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Given the identificationwith travel demandand its relevance for transportation andurban planning, the
estimation of trip flows between areas is a fundamental metric for human mobility. Previous models
focus on flow intensity, disregarding the information provided by the local mobility orientation. A field-
theoretic approach can overcome this issue and handle both intensity and direction at once. Here we
propose ageneral vector-field representation starting from individuals’ trajectories valid for any type of
mobility. We also show with simplified models how individuals’ choices determine the mesoscopic
properties of the mobility field. Distance optimization in long displacements and random-like local
exploration are necessary to reproduce empirical field features observed in Chinese logistic data and
in New York City Foursquare check-ins. Our framework is able to capture hidden symmetries in
mesoscopic urban mobility and opens the doors to the use of field theory in a wide spectrum of
applications.

Characterizing mobility patterns between locations of people and goods is
not only a long-standing research topic in disciplines such as geography and
spatial economics1–8, but it has also critical practical applications for urban
planning9–12, building and expansion of transportation infrastructure13–16,
population distribution studies and city sprawl17–21, urban socioeconomic
development22–24, location-based services25 and infectious diseases
spreading26–32.

Early research works mainly used data from transportation surveys
and census to analyze people travel and activity patterns8,33. The collectionof
such mobility data can be expensive and time-consuming, and it is hard to
acquire a sufficient sample size34,35. With the development of information
and communication technologies (ICTs), the availability of large-scale high-
resolution mobility data, such as call detail records, GPS-located taxi data
and online social network data, has notably increased. This enabled
researchers to quantitatively study various mobility contexts and put for-
ward new models to analyze the underlying mechanism of mobility8,36–42.

In terms of models, mobility can be studied at two different levels:
individual trajectories and aggregated flows between areas. Individual
mobility models usually focused on characterizing the behavior of indivi-
duals in the process of selection of destinations, adding a certain degree of
stochasticity to account for people heterogeneity and free will (see refs.
36,43–45 for some examples and8 for a recent review). At the aggregated
level, the earliest models fall into two families: the gravity13,46 and the
intervening opportunity model14,47, which has later evolved into the so-
called radiation model48. These models and their updated versions predict

the trip flows between locations, describing travel distance distribution and
defining locations attractiveness48–53. In fact, when compared in terms of
performance at predicting trip flow intensity the gravity and the radiation
models show only slight differences50. A difference emerges when the
dominant local direction of the trips is considered54.

Such combination of mobility flow intensity and orientation can be
studied using a field theoretical framework. The idea of using fields and
potentials for studyingmobility emerged in the context of the gravitymodel,
where these concepts appear in a natural way55,56. The lack of data prevented
further advances on this direction, until a recent work54 proved that a vector
field framework could be used to characterize trips between home andwork
(commuting) in a number of cities in the world. Not only that, this fra-
mework was able to solve a controversy almost 80 years old on which of the
two families of models performs best to describe commuting. The gravity
model produces results that matches empirical commuting mobility pat-
terns both in intensity and orientation of the flows. A field representation
has lately been used in a machine learning context, where knowing the
potential can significantly improve the performance of themodel to predict
trafficflows57. Later, someworks translated thefield approach to lower scales
of mobility (single flows)58–60, pedestrian route selection61 or the mobility
associated to the celebration of special events62. Nevertheless, it is not yet
clear how the definition of mobility fields can be extended to any type of
mobility starting from individual trajectories and what are the features that
may permeate from the microscopic mobility information to the meso-
scopic (field) scale.
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In this work, we introduce a definition of a vectorial framework for
mobility encoded in individual trajectories, which is valid for all mobility
types. To understand the origin of the fields, we also define a sign for the
trips: those pointing toward the city (reference point) are negative, while
those pointing away are positive. The sign of a full trajectory depends on the
majority sign of the trips composing it.We empiricallyfind a net imbalance,
withmore negative than positive trips, in trajectories extracted from logistic
trips in 20 Chinese cities and Foursquare check-ins in New York City. The
asymmetry of trip directions introduces a mobility field in the space. We
propose then three individual mobility models to analyze what is the
minimal set of ingredients needed to reproduce the observed imbalance.
Our results show that a distribution of stops decaying with the distance to
the city center, length optimization for long displacements and random-like
local exploration are fundamental to reproduce empirical mobility fields.
Wefinally focuson theproperties of themobilityfields, empirical andmodel
generated, and find that they fulfill the divergence (Gauss) theorem and that
are mainly irrotational so that a potential can be defined at the mesoscopic
scales formobility. This work extends thus themathematical amenability of
mobility data and offers an alternative approach for individual mobility
patterns analysis.

Results
From trips to vectors
The microscopic scale of mobility is the realm of individual trajectories
where the main features are stop locations, traveling times between stops,
idle times, etc. The global macroscopic scale refers to the whole considered
region, for example, total number of displacements, total number of tra-
jectories or average distance covered between stops. There is, nevertheless,
an intermediate scale, which we call mesoscopic. Let us divide the space of
the full region into grid cells of a given area, for instance, in a city these could
have an arbitrary dimension of 1 km2. The description of themobility flows
at the mesoscopic scale in these cells in terms of intensity and overall
direction is the main goal of this work and for this purpose we introduce a
vectorial framework.

