless, most of these models were limited to theoreti-
cal investigations and were not informed by representative, real-world,
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timely data on the behavioral aspects, largely due to the lack of
availability of such data. This situation has however evolved since
the emergence of SARS-CoV-2 and the resulting COVID-19 pandemic,
which stimulated important data collection efforts to better inform
models and gain insights into the spread of SARS-CoV-2 at various
scales [6–10]. In particular, numerous studies have focused during this
pandemic on evaluating the effectiveness of Non-Pharmaceutical Inter-
ventions (NPIs) and government-imposed restrictions to mitigate the
contagion [11–15], as well as on assessing the benefits of vaccination
campaigns [16–18].

In the current post-pandemic period, however, top-down emergency
measures have been discontinued, and the responsibility for adopting
https://doi.org/10.1016/j.mbs.2024.109337
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protective measures is left to individuals. Possible protective mea-
sures encompass both aspects of each individual’s social life, such
as reducing social gatherings, and hygiene- or health-related prac-
tices, including mask-wearing and vaccination decisions [19]. Disease
perception, i.e., the way individuals perceive how the disease might
mpact them, plays an important role in the adoption of such pro-
ective behaviors as evidenced by numerous studies and taken into
ccount in psychological models (e.g. Health Belief Model) [20–22].

For instance, individuals who perceive a higher risk are more likely
to adopt recommended hygiene and avoidance behaviors [23], and
his relationship strengthens throughout an epidemic [24]. However,

and despite the vast literature that proves its influence on behavioral
aspects [23–27], risk perception has rarely been included in data-driven
modeling frameworks in particular for lack of data. Consequently, the
collection of data on disease perception and social contacts during
he pandemic presents an interesting opportunity to investigate the
mpact of risk-perception-driven behaviors and behavioral changes on
he propagation of a disease in a population.

In this paper, we propose to leverage data collected during the pan-
emic to build a partially data-driven mathematical modeling frame-
ork and investigate the complex relationship between self-adopted
rotective behaviors, disease spreading, and risk perception. Even if
vailable data remains limited in scope and generalizability, they have
een collected with the goal of informing models about realistic behav-
ors that people adopt during public health crisis. Our framework is an
ttempt at using such survey data when possible, still relying on several
odeling choices on how disease perception may impact behavioral

hanges. The scenario we envision presents a competition between an
ngoing wave of COVID-19 and a vaccination campaign. We however
onsider a context similar to the current post-pandemic period where
op-down emergency measures are absent, and individuals are respon-
ible for their protection. In this context, we develop a deterministic
ompartmental model that incorporates a feedback loop between be-
aviors, vaccines, and the contagion process and that includes risk
erception as a key determinant of the adoption or relaxation of
ndividual protective behaviors.

We build the data-driven aspect of the model using the quantitative
insights into both the contact patterns of individuals and their disease
erception obtained from the CoMix survey [7], in the following way.
n the one hand, we model different levels of compliance with pro-

ective behaviors by two different contact matrices giving the average
number of contacts between individuals of different age groups. On
the other hand, we stratify the population according not only to age
classes but also to how individuals perceive whether the disease poses
a threat to them. Specifically, we classify individuals according to
their ‘‘perceived severity’’, i.e., on their belief of the seriousness of
the disease if they were to catch it. Perceived severity has indeed
been found to be one of the most important factors impacting self-
initiated behavioral changes in the context of the recent COVID-19
pandemic [23,24,28–32], including a strong association with a reduc-
tion in the number of contacts [33]. To fully define the model, we
make some assumptions for the specific mathematical expression of the
individual perceived severity dynamics. In particular, we hypothesize
hat the adoption and the relaxation of protective behaviors depend on
bjective indicators, given respectively by the burden of the epidemic
n the hospitals and by the fraction of vaccinated individuals in the
opulation, and can also be influenced by perceived severity. We can

thus investigate within such a framework whether taking into account
the population differences in perceived severity leads to differences
in the epidemic dynamics and the propagation outcome in terms of
various metrics such as the overall death rate and ICU peak height and
date. Moreover, we consider several possible methods of informing the
model’s parameters by the perceived severity of individuals and explore
whether they impact the model’s outcome. We explore several scenarios
encompassing distinct behavioral and epidemiological conditions to
validate the robustness of our findings.
 t

2 
Results reveal that introducing differences in behavioral change
parameters based on perceived severity produces differences in the
timing of the epidemic curves, with an earlier peak of infections if
compared to the scenario where the entirety of the population behaves
in the same way. This has a crucial consequence on a model’s predicted
outcome as, in a progressively vaccinated population, an early peak of
infections leads to a higher number of deaths. We also find that, within
our framework, the precise way of modeling how the perceived severity
modulates the parameters ruling the adoption and relaxation of behav-
iors does not strongly impact the model’s phenomenology and outcome.
As our modeling framework relies on data that might be difficult to
collect in large populations and also subject to changes depending on
the precise design of the survey (e.g., precise phrasing or ordering of the
questions) [34], we consider several simpler models to investigate the
impact of the various assumptions and data in the rich phenomenology
exhibited by the model. We find in particular that, while information
on age-stratified contact patterns plays an important role, it is possible
to rely on imprecise data when building the distributions of perceived
severity and describing their interplay with age groups.

These results have direct public health implications: on the one
hand, they highlight a certain robustness with respect to some unavoid-
able arbitrariness in modeling choices and with respect to fluctuations
in the data on disease perception. On the other hand, they emphasize
the need to gather more extensive data on how the perception of risks
correlates with behavioral change in various populations and possi-
bly different epidemiological contexts, to build data-informed models
taking into account risk perception.

2. Materials and methods

2.1. Data

We leverage data collected during the pandemic period, namely
through the CoMix survey [7,33] initiative, to (i) generate age-stratified
ontact matrices corresponding to different levels of compliance with
espect to self-adopted protective measures and (ii) additionally stratify
he population according to the perception of individuals of the risk
osed by the disease. The CoMix study developed a longitudinal survey
pproach for the collection of data aiming at a better comprehension of
he behaviors of individuals throughout the COVID-19 pandemic. The
urveys, administered every two weeks, captured the evolving aware-
ess, attitudes, and behaviors of participants in response to COVID-19,
ogether with comprehensive information on age, gender, occupation,
hysical contacts, COVID-19 testing, and self-isolation. It was launched
nitially in March 2020 in Belgium, the Netherlands, and the United
ingdom, and further expanded its reach to an additional 17 European
ountries.

We focused our study on the case of Italy where, during the winter
between 2020 and 2021, the government implemented a tiered re-
gional system of restrictive measures, with progressively stricter tiers

 yellow, orange, and red zones [35]. We use the contact patterns
measured in the red zones as a proxy for contacts among individuals
adopting highly restrictive protective measures, while contact matrices
measured among individuals living in areas where the yellow zone
restrictions were implemented represent a situation where individuals
adopted less restrictive measures and have a higher number of contacts
with respect to what happens in the red zones. We first stratify the
population into seven age groups (0–4, 5–17, 18–29, 30–39, 40–49,
50–59, and 60+), using data about the population distribution in Italy
across the various age groups from the 2019 United Nations World
Population Prospects [36]. We then use the data from the CoMix survey
for Italy to generate two contact matrices: the one resulting from data
ollected in the red zone is used in the model to reflect the contacts
f individuals who adopt protective behaviors (named in the rest of
he paper as ‘‘compliant’’ individuals), while we use the one built from
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the yellow zone data to describe the contacts of what we call ‘‘non-
ompliant’’ individuals (see [37] for more detailed information on the

specific top-down restrictions imposed by health authorities during the
data collection).

In addition to questions related to their contacts (e.g. total number,
frequency, location, etc. — see [37] for detailed information on the
ontact surveys), participants over 18 years old answered questions
elated to their risk perception. Concerning perceived severity, par-
icipants were asked to indicate their agreement with the statement
‘Coronavirus would be a serious illness for me’’ using a 5-point Likert
cale ranging from strongly disagree to strongly agree. This information
llowed us to further stratify the population in each age group into 5
pecific perceived severity subgroups based on participants’ responses

(denoted by 1 for low perceived severity, i.e. for the ‘‘strongly dis-
agree’’ answer to 5 for the ‘‘strongly agree’’ denoting a high perceived
everity) [7,33]. For individuals who have participated in more than
ne wave of data collection, we averaged the scores of their perceived
everity responses across waves and we assigned them to the closest

of the 5 groups. In this way, we assumed that the perceived severity
of individuals remains the same over time. For individuals under 18,
iven the absence of direct data on perceived severity, we assumed
hat their perceptions were predominantly shaped by their parents.
hus, we categorized age groups 0–4 and 5–17 into subgroups based
n the perceived severity responses provided by individuals of parental
ge (20 to 50 years old). This decision is supported by [38], in which

an analysis conducted on adolescents between 13 and 20 years old in
taly during the lockdown evidenced a distribution of perceived severity

among them similar to the one we obtained aggregating the data of
individuals aged 20 to 50.