A vector is amathematical object characterized by bothmagnitude and
direction, while a vector field is defined by an association of a vector to each
point in the space. A sketch of the method to define a vector field from
mobility data is displayed in Fig. 1, where we show an idealized “circular”
city, its central point (black circle) and three trajectories: 1-2-3-4-1, 5-6-4-5
and5-7-5.Most of our trajectories are closed, i.e. the origin and thefinal stop
coincide, but this is not a requirement to define the field. The steps to define
the vector field are as follows:

1. We define vectors between consecutive stops. This can be seen, for

example, in Fig. 1a, b, where the vectors 12
!

; 23
!

; 34
!

and 41
!

can be
extracted from thefirst trajectory.A vector pointing fromone stopX to

the next Y is called XY
�!

and is located on X.

2. The vectors XY
�!

are normalized to obtain the unit vectors xy!.
3. The space is divided in grid cells of equal area and all unit trip vectors

xy! within each cell i are vectorially summed to define the resulting

vector T
!

i, which informs on the average mobility direction in i
(see Fig. 1c).

4. T
!

i is normalizedby the total number of trips leaving cell i to obtain the
mesoscopic mobility vector field W

!
i. This process is analogous to

defining the gravitational or electrical fields dividing the force by the
mass or charge, respectively.

The vectors W
!

constitute thus the mobility field. In simple words, we
use vectors to represent the trips within each trajectory and it is the
embedding of these vectors in the urban space which forms the mobi-
lity field.

From trip vectors to trajectory orientation
In order to characterize how individuals explore spaceweneed to determine
whether trips in each area head towards or away from a given reference
point (RP). We identify two options for RP: the first one is the city geo-
graphical center (Fig. 1a), in this case the RP is absolute and equal for all the
trajectories; the second option is to establish the origin of each trajectory as
RP (Fig. 1b). This latter option implies that the RP is different for every
trajectory. As we will see below, the trajectory-origin RP shows some useful
features andmost of the results here are, therefore, displayed using such RP
unless otherwise stated.

With respect to the chosen RP, we can allocate a sign to each dis-

placement vector XY
�!

(or xy!) of any trajectory. Remember that the vector

XY
�!

sits onX, and that every stopX can be described by a position vector X
!

from the RP to X. To understand whether the displacement XY
�!

occurs
toward or away from the RP, we compute the angle θ in the range
�180; 180ð � between the above two vectors (see Fig. 1a and b), where ∣θ∣ = 0
means moving straight away from the RP and ∣θ∣ = 180 means moving

strictly toward the RP. We assign the vector XY
�!

a positive sign (+ ) if

∣θ∣ < 90, and a negative sign otherwise (− ). By convention, vectors XY
�!

are

ca b

/

Fig. 1 | Definition of trajectories orientation and resulting vector field. The large
gray circle stands for an idealized city (with the black point as the city center), the
green numbered circles are the stops sequence of each trajectory (1-2-3-4-1, 5-6-4-5
and 5-7-5), while the square in 1 and the hexagon in 5 are the trajectories' origins.
aCity center as reference point (RP). Vectors of each color connect consecutive stops
of a trajectory, for example, the trajectory 1-2-3-4-1. When the vector connecting X
to Y forms an acute angle with the position vector X

!
starting in the city center, we

mark the vector XY
�!

as positive, meaning that the agent ismoving away from the city

center, like the vector 57
!

. Vice versa, we mark the vector as negative when the agent
moves towards the city center, e.g. the vector 75

!
. b Trajectory-origin as RP. Iden-

tically to what we defined for the city center but we use the origins of trajectories 1 or
5, respectively, as RP for the position vectors. c Sketch of the method to build the
vector field. The space is divided in a grid, vectors departing from stops in a cell i are
normalized and summed vectorially to produce T

!
i . Then we define the mobility

field W
!

i dividing the vector T
!

i by the number of trips departing from i.
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positive if the stop X coincides with the RP. Some examples from Fig. 1 are

the vectors 34
!

or 64
!

that are both negative pointing to the RP in both

representations, or the vector 23
!

that is positive. Vectors exiting from the

origins such as 57
!

; 12
!

and 56
!

are by convention positive.
We characterize for every trajectory t whether trips are on average

toward (− ) or away (+ ) from the RP by summing the signs of all the
displacement vectors. Dividing by the total number of vectors, we obtain the
average orientationHt laying in the range between− 1 and 1, whereHt = 1
means that all the displacements are positive (i.e., away from the RP) and
vice-versa forHt =− 1.Note that distance or duration of trips are not taken
into account. Finally, Ht = 0 implies a full balanced trajectory. Ht is a
microscopic observable that encodes individual behavioral features of
mobility.

A priori, there is no reason to assume that there should be more
displacements in one orientation than in the other. This means that overall
there should be as many trajectories with positive or negativeHt. We count
as N+ the number of trajectories with Ht > 0,N− the number of those with
Ht < 0 and N0 as the number of balanced trajectories. We finally introduce
the unbalance ratio ρ as

ρ ¼ Nþ
N�

: ð1Þ

The existence and orientation of themesoscopic field and the orientation of
trajectories are mathematically interlinked. Since every displacement gen-
erates anunit trip vector contributing to the overallmobilityfield, a situation
with ρ clearly deviating from one could generate a majority direction for
displacements and, consequently, an average field (see Supplementary
Note 4 (Supplementary Fig. 8 and Supplementary Tables 4, 5) for a
demonstration that ρ < 1 implies the existence of a field).

Empirical trajectories orientation
Knowing that an unbalance in the trajectories may lead to the presence of a
mobility field, it is important to test whether empirical trajectories are
balancedor not.We consider twodatasets: the first one,D1, refers to logistic
trucks trajectories departing from the 21 largest Chinese cities, while the
second one, D2, refers to Foursquare check-ins of individuals in New York
City (NYC) (see Methods and Supplementary Note 1 for a detailed
description of the two datasets (Supplementary Tables 1 and 2 and Sup-
plementary Fig. 1 and 2)). We show the empirical results for ρ in Beijing,
Shanghai andChengduofD1using trajectory origins as theRP inFig. 2. The
pie charts show the fraction of positive, negative and balanced trajectories
with a fixed number of stops and also the overall results. Trajectories with
negative orientation (i.e.,N−) are dominant, hence ρ < 1 in all cases. Results
are robust for trajectories of anynumberof stops and for all trajectories in all
the 21 cities analyzed. Note that negative trajectories dominate indepen-
dently from the length of trajectories and there is high similarity in the ρ
values across cities, overall and for trajectories with a certain number of
stops. This result does not hold if the RP is the city center (see Supple-
mentary Information Note 3 and Supplementary Figs. 5–7). It seems that
the analysis performedwith the origins of trajectories as RP is able to absorb
the details of the cities in terms of shape, streets and communication axes
(e.g. highways), hence leaving only individual mobility behavior. This has
two consequences: firstly, we can neglect the urban shape when modeling
individuals’mobility behavior in termsofρ; secondly,we can tune themodel
on an arbitrary city and perform out-of-sample accurate predictions. The
results are robust for further cities (see below inUnderstanding the origin of
the trajectory unbalance section and Supplementary Note 5 Supplementary
Figs. 9–12).

Since the definitions of vector signs and trajectory orientations are
general, we can apply it to any type of mobility. As a comparative, we
perform the same analysis on D2, the check-in records of Foursquare, and
find a similar pattern (see Supplementary Fig. 9). Regarding the Foursquare
check-in data, trajectories with negative orientation (i.e., N−) also exhibit
dominance, resulting in ρ < 1, for trajectories of any number of stops and for
all trajectories (see SupplementaryNote 5).Note thatD2 encodes a different
type of mobility compared to D1.

Comparing the results obtained fromtheFoursquare check-ins and the
freight data, the calculated ρ values differ,whether considering only a certain
number stops or for all trajectories. For example, when considering all
trajectories in the Foursquare trajectories, ρ is 0.266, while for the number of
stops 3, 4, 5, and 6, the corresponding ρ values are 0.357, 0.09, 0.19, and 0.05,
respectively. However, in both the Chinese logistic data and New York City
Foursquare check-ins, we observe an overall imbalance with more negative
than positive trajectories. This suggests the existence of a property that is
valid for all cities, across mobility types and both datasets.

Understanding the origin of the trajectory imbalance
In order to understand themechanisms leading to the empirically observed
unbalance between the signs of the trajectories, we introduce fourmodels in
an increasing order of complexity, each with added mechanisms over the
previous one to characterize the needed ingredients (see Methods for
details). The simplest configuration includes a circular city of radius R. A
generic trajectory is composed of a sequence of stops f x!0; x

!
1; ::: x

!
s�1g,

with the origin x!0 located randomly inside the circular city.
For the first model, called Rand, the other stops locations are selected

completely at random in space. We have confirmed that the model trajec-
tories tend to be balanced in the thermodynamic limit (large L) and that it
does not generate a field (see Supplementary Note 6 and Supplementary
Figs. 13–14). This was a sanity check before advancing to more elaborated
models andwedisregard thismodel fromnowon.Thenext threemodels are
more relevant and are developed making simple behavioral assumptions
about spatial navigation, a sketchwith their description can be seen in Fig. 3.

The d-randmodel follows the same logic but is informedwith a spatial
distribution of stopsD(r) decaying with the distance to the city center. This
mimics a random-like exploration but with constraints on the spatial

all stops

3 stops

4 stops

5 stops

6 stops

Beijing                Shanghai               Chengdu

65.2%

18.5%
16.3%

ρ=0.284

ρ=0.414

ρ=0.086

ρ=0.238

ρ=0.098

65.3%

18.4%
16.3%

ρ=0.282

71.6%

ρ=0.397

ρ=0.087

ρ=0.248

ρ=0.093

65.2%

15.8%
19.0%

ρ=0.291

70.4%

29.6%

ρ=0.42

47.0%
4.1%

48.9%

ρ=0.087

79.9%

20.1%

ρ=0.252

66.9%

28.2%
4.9%
ρ=0.073

70.7%

29.3%

47.9%

48.0%
4.1%

80.8%

19.2%

64.5%

29.2%
6.3%

28.4%

48.2%

47.7%
4.2%

80.1%

19.9%

64.8%

29.2%
6.0%

-
+
0

Fig. 2 | Unbalance of empirical trajectories. Fraction of positive (orange), negative
(blue), and balanced (green) trajectories with 3, 4, 5, 6 stops and for all trajectories of
trucks departing from Beijing, Shanghai and Chengdu, using the trajectory origin as
reference point(RP). ρ stands for the ratio between the number of positive and
negative trajectories.
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distribution of stops. The next model, d-TSP, allows travelers to reorder the
stops to minimize the total distance traveled (with a Traveling Salesman
Problem (TSP) optimization algorithm). Finally, d-mix interpolates
between the two previousmodels and the distance optimization only occurs
if the average distance between trajectory stops goes over a threshold ℓc.
Trajectories distances are not optimized otherwise. More details on the
precise definition of the models are offered in the Methods section below.