Having stratified individuals within each of the 7 age groups into 5
erceived severity groups, we obtain an overall population divided into
5 subgroups. While the survey data gives, for each reported contact,
he age groups of both the reporting participant and the individual with
hom the contact took place, this is not the case for the perceived

everity (only the one of the reporting participant is known). We thus
ssume that, for a contact with an individual in a given age group 𝑖,
he probability that this individual has a certain perceived severity 𝑝
s simply given by the fraction 𝑁𝑖𝑝∕𝑁𝑖 of such individuals in their age
roup 𝑖 (where 𝑁𝑔 indicates the number of individuals in group 𝑔). We
hus build 35 × 35 contact matrices by multiplying each element of the
ge-stratified contact matrices by the fraction of the population in each
erceived severity group. To this aim, we first consider the total number
f contacts 𝑐𝑖𝑖′ between individuals in age group 𝑖 and age group 𝑖′ and
efine 𝑚𝑖𝑝𝑖′𝑝′ as the total number of contacts of individuals in age group
and perceived severity 𝑝 with individuals in age group 𝑖′ and perceived
everity group 𝑝′. Both these matrices are symmetrical and, given the
bove assumption, we have:

𝑚𝑖𝑝𝑖′𝑝′ = 𝑐𝑖𝑖′ ∗
𝑁𝑖𝑝

𝑁𝑖
∗
𝑁𝑖′𝑝′

𝑁𝑖′
.

To feed the model, we need, instead of 𝑚, the contact matrix which
ives the number of contacts per person in the age group 𝑖 and per-
eived severity group 𝑝 with individuals of age group 𝑖′ and perceived
everity 𝑝′, i.e., 𝑀𝑖𝑝𝑖′𝑝′ =

𝑚𝑖𝑝𝑖′𝑝′

𝑁𝑖𝑝
. By substituting and using the analogous

formula linking the age-stratified contact matrix 𝐶 with the numbers of
contacts between age groups 𝑐, i.e., 𝐶𝑖𝑖′ =

𝑐𝑖𝑖′
𝑁𝑖

, we obtain:

𝑀𝑖𝑝𝑖′𝑝′ = 𝐶𝑖𝑖′ ∗
𝑁𝑖′𝑝′

𝑁𝑖′
. (1)

Note that 𝑀 , just as the usual contact matrix 𝐶, is not symmetrical as
it gives a number of contacts per participant. Due to the hypothesis
made in its construction, it also depends linearly on the number of
ndividuals in the perceived severity group 𝑝′ and age group 𝑖′, but not

on the perceived severity of the contacting individual.
We finally note that the CoMix survey participants also expressed

their perceived susceptibility and risk with the following two state-
ments: ‘‘I am likely to catch coronavirus’’ and ‘‘I am worried that I
 f

3 
might spread coronavirus to someone who is vulnerable’’. However,
e did not include these variables in the analysis because their asso-

iation with the number of contacts, in the context of the COVID-19
mergency, was found to be less relevant in [33].

2.2. Model definition

We consider a deterministic compartmental model similar to the
one used in [17], to describe the propagation of SARS-CoV-2 in a
population stratified by age and perceived severity of the disease (7
age classes and 5 perceived severity classes). The model incorporates on
the one hand a vaccination process and on the other hand a behavioral
component. The latter describes the possibility of modifying one’s
contact patterns depending on the unfolding of the epidemic and it
is modulated by a data-informed perceived severity attribute. Fig. 1
presents a diagrammatic sketch of the model, which we now describe
in detail. A more in-depth explanation of the scenario explored and the
ources of the parameters are reported in Section 2.3. We moreover

report in the Supplementary Material the full set of evolution equations
describing the model.

2.2.1. Compartmental model
Each individual can transition from one compartment to the other

depending on their status with respect to the disease, their vaccination
status, and their current behavior.

Susceptible individuals (𝑆 compartment) in contact with infectious
ndividuals can be infected and transition into the latent (𝐿 compart-
ent). They then enter the pre-symptomatic (𝑃 ) stage of the infection
ith a constant rate 𝜖. They leave the pre-symptomatic stage at a

onstant rate 𝜔, reaching either the asymptomatic compartment 𝐴 with
ge-dependent probability 𝑓 , or the symptomatic infectious compart-
ent 𝐼 (with probability 1 − 𝑓 ). Asymptomatic individuals recover at

ate 𝜇, entering the recovered compartment 𝑅. Symptomatic infectious
ndividuals can either recover, be hospitalized in the Intensive Care

Unit (𝐼 𝐶 𝑈 compartment), or die (𝐷 compartment), with rate 𝜇 in all
cases. The respective probabilities are determined, as described in de-
tail in the Supplementary Material, by the three following age-stratified
parameters: the Infection ICU Ratio (𝐼 𝐼 𝐶 𝑈 𝑅) the Infection Fatality
Rate (𝐼 𝐹 𝑅), and the Probability of deaths among ICU (𝑃 𝐼 𝐶 𝑈 𝐷).
Finally, individuals leave the 𝐼 𝐶 𝑈 compartment at rate 1∕𝛥, where 𝛥
represents the mean number of days of hospitalization. They then either
die with probability 𝑃 𝐼 𝐶 𝑈 𝐷 or recover with probability 1 − 𝑃 𝐼 𝐶 𝑈 𝐷.

The force of infection resulting from contacts between susceptible
and symptomatic infectious individuals (compartment 𝐼) is determined
by an age- and perceived severity-stratified ‘‘compliant’’ contact matrix
(corresponding to Italy’s red zones) 𝑀𝐶 , whose elements 𝑀𝐶

𝑖𝑗 𝑖′𝑗′ repre-
sent the average number of contacts that an individual in age group 𝑖
and perceived severity group 𝑗 has with individuals in age group 𝑖′ and
perceived severity group 𝑗′ per day, and multiplied by a transmission
rate 𝛽. The transmission rate from pre-symptomatic and asymptomatic
individuals is reduced by a factor 𝜒 < 1.

We moreover model a vaccination process as follows: each day, a
fraction of the susceptible population receives a vaccine and transitions
to the 𝑉 compartment. The rollout rate 𝑟𝑉 represents the number of
daily available doses expressed as a percentage of the total population.

s in previous works [39,40], we assume the vaccine can reduce sus-
eptibility with efficacy 𝑉 𝐸𝑆 , the probability of developing symptoms
ith efficacy 𝑉 𝐸𝑆 𝑦𝑚𝑝, and severe symptoms leading to death with effi-

acy 𝑉 𝐸𝐷. In practice in the model, this means that the infection rate
or individuals in the 𝑉 compartment is reduced by a factor (1 −𝑉 𝐸𝑆 ),
he probability 1 −𝑓 of becoming infected 𝐼 instead of asymptomatic 𝐴
s reduced by a factor (1 −𝑉 𝐸𝑆 𝑦𝑚𝑝), and the probability of transitioning
rom 𝐼𝑉 to the 𝐼 𝐶 𝑈 compartment and the 𝐼 𝐹 𝑅 are both reduced by a
actor (1 −𝑉 𝐸𝐷). The overall efficacy of the vaccine is expressed by the
ollowing formula 𝑉 𝐸 = 1 − (1 − 𝑉 𝐸 )(1 − 𝑉 𝐸 )(1 − 𝑉 𝐸 ).
𝑆 𝑆 𝑦𝑚𝑝 𝐷
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Fig. 1. Model diagram. The model is an extension of a standard SLIR (Susceptible-Latent-Infected-Recovered) with the addition of individuals who are pre-symptomatic (𝑃 ) and
asymptomatic (𝐴) and also individuals in Intensive Care Units (𝐼 𝐶 𝑈), and individuals who die (𝐷). Furthermore, we introduced an additional series of compartments for vaccinated
individuals (𝑉 , 𝐿𝑉 , 𝑃 𝑉 , 𝐼𝑉 ) and two compartments (𝑆𝑁 𝐶 and 𝑉 𝑁 𝐶 ) for individuals that relax their protective behaviors. Those individuals have a higher risk of infection, modeled
using a contact matrix 𝑀𝑁 𝐶 with a greater number of contacts than the one used for compliant compartments (𝑆 and 𝑉 ), 𝑀𝐶 . Both matrices 𝑀𝐶 and 𝑀𝑁 𝐶 capture contact
patterns of the winter period 2020–2021 in Italy, for regions with, respectively, high and small stringent restrictions.
2.2.2. Coupling disease dynamics, behavior and vaccination
We assume that individuals, during the epidemic, can change be-

havior. Specifically, there is a possibility that individuals, both suscep-
tible (𝑆) and vaccinated (𝑉 ), may abandon safe behaviors and expose
themselves to higher risks of infection. To incorporate this behavioral
change, we introduce two additional compartments, 𝑆𝑁 𝐶 and 𝑉 𝑁 𝐶 ,
where 𝑁 𝐶 stands for non-compliant individuals. We thus assume that
these non-compliant individuals have contacts described by Italy’s yel-
low zone contact matrix 𝑀𝑁 𝐶 (thus with more contacts than for the
𝑆 and 𝑉 compartments and consequently a higher probability of being
infected). For the convenience of notation, we will hereafter denote by
𝐶 the union of the compliant compartments 𝑆 and 𝑉 , and by 𝑁 𝐶 the
non-compliant compartments 𝑆𝑁 𝐶 and 𝑉 𝑁 𝐶 .

Our model’s crucial hypothesis concerns the interplay between be-
havioral change, vaccination, and the unfolding of the disease spread,
which determines the transitions between compliant and non-compliant
compartments. We first assume that the transition rate from 𝐶 to 𝑁 𝐶,
𝜆𝑋−>𝑋𝑁 𝐶 (𝑋 = 𝑆 or = 𝑉 ) describing the relaxation of protective
behavior, increases with the fraction of vaccinated people 𝑣𝑡 in the
population. This expresses the idea that individuals may consider that
the threat posed by the disease is lower if more people are vaccinated.
Second, we assume on the other hand that the transition rate from
𝑁 𝐶 to 𝐶, 𝜆𝑋𝑁 𝐶−>𝑋 (𝑋 = 𝑆 or = 𝑉 ), depends on the occupancy
of beds in intensive care 𝐼 𝐶 𝑈𝑡, taken as a quantitative indicator of
the overall seriousness of the spread. Finally, to incorporate all the
aforementioned variables, we model both transition rates using logistic
functions, described each by two parameters: a slope (𝛼 for the 𝐶 to
𝑁 𝐶 transition and 𝛾 for the 𝑁 𝐶 to 𝐶 one) and a midpoint (𝑎0 for the
𝐶 to 𝑁 𝐶 transition and 𝑏0 for the 𝑁 𝐶 to 𝐶 one). The expressions of
these rates are as follows (for 𝑋 = 𝑆 and 𝑋 = 𝑉 ):

𝜆𝑋−>𝑋𝑁 𝐶 = 1
1 + exp−𝛼(𝑣𝑡−𝑎0)

𝜆𝑋𝑁 𝐶−>𝑋 = 1

1 + exp−𝛾
(

𝐼 𝐶 𝑈𝑡
𝐼 𝐶 𝑈𝑚𝑎𝑥 −𝑏0

)

(2)

The choice of the logistic function is supported by several studies across
different fields, which show that social contagion and the adoption of
new behaviors, technologies, or social learning processes is well de-
scribed by an S-shape curve [41–43]. Furthermore, compared to other
accelerating diffusion curves (such as the exponential), the logistic
function offers several theoretical advantages. Firstly, the presence of
4 
two parameters instead of one allows for better control over the shape
of the transition. Secondly, the two parameters are easier to interpret.
Thirdly, the logistic functions give non-zero rates of transitions between
the compliant and non-compliant compartments even at the beginning
of the simulations before the start of the vaccination campaign, so
that a fraction of non compliant individuals is included from the start
in a more realistic way. Fig. 2 shows the functional dependence of
𝜆𝑋−>𝑋𝑁 𝐶 with the fraction of vaccinated individuals and illustrates
how the functional shape depends on the slope 𝛼 and the midpoint 𝑎0.
Similar plots and considerations stand for the rate 𝜆𝑋𝑁 𝐶−>𝑋 as 𝛾 and 𝑏0
vary. The way these parameters alter the transition’s shape makes them
suitable for variation across different population groups, enabling the
introduction of behavioral differences, as we will discuss next.

2.2.3. Modulating behavioral change by risk perception
The final element of our model is the introduction of disease per-

ception as a determinant of behavioral change. In particular, as shown
in literature [33,44,45], individuals with high perceived severity have
a smaller number of contacts, which in our framework corresponds to
compliant behavior. For this reason, we assume that the midpoints 𝑎0
and 𝑏0 of the logistic functions of Eq. (2), giving the transition rates
between compliant and non-compliant compartments, depend on the
perceived severity. We instead fix for simplicity the values of the slopes
𝛼 and 𝛾.

As individuals with higher perceived severity should be more re-
luctant to relax their behavior and/or more prone to adopt protective
measures (with thus fewer contacts), we assume that the midpoint 𝑎0
is an increasing function of perceived severity (= 1,… , 5), while 𝑏0 is
instead a decreasing function. How 𝑎0 and 𝑏0 precisely depend on the
perceived severity represents however an a priori arbitrary modeling
choice. Here we explore several possible choices for these variables,
to explore the impacts different regimes might have on the overall
unfolding of the epidemic. We thus consider five possible different
functional forms for the relationship between midpoints and perceived
severity, sketched in Fig. 3 (note that we assume for simplicity that the
midpoints do not depend directly on the age group, but only through
possible correlations between age and perceived severity). By going
from perceived severity 1 to perceived severity 5, these functions all
have a part displaying a linear growth, and either one or two flat parts,
i.e., groups with neighboring values of perceived severity sharing the
same midpoint value. For simplicity, in the remainder of the study
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Fig. 2. Rate of transition from compliant to non-compliant compartments as a function of the fraction of vaccinated population for several values of (A) the slope 𝛼 with a fixed
midpoint of 𝑎0 = 0.5, and (B) the midpoint 𝑎0 with a fixed slope of 𝛼 = 10.
we denote those functions by the following names, which describe the
location of the linear growth part: Growth, Center Growth, Start End
Growth, Start Growth, and End Growth. Naming 𝑎0𝑗 the value of 𝑎0 for
the perceived severity group 𝑗 (𝑗 = 1 to 5), we have:

• Growth: linear growth of the midpoint for all five perceived
severity groups 𝑎0𝑗 = 𝑚𝑗 + 𝑞

• Central Growth: linear growth for the three central perceived
severity groups and the same value of the parameters for the
two lowest perceived severity groups and for the two highest
𝑎0𝑗 = 𝑚𝑗 + 𝑞 for 𝑖=2, 3, 4, with 𝑎01 = 𝑎02 and 𝑎04 = 𝑎05 .

• Start End Growth: linear growth for the two lowest perceived
severity groups and for the two highest and the same value of
the parameters for the three central perceived severity groups
𝑎0𝑗 = 𝑚𝑗 + 𝑞 for 𝑖 = 1, 2 and for 𝑖 = 4,5, with 𝑎02 = 𝑎03 = 𝑎04 .

• Start Growth: linear growth for the three lowest perceived sever-
ity groups and the same value of the parameters for the others
𝑎0𝑗 = 𝑚𝑗 + 𝑞 for 𝑖 = 1,2,3, with 𝑎03 = 𝑎04 = 𝑎05 .

• End Growth: linear growth for the three highest perceived sever-
ity groups and the same value of the parameters for the others
𝑎0𝑗 = 𝑚𝑗 + 𝑞 for 𝑖 = 3,4,5, with 𝑎01 = 𝑎02 = 𝑎03 .

In all cases, the average of the individual midpoints in the population
is given by 𝑎0 =

∑5
𝑖=1 𝑛𝑖𝑎0𝑖
∑5

𝑖=1 𝑛𝑖
, where each value 𝑎0𝑖 of the midpoint is

weighted by the population having that value, i.e., by the population 𝑛𝑖
of individuals with perceived severity 𝑖. If behaviors are not dependent
on perceived severity (flat functions, 𝑚 = 0), then the midpoint takes
the value 𝑎0 for all groups. Else, different groups can have differ-
ent midpoints. A natural way to quantify the corresponding variation
among groups is then given by the weighted variance of the midpoints,
𝜎2𝑎0 =

∑5
𝑖=1 𝑛𝑖(𝑎0𝑖−𝑎0)

2

∑5
𝑖=1 𝑛𝑖

, where again each deviation from the average is
weighted by the size (population) of the corresponding group. We show
in the Supplementary material how to express the slope 𝑚 and the
intercept 𝑞 of each function as a function of the weighted mean 𝑎0
and of the weighted variance 𝜎2𝑎0 of the midpoints. Similar calculations
apply for the parameter 𝑏 with the only difference that the midpoint
0

5 
decreases with perceived severity and, thus, the slopes 𝑚 take negative
values. Hence, the equivalent functions used for 𝑏0 are denoted as:
Decrease, Center Decrease, Start End Decrease, Start Decrease, and
End Decrease. Note that the parameters are independent of age and
we consider that each individual keeps the same perceived severity
over time. In this way, by fixing the mean value of the midpoint
(𝑎0 or 𝑏0) and by changing the variance (𝜎2𝑎0 or 𝜎2𝑏0 ), we can model
how differences in perceived severity lead to differences in behavioral
changes, as determined by the transition rates between compliant and
non-compliant compartments. Fig. 3 gives a concrete example of this
framework. With a fixed mean value of the midpoint 𝑎0, if the variance
𝜎2𝑎0 is equal to 0, every perceived severity group has the same midpoint,
independently from the function used (dashed line). However, if we
increase the variance (i.e. 𝜎2𝑎0 = 0.05 in the figure), different perceived
severity groups have different midpoints, leading to different transition
rates at a fixed fraction of vaccinated people. Moreover, these transition
rates depend on the specific function considered in the model. Note that
some values of the midpoints can be negative or larger than 1, resulting
in the population in that group being almost entirely non-compliant or
compliant for the whole simulation, as their transition rate to the non-
compliant compartment is then either always very high or always very
small.

Fig. 3 focuses on the transition from the compliant to the non-
compliant compartments, but similar sketches can be drawn for the de-
pendence of 𝑏0 with perceived severity, albeit with decreasing shapes.
We will focus in the main text on the impact of dependence of 𝑎0 on
the perceived severity, varying the mean value of the midpoint 𝑎0 and
the variance 𝜎2𝑎0 , at fixed values of the slopes 𝛼 = 10 and 𝛾 = 5, and
considering the case of 𝑏0 = 0.75 with 𝜎2𝑏0 = 0 (i.e., no dependence
on perceived severity for the transition rate to the compliant com-
partments). In the Supplementary Material, we perform a sensitivity
analysis by varying 𝛼, 𝛾, and 𝑏0, and consider as well the case of 𝑏0
depending on the perceived severity.

Finally, in our framework, perceived severity only affects how peo-
ple behave. Indeed, the perceived severity of a disease by an individual
is not linked to the actual severity if the individual becomes infected, so
severe outcomes do not depend on perceived severity. However, there
may be a spurious correlation, with frail individuals perceiving higher



A. De Gaetano et al. Mathematical Biosciences 378 (2024) 109337 
Fig. 3. Left column: Sketch of the 5 functions used to model the dependency of the midpoint from perceived severity. From top to bottom, Growth, Central Growth, Start End
Growth, Start Growth, End Growth. The horizontal dashed lines give the average 𝑎0 = 0.6. Right column: logistic curves as a function of the fraction of vaccinated individuals, for
the various midpoints obtained with a fixed average 𝑎0 = 0.6 and either variance 0 (dashed line, in which case all midpoints are equal to the average) or variance 𝜎2

𝑎0
= 0.05.
severity and having a higher risk of severe outcomes; this is partly
accounted for by associating severe outcomes with age, where elderly
individuals generally have a higher perceived severity.