The models are informed by the empirical statistics from Beijing (see
Methods for further details on themodels construction).We tune the d-mix
model parameter ℓc by minimizing the mean absolute error on ρ in Beijing
using all trajectories and the trajectory origin as RP. The best results are
obtained for ℓc ≈ 1.72 km, which is a reasonable threshold for route opti-
mization (see Supplementary Note 12 and Supplementary Fig. 24).

Violin plots in Fig. 4a show the resulting distribution of ρ for the three
stochastic models and the empirical distribution from the 21 cities in D1.
We also show the distributions for trajectories with a fixed amount of stops
only. The first observation of interest is that all the models produce trajec-
tories that are consistently negative and hence holding ρ < 1. A second
aspect is that d-rand generates the lowest values of ρ among allmodels. This
is natural since the location of consecutive stops is random, without
ordering them to reduce the distance traveled, and hence, the probability of
crossing to the other side of the city (a negative sign for the trip) is high.
Manynegative trips contribute to an overall negative sign for the trajectories
and a lower value of ρ.Modelswith stops reorderingmay reduce thenumber
of displacements from one side to the other of the city, and the trajectory
signs are less often negative (higher values of ρ). In contrast and following
the same argument in the opposite way, d-TSP produces trajectories with
the highest value of ρ. ρ for d-mix, on the other hand, lies between these two
extremes as do also the empirical values of ρ.When the analysis is restricted
to trajectories with a certain number of stops, the stochastic fluctuations are
larger since the number of trajectories decreases. However, d-mixfits best to
the empirical values of ρ.

In Fig. 4a we show the empirical ρ for trajectories from all the 21 cities
in D1 together. The cities contributing to this violin plot are, nevertheless,
very heterogeneous in population. This is why in Fig. 4b we depict the
empirical values ρ as a function of population and see that there is no

noticeable dependence. Moreover, all the empirical values fluctuate within
the 95% interval of the value of ρ obtained by the d-mix model (fitting ℓc
only in Beijing). Finally, we can analyze the trajectories generated by the
fitted d-mix model by their number of stops. In Fig. 4c, we see that, in
general, the agreement for trajectories of a fixed number of stops aligns well
with the empirical results from the three cities in Fig. 2. All these results have
been confirmed using different values of the modeled city size R, the space
considered L and, even at a qualitative level, for differentD(r) functions (see
Methods for details on themodels’ parameters and SupplementaryNotes 7,
8 and 9 (Supplementary Figs. 15–19) for the robustness check).

The d-mix model mobility field
Since the models produce unbalanced trajectories, i.e. ρ < 1, they also gen-
erate a net mobility field (see Supplementary Section 4 for a mathematical
proof). Next we study the properties of the field W

!
generated by the fitted

d-mix model (see Methods for the details of the modeling setting). We
consider circular contours of radius r from the city center and analyze the
fluxofW

!
as a function of r. Theflux is calculated in both as a surface integral

over the circular contour and as the volume integral of the divergence of the
mobilityfield,=W

!
(seeMethods for the formalflux calculation).According

to Gauss’ Divergence Theorem, if the field is well behaved the two ways of
calculating the flux should yield the same result. This is confirmed in Fig. 5a,
where the two calculations of the fluxΦW as a function of the distance are in
agreement with a coefficient of determination R2

P ¼ 0:98. Note that this
does not apply to the city area where the estimated fluxes are close to zero.
The fact that theGauss’Theorem is fulfilled is important because it is related
to the existence of a source for the field.

A second relevant feature to explore is the field curl. This is connected
to the possibility of defining a potential for the field. Figure 5b displays the
module of the curl,which lies in the z-axis perpendicular to theplot.One can
distinguish the area of the city in the internal circle. There are somenon-zero
curl areas, with the highest values concentrated close to the city border.
Actually, these values are small when compared with a null model (see
Fig. 5c). In this null model, the direction of the d-mix vectors in each cell is
randomly reoriented. We call this the “fully random” model and it is
intended to assess the level of curl induced only by noise. The overall

Fig. 3 | Schematic description of the models. The
large gray circle represents the city area (the black
circle is the city center), the numbered green circle
represent stops while square and hexagon are the
origins of two trajectories (red and green). These
trajectories have different average trips distance: the
green one is below ℓc, the red trajectory is above ℓc.
Models (a) d-rand, (b) d-TSP and (c) d-mix.
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Fig. 5 | Properties of the d-mix mobility field. The
mobility field is obtained from the d-mixmodel with
the parameter of characteristic distance of
ℓc = 1.72 km with a circular city of radius R = 20 km
in a space limited by a box of side L = 400 km and
with 100 000 trajectories. aComparison between the
flux measured as the surface integral in blue, and as
the volume integral of the divergence of the mobility
field (seeMethods for the calculation) in red, in both
cases as a function of the distance to the city center r.
The coefficient of determination R2

p is obtained as
the square of the Pearson correlation coefficient of
both curves. The vertical dashed line marks the city
radius R. bModule of the curl of the field, the colors
represent j∇W

!j for each cell in km−1. c Comparison
between the curl of the field generated with the
d-mix model and that of the fully random model
obtained by randomly reassigning directions to W

!
in each cell. dAverage absolute value of the curl as a
function of the distance to the city center for the
d-mix and the fully randommodel. The inbox shows
a violin plot for the difference, Δ, bin by bin in the
main between the d-mixmodel and the fully random
model predictions.