2.3. Model parameters and scenario

Epidemiological parameters. We consider a scenario inspired by the
one unfolding in Italy starting in mid-2021, as this corresponded to
the deployment of the vaccination campaign against SARS-CoV-2. We
therefore use epidemiological parameters matching the characteristics
of the Delta variant, which was the dominant one in Italy at that
time. In particular, the parameters 𝜖, 𝜔 and 𝜇 are taken from the
literature [46–50].

The fraction of asymptomatic individuals is age-dependent and
taken from [51], where we grouped the asymptomatic and pauci-
symptomatic individuals, given that the latter show no clear signs
allowing us to identify their disease. Individuals in pre-symptomatic
and asymptomatic compartments have lower infectiousness (with re-
spect to the symptomatic ones), quantified by the parameter 𝜒 , which
6 
we take from [52], in line with the value used in other models such
as [17,53].

We tune 𝛽 to obtain a value of 𝑅0 between 1 and 2.5 in all cases.
Indeed, even if the value of 𝑅0 for COVID-19 has reached larger
values during the pandemic, in particular during the first wave of
2020 [51,54,55], we limited our investigation to such values to include
the impact of the restrictions adopted to mitigate the spread directly
into 𝑅0 in an effective way.

We provide in the Supplementary material the detailed computation
of the formula yielding the model’s basic reproduction number 𝑅0,
which we report here for convenience:

𝑅0 = 𝛽
(

𝜒
𝜔

+
1 − 𝑓
𝜇

+
𝜒 𝑓
𝜇

)

𝜌(𝑀𝐶 +𝑀𝑁 𝐶 ) , (3)

where 𝜌 is the spectral radius and 𝑀𝐶
𝑖𝑖′𝑗 𝑗′ =

𝜙𝑗
1+𝜙𝑗

𝑁𝑖𝑗
𝑁𝑖′𝑗′

𝑀𝐶
𝑖𝑖′𝑗 𝑗′ and 𝑀𝑁 𝐶

𝑖𝑖′𝑗 𝑗′ =
1

1+𝜙𝑗

𝑁𝑖𝑗
𝑁𝑖′𝑗′

𝑀𝑁 𝐶
𝑖𝑖′𝑗 𝑗′ are the two contact matrices weighted by the rela-

tive population in different age and perceived severity groups. These
matrices also take into account that the initial fraction of compliant
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Table 1
Parameters of the model, with their corresponding values and sources of the literature.
Parameters Symbols Value Source

Epidemiological
Transmission rate 𝛽 0.08 [51,54,55]
Inverse of the latent period 𝜖 0.25 days−1 [46–48]
Inverse of the
presymptomatic period

𝜔 0.56 days−1 [46] [47,48]

Inverse of recovery period 𝜇 0.2 days−1 [49,50]
Mean occupancy of ICU bed 𝛥 15 days [56]
Reduced infectiousness of 𝑃 and 𝐴 𝜒 0.55 [52]
Fraction of asymptomatic
individuals

f age-stratified [51]

Reproductive number 𝑅0 Computed from 𝛽 and 𝜇 /
Infection fatality ratio IFR age-stratified [57]
Infection ICU ratio IICUR age-stratified [58]
Probability of death among ICU PICUD age-stratified [59]
Available number of ICU beds 𝐼 𝐶 𝑈𝑚𝑎𝑥 7,200 [60]
Initial number of individuals distributed
in the infected compartments

𝑖0 550,000 [61,62]

Initial number of individuals
in ICU compartments

𝑖𝑐 𝑢0 2,500 [61,62]

Initial fraction of people in
R and D compartments

𝑟0 , 𝑑0 0.1, 0 [61,63,64]

Vaccination
Rate of vaccination 𝑟𝑉 0.025 [61]
Vaccination strategy / Reverse order of age [39,65,66]
Vaccine efficacy against infection 𝑉 𝐸𝑆 0.7 [67–69]
Vaccine efficacy against symptoms 𝑉 𝐸𝑆 𝑦𝑚𝑝 0.5 [67–69]
Vaccine efficacy against
severe outcomes

𝑉 𝐸𝐷 0.4 [67–69]

Behavioral
Slope of logistic rate 𝐶 → 𝑁 𝐶 𝛼 10 [70]
Slope of logistic rate 𝑁 𝐶 → 𝐶 𝛾 5 [70]
Midpoint of logistic rate 𝐶 → 𝑁 𝐶 𝑎0 Variable

Perceived severity stratified
/

Midpoint of logistic rate 𝑁 𝐶 → 𝐶 𝑏0 Variable
Perceived severity stratified

/

b
f
s
o
2
i
h

individuals at the simulation’s outset, denoted by the term 𝜙𝑗 , is not
necessarily 1.

While 𝜖, 𝜔, 𝜇, and 𝜒 are fixed, the fraction of asymptomatic in-
ividuals 𝑓 depends on age and we obtain a different value of 𝑅0
or each age group. Moreover, the term 𝜙𝑗 depends on the behavioral
arameters (𝛼, 𝛾, 𝑎0, 𝑏0, 𝜎2𝑎0 , and 𝜎2𝑏0 ), which thus also impact the value

of 𝑅0. We refer to the Supplementary Material for more details.
We estimate for the average hospitalization period in ICU 𝛥 a value

f 15 days, based on data from the Centers for Disease Control and
revention [56]. Indeed, for COVID-19 deaths, there was an average

interval of approximately two to three weeks between the onset of
symptoms and the occurrence of death.

The Infection Fatality Rate (𝐼 𝐹 𝑅) is age-dependent and we used the
values reported in [57]. The Infection ICU Ratio (𝐼 𝐼 𝐶 𝑈 𝑅) is obtained
rom [58] by multiplying the probability of hospitalization if infected

and the probability of ICU if hospitalized, which are reported for each
age group. On the other hand, for the Probability of Deaths among ICU
(𝑃 𝐼 𝐶 𝑈 𝐷), which is also age-stratified, we used data from [59]. Finally,
he maximum number of beds in ICU changed notably during the early
hase of the pandemic in Italy, going from an initial value of around

5000 to over 8000 in the Spring of 2021. We chose to use 7200, an
estimate of the number of beds in intensive care in Italy at the end of
2020 [60].

The parameter values and the corresponding literature sources are
reported in Table 1.

Initial conditions. We consider a scenario in which the vaccination
campaign starts as the virus has already been able to spread among
he population. In the COVID-19 pandemic indeed, the beginning of
he spread can be set approximately in February 2020 but the vaccines
ecame available at the end of December 2020. This is also in line
ith any scenario of a newly emerging virus for which vaccines are
ot immediately available. We thus do not initialize the model with all
7 
individuals in the 𝑆 compartment, but instead, we distribute a fraction
of the population in the various infected and recovered compartments,
based on observations from various sources [61–64].

We first distribute 550,000 individuals, i.e., the estimated number
of active cases on the first days of 2021 in Italy [62], in the infec-
tious compartments, namely 𝐿, 𝑃 , 𝐼 , and 𝐴. The repartition in these
compartments is based on the average period of permanence in each
compartment (𝜖−1, 𝜔−1 and 𝜇−1, respectively) and on the fraction of
asymptomatic individuals 𝑓 . The resulting number of individuals in
the 𝐼 compartment is 143,000, which is a middle ground between the
weekly number of confirmed cases in the last weeks of 2020 (approxi-
mately 100,000) and the biweekly one (approximately 200,000) [61].
We also take into account that the ICU occupancy in Italy at the
eginning of 2021 was around 2500 individuals [61]. For the initial
raction of recovered individuals we use 0.1, which corresponds to the
eroprevalence obtained in independent studies in two different regions
f Italy at the end of 2020 [63,64]. Finally, even if the first wave of
020 had already caused a considerable number of victims, we set the
nitial number of individuals in the death compartment to 0, as we focus
ere only on the number of deaths during the wave we are simulating.

Vaccination. For the vaccination campaign, we used a vaccination
strategy in reverse order of age which is the most effective in reducing
fatalities according to the literature and was the most widely used
around the world [39,65,66]. We consider a vaccination daily rate of
0.25% of the total population, similar to the rate of vaccination in Italy
in Spring 2021 [61]. Finally, consistently with the estimated efficacy of
vaccines against COVID-19, we used a vaccine efficacy against infection
of 𝑉 𝐸𝑆 = 70%, and we selected 𝑉 𝐸𝑆 𝑦𝑚𝑝 and 𝑉 𝐸𝐷 to achieve a
global vaccine efficacy around 90% [39,65,66]. In the Supplementary
Material, we also considered scenarios with a lower vaccine efficacy.
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Behavioral parameters. The behavioral parameters are the ones least
constrained by the available data and literature. As explained above,

e considered logistic functions to describe the dependency of the
transition rates between compliant and non-compliant compartments
on the fraction of vaccinated individuals and on the occupancy of ICU
eds. We considered five different functions for the dependency of their

midpoints 𝑎0 and 𝑏0 on the perceived severity. We fixed the slopes of
the logistic functions to 𝛼 = 10 and 𝛾 = 5. Indeed, we hypothesize that
the evolution of behaviors should not have brutal threshold effects: for
instance, the relaxation of behaviors during the vaccination campaign
has been progressive and not triggered by a particular event [70]. The
slopes we consider correspond to logistic functions that are neither
too steep nor with too little variation, making them well suited to
model the progressive relaxation of behaviors or their re-adoption. In
the Supplementary Material, we explored the robustness of our results
using other values corresponding to steeper or smoother logistic curves.

Equations and coding. We report in the Supplementary Material the
full set of equations describing the evolution of the populations in the
various compartments. We integrate these equations numerically with
a temporal resolution of 1 day, using the odeint function of the numpy
library of Python. The function uses an adaptive step size method
based on the LSODA algorithm from the FORTRAN library odepack.

he algorithm implements Adams and Backward Differentiation For-
ula methods to integrate. The rest of the analysis is conducted in
ython with the libraries scipy, numpy, numba, and matplotlib for
he visualization part. The code used for the analysis is available on
ithub [71].

3. Results

3.1. Perceived severity classes and age classes

Fig. 4 shows the distribution of the population according to age in
each perceived severity group (the distribution of perceived severity
in each age group is instead shown in the Supplementary Material).

he numbers in the figure refer to the Italian population and they are
xtrapolated from the 1606 individuals who took part in the survey and
ho reported their perceived severity. The lowest perceived severity
roup is the least populated and displays a relatively even distribution
cross age groups. Groups of individuals with perceived severity 2
nd 5 have similar sizes, and groups of perceived severity 3 and 4
re the most populated. As perceived severity increases, the relative
ontribution of the youngest age groups tends to decrease, and the
ontribution of the elderly increases. In particular, about 40% and 50%
espectively of the population of the two highest perceived severity

groups (4 and 5) are above 60 years old. Overall, the majority of the
elderly population is in these two groups of high perceived severity (see
also Supplementary Material).

In Fig. 5A, we show the distribution of perceived severity across the
seven waves of data collection. The profiles are qualitatively similar,
with the distributions not significantly different for the last five waves
(Kolmogorov–Smirnov test 𝑝-value > 0.05).

Of the 1606 participants who reported their perceived severity,
1477 took part in more than one wave of data collection, allowing
for an exploration of changes in perceived severity over time. Fig. 5B
illustrates the maximum change in perceived severity. For instance, if
an individual participated in five waves of data collection and reported
perceived severity values between 1 and 3 in these waves, their max-
imum change in perceived severity would be 2. Nearly one-third of
articipants never changed their reported values of perceived severity,
hile over 40% experienced a change of just one unit. Overall, fewer

han 25% of participants reported a change in perceived severity of
ore than two units.

In Fig. 5C, we explore the phenomenon in more depths by examin-
ng the maximum change based on the number of waves participants
8 
attended. Each bar represents the number of waves attended, with
colors indicating the maximum change in perceived severity. Among
participants who attended only two waves of data collection, over
50% did not change their perceived severity, and more than 85%
experienced a change of no more than one unit. As the number of
waves attended increases, the percentage of participants who did not
change their perceived severity decreases to 22%, suggesting that over
a longer time period, individuals are more likely to alter their perceived
severity. However, less than one third of participants took part at six
or seven waves and given that only around 30% of them changed
perceived severity by more than one value, data availability becomes
a limiting factor in understanding the evolution of perceived severity
over time.

Given these results, we decided to maintain the hypothesis of con-
tant perceived severity for individuals in the model, as an approxi-

mation, given that over 75% of participants experienced a maximum
change of one unit, with this percentage exceeding two-thirds even
mong those who participated in every wave of data collection.

3.2. Basic reproduction number

The basic reproduction number 𝑅0 depends on the age groups and
on the behavioral parameters (𝛼, 𝛾, 𝑎0, 𝑏0, 𝜎2𝑎0 , and 𝜎2𝑏0 ), as explained
in Section 2.3.

Fig. 6 shows the value of 𝑅0 as a function of 𝑎0 and 𝜎2𝑎0 , for three
of the seven age groups and for the 5 different functions (see the
upplementary Material for the same figure including all age groups).
ll age groups present similar heatmaps, but younger ones present
maller reproduction numbers at equal 𝑎0 and 𝜎2𝑎0 than older groups.
his is mainly because the fraction of asymptomatic individuals 𝑓 is
uch higher in the young population and asymptomatic individuals

have a lower infectiousness given by parameter 𝜒 .
We first observe that 𝑅0 decreases systematically as the average

midpoint 𝑎0 value increases. Indeed, increasing 𝑎0 implies that the tran-
sition rates from compliant to non-compliant compartments decrease.
As a result, even in the initial population, the fraction of non-compliant
ndividuals (who have more contacts) decreases, leading to a reduction
n 𝑅0.

Increasing the variance 𝜎2𝑎0 between the midpoints of different
perceived severity groups at given 𝑎0 has a more contrasted outcome.
t indeed introduces differences in the transition rates 𝜆𝑋−>𝑋𝑁 𝐶 of

different perceived severity groups, and thus the fractions of compliant
individuals differ across these groups. As a result, groups of individuals
with smaller perceived severity exhibit an initial higher fraction of non-
compliance than groups with higher perceived severity. For small 𝑎0,
he fact that groups of high perceived severity have a decreasing frac-
ion of non-compliant individuals as 𝜎2𝑎0 increases leads to a decrease
n 𝑅0. For large 𝑎0 instead, the impact on 𝑅0 comes from the groups

of small perceived severity, within which the fraction of non-compliant
ndividuals increases and yields an increase in 𝑅0.

The five functions yield qualitatively similar results, with some
quantitative differences due to their shapes and the different distri-
bution of young and elderly individuals in perceived severity groups.
For instance, the 𝑅0 for the function Start End Growth almost does
not evolve with increased variance. This is because the three groups
of intermediate perceived severity (2, 3, 4), who together represent
the vast majority of the population, have the same midpoint that
has only a small variation with 𝜎2𝑎0 . For the Start Growth function
instead, 𝑅0 drops substantially when the variance increases for small
𝑎0, because the groups with the highest perceived severity, which also
ontain a large fraction of elderly, have an increasing midpoint and
hus an increasing fraction of compliant individuals. Conversely, for the
unction End Growth 𝑅0 also decreases but remains high for small 𝑎0

as a large fraction of the population keeps a low value of the midpoint.
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Fig. 4. Distribution of age in each perceived severity group. We also report the total number of individuals in each group.
Fig. 5. Panel showing: (A) the distribution of participants in the five perceived severity groups across the seven waves of data collections, (B) the maximum change of perceived
severity among individuals who took part in more than one wave, and (C) the maximum change of perceived severity over the waves of data collections disaggregated by wave.
Each bar refers to the number of waves attended and it is divided in colors based on the maximum change of perceived severity. The number of participants who took part in 2
waves is 201, in 3 waves is 189, in 4 waves is 298, in 5 waves is 377, in 6 waves is 298, and in 7 waves is 114.
3.3. Effects of the heterogeneity in perceived severity on the epidemic
outcome

We now turn to the impact of how perceived severity drives differ-
ent types of behaviors on several metrics describing the outcome of the
epidemic spread. Specifically, we measure as outcomes the final total
number of deaths, the height of the peak of ICU occupancy (expressed
as a fraction of the maximum bed capacity), and the corresponding
peak date as 𝑎0 and 𝜎2𝑎0 vary (fixing all other parameters and at 𝜎2𝑏0 = 0).
Fig. 7 shows the resulting heatmaps for the Growth function used to
model the dependency between the midpoint and the perceived severity
groups (the heatmaps obtained with the other functions are shown in
the Supplementary Material).

At fixed average 𝑎0, taking into account the fact that groups with
different perceived severity have different behavioral parameters by
increasing 𝜎2𝑎0 leads to two competing effects. On the one hand, groups
of individuals with high perceived severity (comprising a large fraction
9 
of the elderly population) have a higher midpoint, and thus a logistic
curve describing their rate of transition to non-compliant behavior
that is shifted as seen in Fig. 3: as time evolves and the vaccination
campaign is rolled out, this transition rate increases only when the
population vaccination rate becomes rather high. Therefore, this pop-
ulation relaxes its behavior later with respect to the case of 𝜎2𝑎0 =
0, remaining compliant with fewer contacts during a longer period.
This effect would lead to a smaller impact of the epidemic as 𝜎2𝑎0
increases. On the other hand, in a symmetric fashion, groups with
low perceived severity have a decreasing midpoint as 𝜎2𝑎0 increases,
and their transition rate to non-compliance increases earlier when the
vaccination is rolled out, with respect to the case of 𝜎2𝑎0 = 0 (see Fig. 3).
The behavioral relaxation of these groups will then occur earlier, and
the resulting increase in contacts will help the spread of the disease.
This tends to increase the impact of the spread as 𝜎2𝑎0 increases.