Fig. 4 |Models and trajectory unbalance. aViolin plots of themodel-predicted and
real values of the unbalnace ratio ρ for trajectories with different number stops. The
violin plots depict the values of ρ from d-rand model (in green), d-mix model (in
yellow), the data inD1 (in purple) and d-TSPmodel (in red) for trajectories with 3, 4,
5, 6 stops and for all trajectories. bValues of ρ for the different cities as a function of
their population. The horizontal dashed lines correspond to the median values of ρ
for all the modeled trajectories, shaded areas indicate the confidence interval

between 5 % and 95 %, color codes as above. Purple dots represent the values of ρ for
all empirical trajectories in each city. cPie charts for the fraction of positive (orange),
negative (blue) and balanced (green) trajectories generated with the fitted d-mix
model. These sequence of charts should be compared with the empirical values
observed in different cities in Fig. 2. For these simulations, we used a city radius of
R = 20 km and bounding box L = 400 km and with 100,000 trajectories.
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distribution of curl modules of the field generated by the d-mix has lower
variance than the null model one. Furthermore, in Fig. 5d, we compare the
averagemodule of the absolute value of the curl enclosed by a circle of radius
r from the city center. We see that both models coincide inside the city
r ≤ R = 20 km. However, beyond the city area the d-mix model has curl
values systematically below the null model ones. This guarantees the pos-
sibility to define a potential out of the city for the d-mix mobility field.

Empirical mobility fields
In Fig. 6a–c, we see that the empiricalfields generated in the three cities used
as example fulfill the Gauss’ Theorem as well. Results for further cities are
included in SupplementaryNote 8 (Fig. 17).Thefluxprofiles as a functionof
r show some common features: a first r interval with positive ΦW values
(vector field pointing mainly outwards). This area is the core of the city,
where the logistic trucks drop goods while most of the origins of the tra-
jectories lie further in the peri-urban area. Despite its positive character, the
existence of a net flux is relevant because the agreement between both
integrals show that the Divergence Theorem is fulfilled in all the space.
Further, the flux becomes negative (vector field pointing on average
inwards) and it reaches the half height value at rc = 25 km for Beijing,
rc = 22 km for Shanghai and rc = 14 km for Chengdu. In the Foursquare
check-in records, we also observed an initial interval (r) characterized by
positive values of ΦW. Subsequently, the flux becomes negative and it
reaches the half height value at rc = 4 km (see Supplementary Figs. 22 and 23
in Supplementary Note 11). Since for the d-mix model the city size

approximately coincides with the point at whichΦW ðRÞ≈Φmax=2, we will
take rc as arbitrary radii of the three cities logistic cores. The fluxes peak
further away (~35 km in Beijing, ~50 km in Shanghai and ~20 km in
Chengdu) and eventually ΦW decays as r increases. These general features
compare well with those of the d-mix model (Fig. 6a), except for the inside
city fluxes, which are not well captured by the model.

We display in Fig. 6d–f the average absolute value of the curl enclosed
and excluded by a circle of radius rc, i.e. internal and external respectively, to
the cities. We find that the empirical curl is systematically lower than the
fully-random counterpart in all cases. This implies that empirical potentials
can be defined in all the space. Similar results are attainedwith other cities of
D1 (see Supplementary Note 8, Supplementary Fig. 17) and with the
Foursquare check-in data in New York City (see in Supplementary Note 10
and Supplementary Figs. 20–21).

Potentials
Knowing that we can define a potential for the d-mixmodel (out of the city)
and also for the empirical data everywhere, we plot next the equipotential
curves on the maps (Fig. 7). The potential of the d-mix model shows a
circular symmetry. This is due to the circular city shape introduced (Fig. 7a)
and the isotropic assumption. The contours of the empirical urban areas are
dependent on the city shape (Fig. 7b–d), adapting to geographical con-
straints as in the case of Shanghai with the sea and islands. It is also inter-
esting how the potential highlights the presence of satellite cities as occurs
for Beijing and Shanghai. The potential contours plotted extend some tens

Fig. 6 | Empirical vector fields. In (a–c) fluxes of the
empirical field w! as a function of the distance to the
city center r. In blue the surface integral flux, in red
the volume integral flux, both as a function of r. R2

p is
the coefficient of determination between the curves
of the flux and the volume integral of the field
divergence as a function of the distance. The vers-
tical dashed linesmark the city radiusR.d–fAverage
module of the curl, comparing the fully-random
model and the empirical data. The separation
between in and out of corresponds to the distance at
which ΦW ¼ Φmax=2; rc . The analysis in the outer
side ends at r = 50 km. After this distance, trip vec-
tors in Beijing and Chengdu become sparse and the
statistics is non-representative.
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of kilometers outside the cities, eventually becoming fuzzy. The field con-
tinues beyond that point, but given the lack of statistics it is hard to extract
meaningful potential contours.