Let us examine the result of the interplay of these two competing
effects for various values of the average 𝑎 . Let us first consider small
0
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Fig. 6. Heatmaps showing the value of 𝑅0 for three age groups (5–17, 30–39, and 60+) as a function of 𝑎0 and 𝜎2
𝑎0

. Each heatmap refers to one age group (rows) and one of
the 5 functions considered (columns). Above each column is a small diagram of the function, showing how the midpoint 𝑎0 varies from small to high perceived severity groups
(left to right). The other parameters used for the simulations are 𝛼 = 10, 𝛾 = 5, 𝑏0 = 0.75, 𝜎2

𝑏0
= 0. We employed a 900-value grid, with 30 values of 𝑎0 ranging from 0 to 1, and

30 values of 𝜎2
𝑎0

ranging from 0 to 0.3.
Fig. 7. Heatmaps showing the number of deaths (left), the height of the ICU peak (expressed as a fraction of the maximum bed capacity - center) and its date (expressed in
days after the start of the simulation - right) as a function of 𝑎0 and 𝜎2

𝑎0
. We used the Growth function to link perceived severity and midpoint of the logistic curve giving the

transition rate from compliant to non-compliant compartments as a function of the fraction of vaccinated individuals. The other parameters used for the simulations are 𝛼 = 10,
𝛾 = 5, 𝑏0 = 0.75, 𝜎2

𝑏0
= 0. We employed a 900-value grid, with 30 values of 𝑎0 ranging from 0 to 1, and 30 values of 𝜎2

𝑎0
ranging from 0 to 0.3. The rugged profile of the curves

related to the peak date is due to its discrete nature, with values representing the (integer) number of days after the simulation’s start in which the peak is observed.
mean values of this average midpoint (𝑎0 < 0.2): this corresponds to a
population that is on average poorly compliant, as the transition rates
to non-compliant behavior increase rapidly when the vaccination pro-
gresses. In this case, the first effect is predominant. Indeed, increasing
the variance, we observe a reduction in the number of deaths and the
height of ICU peak, while the peak date remains stable at around 70
days. In particular, the strongest decrease is observed when 𝑎0 ≈ 0,
leading approximately to a reduction in deaths over 15% and an almost
25% decrease in the ICU peak in the range of 𝜎2𝑎0 explored. As 𝑎0
increases, the amplitude of the reduction decreases, and as 𝑎0 reaches
≈ 0.2, the number of deaths and the height of the ICU peak do not
change when 𝜎2𝑎0 increases.

For high mean values of the midpoint (𝑎0 > 0.4) instead, the popula-
tion is on average largely compliant at the start of the simulation, and
the transition rate to the non-compliant behavior increases only when
10 
the population is largely vaccinated. The impact of the spread is thus a
decreasing function of this average at a given variance. In such cases,
increasing 𝜎2𝑎0 means that the groups with small perceived severity start
relaxing their behavior earlier in the vaccination campaign, triggering
more contacts and favoring the spread. Overall, the second effect
described above prevails: even if groups with high perceived severity
keep a compliant behavior longer than for 𝜎2𝑎0 = 0, this has little
impact. Increasing 𝜎2𝑎0 from 0 to 0.3 leads to an increase in the number
of deaths of approximately 20% if 𝑎0 = 0.4, and even of more than
30% for 𝑎0 > 0.75. The maximum increase in the ICU peak height
obtained when increasing 𝜎2𝑎0 is reached for 𝑎0 = 0.4, and smaller
increases are obtained at higher mean values of the midpoint. At large
𝑎0 moreover, the peak date is sensibly delayed, at a number of days
from the beginning of the simulation that can more than double. For
instance when 𝑎 = 0.8 the ICU peak height changes by less than 10%
0
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if we increase 𝜎2𝑎0 from 0 to 0.3, while the peak date increases from 23
ays from the start of the simulation to 47 days.

Sensitivity analysis with respect to the function used. While Fig. 7 dis-
plays the results obtained when considering the ‘‘Growth’’ function to
link perceived severity and midpoint of the logistic curve, we have
made clear when introducing the model that this function, for lack
of data, is still an arbitrary modeling choice. We thus consider in the
Supplementary Material the results obtained for the other functions
proposed, which cover a wide range of possible functional shapes, and

e compare qualitatively and quantitatively the results obtained for
hese various functions. Overall, the differences in the results are very
mall, with some small specific discrepancies. In particular, for small

values of the midpoint (𝑎0 < 0.2), the later relaxation of high perceived
everity groups leads to a clear reduction in deaths and ICU occupancy
n all cases except for the Start End Growth Function. Indeed, in
his case, by increasing 𝜎2𝑎0 , after a small decrease in the number of
eaths, the number of severe outcomes increases, leading to a worse
utcome. Among the other functions, the Start Growth function shows
he strongest decrease with a 25% reduction in deaths and nearly a 40%
ecrease in the ICU peak when the variance increases from 0 to 0.3.
onversely, for high midpoint values (𝑎0 > 0.4), the early relaxation

of low perceived severity groups compensates the benefits of the late
relaxation of the groups with high perceived severity, with increasing
numbers of deaths and ICU occupancy for all functions. The Start End
Growth function shows a smaller increase in the number of deaths when
the variance increases, while the End Growth function has the highest
increase in numbers of deaths and ICU occupancy. To go beyond this
qualitative comparison, we propose in the Supplementary Material a
quantification of the differences between the heatmaps obtained when
varying 𝑎0 and 𝜎2𝑎0 , obtaining small quantitative differences between
the heatmaps obtained with the five different functions considered.

Sensitivity analysis with respect to the model parameters. To verify the
robustness of the phenomenology described above, we perform some
ensitivity analysis with respect to different parameter values (this is

shown more in detail in the Supplementary Material). We explore in
particular different slopes (𝛼 and 𝛾) of the logistic functions, and a
different value of the midpoint 𝑏0. In all cases, a similar picture is
btained as in Fig. 7, with only some small quantitative differences.
or instance, a smaller value of 𝑏0 implies that the transition rate from
on-compliant to compliant compartments increases more easily when

the occupancy of ICU increases: the resulting better adoption of safe
ehaviors (with fewer contacts) leads thus to a decrease in the metrics

describing the impact of the epidemic (number of deaths and ICU peak).
Conversely, a higher 𝑏0 corresponds to a population remaining non-
compliant for larger ICU occupancy values, resulting in a larger number
of deaths and a higher ICU occupancy peak.

Reducing the slope 𝛼 leads to logistic curves that explore a smaller
ange of possible values of the transition rate 𝜆𝑋→𝑋𝑁 𝐶 both when
he vaccination progresses and when the midpoint 𝑎0 changes (see

Fig. 2). As a result, increasing the variance 𝜎2𝑎0 has a small effect on
the considered metrics. On the contrary, a larger 𝛼 leads to a more
abrupt logistic curve and therefore to a more brutal change of 𝜆𝑋→𝑋𝑁 𝐶
when the fraction of vaccinated individuals reaches the midpoint (see
Fig. 2). Differences in the midpoint of different groups have then a
tronger impact and the metrics investigated vary more strongly with
he variance.

Changing the slope 𝛾 at fixed 𝑏0 and 𝜎2𝑏0 also has a small quantitative
ffect: small values of 𝛾 means that the rate of transition 𝜆𝑋𝑁 𝐶→𝑋 to-

wards compliant behavior is high even for low ICU occupancy, leading
thus to an overall more compliant population, a smaller number of
eaths and a lower ICU peak. Conversely, a large 𝛾 with an abrupt
ogistic curve implies a low 𝜆𝑋𝑁 𝐶→𝑋 when the ICU occupancy is below
0, with therefore lower compliance at the beginning of the spread, and

inally a stronger impact of the spread. e

11 
Finally, we present in the Supplementary Material an analysis of the
mpact of heterogeneity of the midpoint 𝑏0 of the transition from non-
ompliant to compliant behavior (i.e., of the impact of having 𝜎2𝑏0 > 0).
e investigate the same three metrics of the number of deaths, the

CU peak height, and the ICU peak date as a function of 𝑏0 and 𝜎2𝑏0 ,
and for 5 possible functions relating perceived severity to the midpoint
value. Notably, the results for the five functions are very similar. In
almost every scenario indeed, increasing the variance 𝜎2𝑏0 at fixed 𝑏0
leads to an increase in the number of deaths and a later but higher
peak of ICU occupancy. Indeed, the heterogeneities in the transition
rate 𝜆𝑋𝑁 𝐶→𝑋 mean that groups with low perceived severity go back to
being compliant only for higher ICU occupancy rates, with respect to
the case of 𝜎2𝑏0 = 0, and therefore have more contacts at the beginning
of the spread, helping the disease propagate. The fact that groups with
high perceived severity, on the opposite, become more compliant, is
not enough to compensate for this effect.

3.4. Dynamics of the spread

Fig. 8 shows the temporal evolution of several important metrics
characterizing the unfolding of the spread in the population, for a fixed
average midpoint 𝑎0 = 0.6, several values of the variances 𝜎2𝑎0 , and for
a linear functional form linking perceived severity and midpoint 𝑎0:
the fraction of vaccinated individuals, of individuals in the 𝐼 compart-
ment, the cumulative fraction of cases (given by the sum of recovered
ndividuals and deaths), of deaths and the ICU occupancy.

For 𝜎2𝑎0 = 0 (first column), the whole population has the same rate
f relaxation to the non-compliant behavior 𝜆𝑋→𝑋𝑁 𝐶 . We note that the
urves for the different perceived severity curves are however distinct,

because of the differences in age distribution in the different groups,
and of the differences in numbers of contacts and in epidemiological
arameters in the different age groups. In the case considered in

Fig. 8, the common midpoint 𝑎0 is rather large (60% of the population
vaccinated). Thus, the rate of relaxation remains small for a long time
and the population keeps a low number of contacts during the whole
duration of the first peak of the epidemic curve. As the vaccination
campaign progresses however, individuals start to have more contacts,
and this triggers a second wave of infections, clearly seen as a second
peak in the curves showing the evolution of the fraction of infected
individuals. Interestingly however, as a large fraction of the population
is then vaccinated, especially among the elderly given the vaccination
strategy, this second peak has only a limited impact in terms of ICU
occupancy and deaths.