Hybrid d-mix model
We saw how the unbalance ratio of trajectories orientation ρ does not
depend on the urban shape when using trajectory origins as RP. This is
critical since it allowed us to study the origin of the mobility fields with
simplifiedmodels.However, the spatial shape of thefields andpotentials are
inherently connected to the real city configuration. To explore further the
validity of the model assumptions, we need to make another step and
introduce a hybrid d-mixmodel.We consider the empirical trajectories one
by one, e.g., f x!0; x

!
1; :::; x

!
s�1g, keeping x!0 as origin, but randomizing

the order of the other stops. We then input these trajectories to the d-mix
model, reordering them according to the model rules. The resulting tra-
jectories are not necessarily equal to the empirical original ones, although if
the model is doing a good work they should be similar. Indeed, we have a
coincidence of 79% in Beijing, 71% in Shanghai and 79% for Chengdu, and
for the Foursquare check-in records, we have a coincidence of 71% (see
Supplementary Note 11). The question is thus whether this over 20%
mismatch has mesoscopic effects on the field or not.

The potential estimated from the hybrid d-mix model and the
empirical one are compared for the three cities in Fig. 8a–c. We find a good
agreement with R2

P above 0.93 for all the three cities. 3D profiles of the
potential are displayed inFig. 8d–f for the empiricalfields and inFig. 8g–i for
the field generated by the hybrid d-mix model. In the Foursquare check-in
records, we found robust agreement with R2

P exceeding 0.9, we present the
3D profiles of the potential in Supplementary Fig. 23 (see Supplementary
Note 11). One can clearly appreciate the similarity between modeled and

empirical potentials of the same city. This implies that the hybrid d-mix
model is capturingwell themechanisms behind the empiricalmobilityfields
and its utility may go beyond its use as explanatory tool for individual
behavior as above. Themajor deviationsoccur in the largest potential values,
close to the maxima and the city centers where the d-mix potential is
undefined and for which the model has not been fitted.

Discussion
In this work we have introduced a way to define a mobility field starting
from individual trajectories. This is a generalizationwith respect to previous
works based onOrigin-Destination commutingmatrices, and it allows us to
study awide rangeofmobility data.As illustrative examples,wehave studied
with this frameworkmobility data from twodifferent sources: logistic routes
of trucks around and across the 21 largest Chinese cities and Foursquare
check-ins in NYC. In all cases, we have found a well-behaved field fulfilling
the Gauss Divergence Theorem and with a curl value that it is in general
smaller than theone expectedby a fully randommodel.This implies that it is
possible to define a potential almost anywhere in metropolitan areas and,
consequently, to search for a source for the mobility field. This observation
opens up intriguing possibilities for practical applications, suggesting that
the mobility potential could serve as a foundation for optimizing mobility
strategies within urban environments. The existence of a consistent and
well-behaved field offers promising avenues for further exploration and
refinement of mobility models.

Starting from individual behavioral assumptions of spatial exploration,
we have advanced in the conceptual framework by analyzing the basic
ingredients needed to generate mesoscopic mobility fields with features
matching those of the empirical ones. We have introduced a metric, the
unbalance ratio ρ, to characterize the fraction of displacements in
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y
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x km

y
km

x km

y
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a b

c d

d-mix Beijing

Shanghai Chengdu

V (m)

Fig. 7 | Equipotential contours. a Contours for the d-mix model with 100 000
trajectories in a circular city of radius R = 20 km and in a box of side L = 400 km.
Empirical equipotential contours for (b) Beijing, (c) Shanghai and (d) Chengdu.

Maps in (b, c and d) were generated usingMapnik based on Openstreetmap layouts
for the background under ODbL license.
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trajectories that move mostly towards or away from a reference point RP
(city center or origin of the trajectory). The unbalance among these direc-
tions (ρ far from one) implies a net displacement direction and induces a
mobility field. This metric allows us to quantify the strength of the factors
leading to the formation of the field. We have then introduced a set of
minimal models with growing complexity to explore what information is
fundamental to generate the field. All the models are based on trajectories,
and so the basic components are: an origin x!0 and a sequence of stops
f x!1; ::: x

!
s�1g, with s representing the total number of locations visited in

the trajectory. The simplest model, a random selection of the origin within
the city and random location for the stops, is not able to generate a field.We
have then added an ingredient: stops randomly extracted following a
decaying distribution of the distance to the city center, and built the d-rand
model. This model generates trajectories with an unbalance ratio less than
the unit and, consequently, a mobility field. However, it is not able to
reproduce the empirical values of ρ (its ρ is smaller). To approach realistic
values, one must include the fact that individuals aim at optimizing their
trajectories, reordering the sequence of stops f x!0; x

!
1; ::: x

!
s�1g to reduce

the total distance traveled. Mimicking this process, we added to d-rand a
Traveling Salesman Problem solver to reduce total distance, and built the
d-TSPmodel. Thismodel generates a fieldwith ρ closer to the empirical one
than the produced by d-rand model, but still higher. The assumption of
rational optimization of all trajectories does not hold for short distance trips.
For this reason we introduced the d-mixmodel, which optimizes stops only
if the average displacement between them is larger than a given threshold ℓc.
d-mixmodel interpolates betweenboth behaviors, and can be tunedon ℓc to
generate trajectories with a ρ consistent with the empirical ones. d-mix
model is not only able to reproduce ρ, but most of its field features are
realistic as well. The Gauss Divergence Theorem is fulfilled and the curl of
the field is smaller than in a fully random field. The model also generates a

potential for thefield,which, however is based on isotropic assumptions and
hence, may differ from the empirical ones due to urban shape and natural
constraints. Moreover, the model assumes an isotropic circular city setting.
This limitation is overcome by the introduction of a hybrid d-mix model
informed with real but randomized trajectories stops from the data. By
letting the d-mix rules apply to reorder them, this hybrid model is able to
reproduce the spatial shape of the empirical fields and potentials.