For larger values of the variance, high perceived severity groups
have a higher midpoint of the logistic curve; they thus remain com-
liant longer (until the vaccination reaches a larger fraction of the
opulation). Low perceived severity groups instead have a lower mid-

point and tend to relax their behavior sooner. As a result, the first peak
of the fraction of infected individuals becomes higher, especially for
the groups with low perceived severity (note that the final fraction of
vaccinated individuals in groups of perceived severity 1 and 2 slightly
ecreases, because a larger fraction becomes infected and thus does
ot need vaccination). The second peak instead disappears. Overall, the
arly relaxation of behaviors of the groups with low perceived severity
as an impact on the whole population: even the epidemic curves for
he groups with high perceived severity change shape, with a higher
arly peak of cases and the disappearance of the second peak. The
inal total number of cases is larger for the low perceived severity
roups (who, having a higher number of contacts, are particularly
ffected) and smaller for the high perceived severity groups (thanks
o the disappearance of the second wave). However, as the early peak
s higher and broader even for high perceived severity groups (largely
omprised of elderly individuals), it impacts these groups at a time in
hich vaccine coverage is still limited and causes, therefore, a higher

CU peak and a higher number of deaths. Overall, the early relaxation

ven for only some groups of individuals leads to a worse outcome for
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Fig. 8. Fraction of vaccinated individuals (first row - the black dashed line reports the global fraction of vaccinated individuals in the population), infected individuals (second
row), cases (third row - obtained as the sum of recovered individuals and deaths), deaths (fourth row), and individuals in ICU (fifth row) as a function of time (days), for each
perceived severity group. Each column corresponds to a different value of the variance 𝜎2

𝑎0
, going from 0 to 0.3, with 𝑎0 = 0.6. The other parameters are 𝛼 = 10, 𝛾 = 5, 𝑏0 = 0.75,

and 𝜎2
𝑏0

= 0.
all groups of perceived severity, including the ones who remain more
compliant. This result confirms indeed from a dynamical perspective
the results of Fig. 7 highlighting a worsening of the final situation at
high 𝑎0 when 𝜎2𝑎0 increases.

Sensitivity analysis. At smaller values of the average midpoint, such as
𝑎0 = 0.15, Fig. 7 showed that the increase of the variance resulted in a
smaller number of deaths and ICU peak heights while maintaining peak
timing. We show the impact on the epidemic dynamics of a non-zero
variance for 𝑎0 = 0.15 in the Supplementary Material. In scenarios with-
out group heterogeneities (𝜎2𝑎0 = 0), simultaneous behavioral relaxation
occurs early, preventing second infection peaks. With higher variance
(𝜎2𝑎0 ), infection peaks for low perceived severity groups grow taller,
as their midpoint is negative, rendering them non-compliant from the
start. Conversely, higher midpoints for high perceived severity groups
lead to smaller infection peaks and reduced ICU occupancy. Conse-
quently, in such scenarios, high heterogeneities in behaviors provide
increased protection to high perceived severity groups, composed of a
high fraction of elderly individuals, reducing, thus, severe outcomes.

We moreover check (shown in the Supplementary Material) that the
shift from an epidemic curve with two peaks to one with a single peak
as the variance is increased occurs for all the five functions between
perceived severity and midpoint considered in the model. The evolution
of the ICU curve shapes with the variance 𝜎2𝑎0 is also the same for all
functions investigated.

We also explore (shown in the Supplementary Material) different
values of the slopes 𝛼 and 𝛾 and of the midpoint 𝑏 . The shift from a
0

12 
two peaks profile to a single peak of the curve showing the fraction
of infected individuals vs. time is obtained in almost every scenario
analyzed, with the only exception of a very smooth 𝐶 to 𝑁 𝐶 transition
(low 𝛼) or small values of 𝑎0.

We moreover investigate the impact of taking into account hetero-
geneities of perceived severity in the midpoints 𝑏0 of transition rate
𝜆𝑋𝑁 𝐶→𝑋 , at fixed 𝑎0 and 𝜎2𝑎0 = 0. As 𝜎2𝑏0 increases, we observe a very
similar scenario as the one seen in Fig. 8: the increase in behavior
heterogeneity leads to a higher first peak and to the disappearance
of the second peak of the epidemic curve, with an overall increased
pressure on the ICU occupancy and an increase in the number of deaths.

Finally, we perform a sensitivity analysis with respect to several
epidemiological parameters (shown in the Supplementary Material),
focusing in particular on vaccine efficacy, initial conditions, average
length of the stay in ICU, and maximum number of ICU beds. We also
consider a scenario with different latent and pre-symptomatic periods
corresponding to the Alpha variant. We obtain similar results to the
ones described above.

3.5. Auditing data-driven assumptions

As described in the presentation of the model, our model relies
on two types of data and on one crucial mechanism that couples
the evolution of the disease with the behavior of individuals in a
way dependent from their disease perception. The resulting model is
thus complex and relies on the availability of such data. Beyond the
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Table 2
Characteristics and results for the simplified models considered.
Model Data and assumptions Results

Homogeneous mixing
Distribution in age groups. Deaths ≥ 200,000

ICU ≥ 5 ⋅ 𝐼 𝐶 𝑈𝑚𝑎𝑥
Homogeneous mixing and behaviors

Distribution in age groups;
Two classes of behaviors;
Feedback loop between spreading and behaviors.

Deaths ≥ 120,000 for some 𝑎0
ICU ≥ 2 ⋅ 𝐼 𝐶 𝑈𝑚𝑎𝑥 for some 𝑎0
Double peak in the infection curve

Contact matrix
Distribution in age groups;
Age-stratified contact matrix.

Deaths < 100,000
ICU < 2 ⋅ 𝐼 𝐶 𝑈𝑚𝑎𝑥
Single peak in the infection curve

Contact matrix and behaviors
Distribution in age groups;
Age-stratified contact matrix;
Two classes of behaviors;
Feedback loop between spreading and behaviors.

Similar results w.r.t. the case
𝜎2
𝑎0

= 0 of the full model;
Double peak in the infection curve

Uniform distribution of perceived severity
Distribution in age groups;
Uniform distribution in perceived severity groups
Age- and perceived severity-stratified contact matrix;
Two classes of behaviors;
Feedback loop between spreading and behaviors.

Similar results w.r.t. full model

Same distribution of perceived severity in age groups
Distribution in age groups;
Same distribution of perceived severity for each age group;
Age- and perceived severity-stratified contact matrix;
Two classes of behaviors;
Feedback loop between spreading and behaviors.

Similar results w.r.t. full model

90% of population in Group 1 of perceived severity
Distribution in age groups;
90% of the population with perceived severity 1;
Age- and perceived severity-stratified contact matrix;
Two classes of behaviors;
Feedback loop between spreading and behaviors.

Very small impact
of varying 𝜎2

𝑎0
> 0
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sensitivity analysis with respect to parameter choices performed above,
t is important to understand which data and which building blocks
f the model play the most prominent role in the phenomenology we

have illustrated in the previous sections. We thus consider here several
models in which we remove some data sources or model mechanisms
and compare the outcomes with the ones illustrated in the previous
sections. We summarize the main properties and results of these models
in Table 2.

Homogeneous mixing hypothesis. At the simplest level, we can hypothe-
ize that we do not have access to the survey data, but only to census

data allowing us to stratify the population in age groups, in order to
retain the age-dependency of the disease parameters (such as, e.g., the
IFR, which is known to depend strongly on age). We then cannot define
age-stratified contact matrices and have to rely on a homogeneous
mixing hypothesis.

In such a model, for the values of 𝑅0 considered here and without
he behavioral component, the number of individuals in ICU increases

rapidly to over five times the maximum number of available beds, and
the number of deaths more than double compared to the full model,
reaching thus unrealistic numbers (see Supplementary Material for
more details). Introducing the division of the population into compliant
nd non-compliant individuals, and incorporating the interplay be-
ween behaviors, disease spread, and vaccination, results in a decrease
n deaths and ICU occupancy. However, the outcomes remain unrealis-
ic, particularly for small values of the midpoint, where the number of
eaths exceeds 120,000, and ICU occupancy rises to more than twice
he maximum number of beds. Regarding the epidemiological curves,
he double peak of infections due to the relaxation of behaviors can
e observed for high mean values of the midpoint, similarly to the full
odel.

Contact matrix. As the importance of using an age-stratified contact
atrix in compartmental models is well documented in literature [72–

74], we next hypothesize that such data is indeed available from a
13 
survey describing contact patterns of individuals. We however assume
that no data on perceived severity has been collected and do not
consider any mechanisms of behavioral change. We thus obtain a
model similar to the one outlined in Fig. 1 and contacts between
individuals determined by their respective age and the contact matrix
data, but without the non-compliant compartments and the feedback
loop between behavior and spread or vaccination. By adjusting the
parameter 𝛽 to keep similar values of 𝑅0 as in the full model, the peak of
the ICU curve and the number of deaths remain at levels more realistic
than under the homogeneous mixing hypothesis, but strongly increase
(with a very high and narrow epidemic peak) as soon as 𝑅0 increases
bove ⪆ 2.

Contact matrices and behaviors. Moreover, if two contact matrices are
available and can be associated to compliant and non-compliant behav-
iors, as we have done in our model, we can add to the previous model
the feedback mechanisms between the evolution of the ICU occupancy
and of the vaccination campaign and the behavior and inform it using
these two contact matrices: when the ICU occupancy grows, individuals
tend to return to the compliant compartments, reducing their contacts
nd thus the spread of the virus while, when the fraction of vacci-
ated increases, the rate of transition to non-compliant compartments
ncrease. The overall result of this mechanism is to produce a double
eak in the epidemic curve if the parameter 𝑎0 is large enough (see
upplementary Material), where the second peak is produced by the
verall relaxation of behavior at large fractions of vaccinated, and

does not lead to a large number of deaths. In fact, such a model is
quivalent to the one considered in our main analysis, but with 𝜎2𝑎0 = 0:
he parameters dictating the behavior changes are the same for the
hole population, which does not allow us to investigate the impact of
eterogeneities in the perception of the disease within the population.