This work advances on the understanding of how the field theory
can be applied to the mesoscopic scales of human mobility. Field theory
is a fundamental tool in physics with a well equipped set of mathematical
results developed for its use, which we hope can be translated to mobility
studies in the near future. The established mathematical framework of
field theory holds the potential to unlock new approaches for modeling
and analyzing complex mobility patterns, contributing to a deeper and
more nuanced comprehension of human movement dynamics. Addi-
tionally, urban poly-centrism and predominant patterns among mobility
centers have been recently the focus of many studies due to their asso-
ciation to life quality indexes, city livability12, walkability, sustainability,
services accessibility and epidemic outbreak susceptibility32. The potential
provides a clear representation of the structure of a city at a mesoscopic
scale. It captures the spatial organization and connectivity patterns of
mobility centers, offering insights into the distribution of activities,
resources and flows. This information can help urban planners to take
more informed decisions.

Methods
Mobility data and processing
The empirical results of this work are based on two datasets: the first is a
truck travel records (D1)63,64, and the second is the check-in records of
Foursquare (D2)65.

Fig. 8 | Hybrid d-mix model predictions of empirical potentials. a–c Correlation
plots between the hybrid d-mix model and the empirical potentials, yielding Rp

2 ¼
0:97 for Beijing, Rp

2 ¼ 0:93 for Shanghai and Rp
2 ¼ 0:96 for Chengdu.

d–f Empirical potential in the space and (g–i) the hybrid d-mix model predictions.
Both models and empirical flows show the polycentric nature of Beijing and
Shanghai, while Chengdu is more monocentric.
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TheD1 dataset includes data from over 20 Chinese cities, which can
be downloaded from the National Road Freight Supervision and Service
Platform (https://www.gghypt.net/). This platform is used to record the
real-time geographic locations of all heavy trucks in China and monitor
the potential traffic threats. The dataset contains >2.7 million travel
records, spanning fromMay 18, 2018 to May 31, 2018. The attributes of
one travel record include truck ID, timestamp, longitude, latitude and
speed (see Supplementary Note 1 with Supplementary Figs. 1 and 2 and
Supplementary Tables 1 and 2 for more details about the dataset used in
this study). Details on the data treatment are provided in the
references63,64.

TheD2 dataset is fromNewYork city65. Foursquare is a location-based
social network onwhichusers share their coordinates when check-in in (see
Supplementary Note 1 for more details about the dataset). This dataset
contains 42035 individuals, inwhich 23520 users have trips among different
analysis zones (here the space is divided according 2010 census areas, see
https://www.census.gov/geo/mapsdata/maps/block/2010/).

Origin of the trajectories
In our datasets, we have records containing a series of times and stop (or
checkin) locations for the different agents (trucks or individuals). Since
trucks frequently return to their base point, due to the driver ending their
work shift or reloading to start the next roundof freight distribution. In view
of this, we assume that themost visited location, the base point, is the origin
of the trajectories that restart every time the agent visit this point. This
location is also theRP in the origin-based framework. InD1 this is identified
as the truck most commonly visited location with the longest stay times,
since this is likely to be the logistic center of operations. In D2, we assign
individuals’ origins as the location with the largest number of check-ins. In
both D1 and D2, a single trajectory is the defined as the sequence of stops
occurring between the first and the next stop in the origin. The statistical
description of the D1 trajectories in several cities of D1 are provided in
Supplementary Note 2 (Supplementary Fig. 3 and Supplementary Table 3),
and the same for D2 in NYC in the Supplementary Fig. 4 and Supple-
mentary Table 3.

Models
The basic ingredients of our models will be inspired by the structure and
statistics of the empirical trajectories. Supplementary Fig. 3 shows the
complementary cumulative distributions of three variables associated to
trajectories starting in a circle of radius 20 km centered at Beijing,
Shanghai and Chengdu as paradigmatic examples. The first distribution,
D(r), refers to distance of the trajectory stops to the city centers (Sup-
plementary Fig. 3a–c). The city centers are the barycenters of the areas
considered (see Supplementary Table 2). As the figure shows, the loca-
tion of the stops can be relatively far away from the city center, with the
distribution falling slowly to the thousands of kilometers. We will adopt
in themodels a probabilityD(r) of finding a stop at a certain distance r of
the city center that on very first approximation will fall asD(r) ~ r−α. The
next distribution, Supplementary Fig. 3d–f, refers to the number of stops
per trajectory Ns(s). The minimum number of stops is 2, because we are
counting at least origin and final destination. The range of values is
relatively limited, up to 40, and presents a decay that we will approach in
the models by Ns(s) ~ s−β. Finally, Supplementary Fig. 3g–i shows the
distribution of the number of trajectories starting from the same origin
Nt(t). Truck fleets may have an operation center from which several
vehicles leave, or simply the same truck appears in several trajectories
starting always from the same origin. The distribution is wide, reaching
more than one thousand trajectories and we will approximate it by
Nt(t) ~ t−γ. The distributions for the Foursquare check-in in New York
City can be found in Supplementary Fig. 4.

If we consider as in Fig. 1a circular city of radius R inside of a space
limited by a square of side L, we can build a first null model by selecting the
location of the origin of a trajectory at random in the internal circle x!o.