Heterogeneity in perceived severity. The full model we have presented
leverages two types of data collected in the same surveys (CoMix),
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describing contacts between individuals of different age classes and
giving the perceived severity of the same individuals. This allowed us
to stratify the population according to both age and perceived severity.
In particular, the distributions of perceived severity are different in the
various age classes. We could however encounter a situation in which
data on perceived severity has been collected without information on
the age of the participants, or in which the data is obsolete and not
necessarily fully reliable. We thus assess the robustness of our results
with respect to such potential incompleteness or inaccuracy of the
data on perceived severity by using different distributions of perceived
severity. In a first case, we assume that the distribution of perceived
severity still comes from surveys but is the same across all age groups.
The second case we consider is the one of a uniform distribution
of the population in the five perceived severity classes (20% of the
population in each group of perceived severity). In both cases, we
show in the Supplementary Material that the results are then very
similar to the ones obtained when using the full information on the
perceived severity distributions in the various age classes, which shows
that access to this level of detail might not be required for the realism of
the model. However, we also consider for completeness an unrealistic
distribution in which the large majority of the population has the same
perceived severity. The model’s dynamics and outcomes are then driven
by the behavior of this group when the variance increases, and the rich
phenomenology described in the previous section is not recovered, as
it stems as discussed from the competition of two effects, concerning
the individuals with respectively low and large perceived severity.

Overall therefore, the construction and outcomes of our model do
not crucially depend on precise and accurate information on the dis-
ributions of perceived severity in the population. However, the ability

to obtain realistic values for the relevant metrics and to discuss the
contrasting effects of the heterogeneity of individuals in their perceived
severity depends on using realistic contact patterns and implementing
a feedback loop between disease perception and behavior.

4. Discussion

The disease perception of individuals influences their adoption or
disregard of preventive measures, which in turn impacts disease spread.
The significance of such mechanisms is particularly pronounced dur-
ing non-emergency times, such as a post-pandemic period, when the
implementation of protective measures is solely reliant on individual
choices and there are no top-down restrictions. Our study proposes a
modeling framework that integrates disease perception, as measured
by the perceived severity, as a key determinant of behavioral change.
Our approach combines data sources on contact patterns and disease
perception with motivated data-driven assumptions on the interplay
between disease perception and behavior. Within this framework, we
explored a scenario with a competition between a COVID-19 wave
and a vaccination campaign, where individuals possess differences
in behaviors based on their perceived severity. Individuals with low
perceived severity relax behaviors sooner as the vaccination campaign
progresses and adopt protective measures only when the epidemiologi-
cal conditions are more severe (namely, higher occupation of ICU) than
individuals with high perceived severity. We leveraged CoMix data for
Italy [7,33] to inform this interplay between COVID-19 dynamics, vac-
cination efforts, and behavioral changes driven by perceived severity:
these data make it possible on the one hand to stratify the population
both in age groups and in groups of perceived severity, and on the
other hand to build contact matrices describing the contacts between
different groups, in both situations of compliance and non-compliance
to protective measures. We moreover assumed that behavioral changes
are driven on the one hand by the unfolding of the spread, as quantified
by the occupancy of intensive care units, and on the other hand by
the evolution of the vaccination campaign. We thus assumed that
the corresponding parameters for these two processes depend on the
disease perception of individuals. Our work marks a twofold addition
14 
to the current literature, putting forward a way to incorporate data
sources describing disease perception into theoretical frameworks, and
investigating how behavioral variations linked to perceived severity

ay affect disease transmission and models’ dynamics and outcomes.
Results show that behavioral heterogeneities influenced by per-

ceived severity have a substantial impact on the evolution and outcome
of the epidemic. These heterogeneities generate two opposing effects.
On the one hand, the longer adoption of protective measures by high
perceived severity groups (comprising a high proportion of elderly
individuals) resulted in higher protection for those individuals. On
the other hand, virus spread was facilitated by low perceived severity
groups relaxing behaviors more easily. The prevailing effect depended
on the overall behavior of the population. In populations that were
overall less compliant on average, characterized by high numbers of
deaths and ICU peaks, increasing behavioral heterogeneities led to a
reduction in these metrics. Conversely, in populations that were on
average more compliant, lower severe outcomes were observed, but
increasing heterogeneities resulted in an increase in deaths and ICU
occupancy. Epidemiological curves gave more insight into this phe-
nomenology. Indeed, when differences in behaviors among groups were
not taken into account, we observed a double peak in the evolution of
the fraction of infected: the second peak was due to the contemporary
relaxation of behaviors by the whole population when the vaccination
campaign reached a large enough fraction of the population. Thanks
to the high immunization provided by the vaccine, this second peak
had small consequences in terms of ICU occupancy and deaths. On the
contrary, an increase in the heterogeneities among perceived severity
groups caused the disappearance of the second infection peak in favor
of a higher first peak for the whole population, resulting in more deaths
and ICU hospitalizations, due to the absence of widespread vaccine
protection at the time of this first peak. Additionally, our simulations
revealed that the specific way we modeled the dependency between
behavior relaxation and perceived severity had a small impact on
crucial metrics such as the number of deaths and the height of the ICU
peak. The sensitivity analysis reported in the Supplementary Material
confirmed the robustness of our results. Modifying key epidemiological
parameters provided similar pictures, with behavioral heterogeneities
consistently impacting metrics and epidemic peaks in the same way
across the majority of analyzed scenarios. As our modeling framework
relies on the one hand on specific data describing both contact patterns
and distribution of perceived severity in the various age groups forming
the population, and on the other hand on a feedback mechanism
between spread and behavior, we have moreover considered several
models relying on less data or where the feedback is not taken into
account. Interestingly, we obtained a phenomenology similar to the
model informed with the full data as long as (i) the model takes
into account the age-stratified contact patterns of the population, (ii)
the feedback mechanism was included and (iii) the population was
distributed in groups with different perceived severity, even if the
corresponding information was not fully precise or accurate.

Our study comes with several limitations worth discussing. First,
the age- and perceived severity-stratified contact matrix we build are
based not only on survey data but also on the assumption that contacts
between individuals in different perceived-severity groups within an
age group are proportional to their respective sizes. This assumption
neglects possible correlations in contact patterns such as potential
omophily effects between individuals with low perceived severity
nd low compliance to health recommendations [75]. Even if this
ssumption might not capture the full complexity of real-world contact
atterns, including homophily effects without relevant data would
ead to the introduction of additional parameters, and we leave the

investigation of such effects to future work. We have also assumed that
the perceived severity of individuals is constant, while it may vary over
the course of the spread. Data indicate however that the corresponding
variations are limited, and moreover we have seen that the model is

robust with respect to changes in the distribution of the population
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in perceived severity groups. Moreover, even if the amount of data in
our framework remains limited, while they still play a relevant role
in shaping the specific assumptions at the core of the model, we rely
on assumptions for which no quantitative empirical validation is avail-
able at this stage. In particular, while the choice of logistic functions
to rely the rates of behavior change with their drivers (vaccination
rate or ICU occupancy) can be justified in relation with studies on
behavior adoption [41–43], the parameters of these logistics and their
dependence on perceived severity are not derived from empirical data.
We have however considered five different choices of such functional
dependence and shown the robustness of the phenomenology with
respect to this arbitrary choice. Furthermore, we considered a very
simple vaccination mechanism. We included in the model a single dose
instead of two or more, we assumed a fully working vaccine from
the beginning, with no waning phenomenon. We finally note that the
theoretical framework we have presented and explored is intended not
for making specific predictions on disease spreading, but rather for
conducting comparative analyses of hypothetical scenarios.

Our work has on the other hand some important research and
public health implications. Our modeling framework is a step towards a
more comprehensive understanding of how disease perception, partic-
ularly perceived severity, can impact the complex dynamics of disease
preading, and of how data on disease perception might be included
nto models. The strong impact of differences in disease perception on
he model’s outcome highlights the importance of taking such hetero-
eneities into account in models aiming to capture the dynamics of
nfectious disease transmission and calls for more extensive, continua-
ive, and comprehensive data collections to help uncover which aspects

of behavior are most influential. In particular, this study adds insights
o the relatively limited empirical research in this area, setting the stage

for further exploration and broader understanding necessary to bet-
ter grasp human adaptive behaviors, especially during non-emergency
times. Interestingly, we have found that the lack of very precise in-
formation on the distribution of perceived severity in the population
is not a crucial prerequisite for this kind of modeling. This indicates
that even survey efforts that are limited to interaction patterns and
o not tackle disease perceptions can still be used to inform models
ncluding feedback mechanisms between perception and behavior. On
he other hand, our use of several assumptions, which is dictated by
he lack of corresponding empirical insights, also shows that further
argeted data collection work is needed. In particular, the insights
ained pave the way for creating additional data collections drawing
n individuals’ personal experiences and perceived risks and their
emporal evolution, to help study individual and collective protective
trategies. Importantly, there is a need for both large-scale and small-
cale data collection efforts (including in-depth interviews) to obtain
ore detailed and nuanced information, in particular to investigate
hether individuals with similar perceived severity tend to have more

ontacts, a pattern that would influence the contact matrix patterns and
ight have an impact on the epidemic’s unfolding. From the perspec-

ive of public health, a data-informed identification of the principal
actors that drive changes in behavior would also provide new ways
or predicting these shifts and creating more effective communication
trategies to reduce transmission among individuals. For instance, our
odel’s results highlight how the relaxation of behaviors by a limited

raction of the population, who experience a low perceived severity, can
egatively impact other groups of the population even if those continue
o adopt a self-protective behavior. Communication strategies should
hus raise awareness of the global benefits of protective behaviors
specially in those groups of the population who are less likely to be
ffected severely by the disease, to highlight the benefits for at-risk
opulations.
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