We call this model the Rand model. The number of trajectories departing
from x!o is thenobtained as a stochastic extractionofNt(t),while for eachof
them the number of stops s can be extracted fromNs(s). The location of the
s− 1 consequent stops is randomly chosenwithin the bounding square.We
take a setting with a circular city of radius R = 20 km centered in a squared
area of sideL = 400 km. This is to be considered the general setting onwhich
we run all ourmodels. Themodel is run to generate 100,000 trajectories and
with themproduce afieldW

!
following the recipe of Fig. 1. In eachperimeter

position, we observe that the flux of the field as a function of r fluctuates
around zero inside the city circleR and it only gets negative as r reaches close
to the bounding box L (see Supplementary Fig. 13). Suchnegative netflux is
only afinite-size effect as can be seen by increasing the box size L and also by
using periodic boundary conditions in the bounding box instead of open
ones (Supplementary Fig. 14).

d-rand model. There are, therefore, missing ingredients in this basic
model to be able to generate a stable mobility field. The first
mechanism that we are going to consider is a spatial distribution of
stops falling with the distance to the city center D(r) as the one
observed in Supplementary Fig. 3a (D(r) = 1.2 r−2.2 for r ≥ 1 km, if
r < 1 km it is uniform (DðrÞ ¼ 1

R2)). This model will be called d-rand
(Fig. 3a) and it consists in randomly extracting, as before, a location in
the circle containing the city for x!0, the number of trajectories
starting at x!0 fromNt(t) and the number of stops per trajectory s from
Ns(s). Then, for each trajectory we choose at random with D(r) the
radius of the location of the s− 1 stops besides the origin, the direc-
tions from the center in which every stop lies is also randomly selected.
A trajectory is thus formed by the origin and all the other stops
f x!0; x

!
1; :::; x

!
s�1g. As we will see, this model is able to produce

unbalanced trajectories and a field.
d-rand has, however, a major caveat: consecutive stops can be at

opposite sides of the city and it is unrealistic to have a driver passing back
and forth through the city center without grouping nearby stops to reduce
the total distance traveled and the fuel consumed.

d-TSP model. The next model to consider, called d-TSP (Fig. 3b), cor-
responds to the effect of a manager looking at the sequence
f x!0; x

!
1; ::: x

!
s�1g obtained as in the d-rand and reordering the

sequence of stops from1 to s− 1 tominimize the total trajectory distance.
This process can be mapped into the well known traveling salesman
problem (TSP), in which a salesman needs to visit a set of locations, each
location is visited once and only once, and finally must return to the
starting position66. We employ in the d-TSP an heuristic algorithm
(genetic algorithm67) developed to approximate the solution of the tra-
veling salesman problem.

d-mix model. Finally, we introduce a model that interpolates between
d-rand and d-TSP. We will call this model d-mix and the rules are as
illustrated in Fig. 3c. The TSP reordering of stops is only allowed if the
average travel distance of one trajectory between stops is larger than a
threshold ℓc. The idea behind d-mix is that the driver will not invest the
effort of optimizing the trajectory if the distance between consecutive
stops is very short. The limit of d-mix model for small ℓc corresponds
thus to d-TSP model, while for large ℓc it becomes d-rand model.

Numerical calculation of the flux
The definition of the flux is

Φs
w ¼

I
d‘ n!W

!
; ð2Þ

where the integral is over the surface (perimeter S) enclosing the area of
interest, dℓ is the element of surface, n! the unit vector normal to the surface
and W

!
the vector field. From a numerical perspective, the integrals are

https://doi.org/10.1038/s42005-024-01672-z Article

Communications Physics |           (2024) 7:190 9

https://www.gghypt.net/
https://www.census.gov/geo/mapsdata/maps/block/2010/


calculated as

Φs
w ¼

X
i2S d‘ n!i W

!
i; ð3Þ

where the index i runs over all the cells intersecting the perimeter S; n!i is
the unit vector normal to the surface in i and dℓ is approximated by the total
perimeter of S divided by the number of intersecting cells.

The definition of the integral of the divergence is

Φv
w ¼

Z
dV ∇W

!
; ð4Þ

where the integral is now of volume (surface in 2D of the enclosed area).
From a numerical perspective, the integrals are calculated as

Φv
w ¼

X
i2V

Wxðαþ1;βÞ
�Wxðα;βÞ

Δx
þ
Wyðα;βþ1Þ

�Wyðα;βÞ

Δy

 !
ΔV; ð5Þ

where the index i runs over the cells in the volume V and ΔV is approxi-
mated by the area of the unit cell.Wx andWy are the x and y components of
the vectorW

!
. The indices (α, β) refer to the position of cell i in the grid, in

such a way that, for instance, (α ± 1, β) are the positions of the adjacent cells
to i in the x-direction. Δx and Δy are side sizes of the cells in the x− and
y− directions.

Numerical calculation of the curl
The curl of W

!
in the cell i, whose indices in the x− and y− directions are

(α, β), as above, is determined as:

∇×W
!¼

Wyðαþ1;βÞ
�Wyðα�1;βÞ

2Δx
�

Wxðα;βþ1Þ
�Wxðα;β�1Þ

2Δy
: ð6Þ

Numerical calculation of the potential
The potential is calculated by numerically solving the equations
�∇V ¼ W

!
, taking into account that ∇×W

!¼ 0. For the computation of
the empirical potential, we used conditionsV = 0 in all the boundary regions
of the box and then use the forward centered discretization formula for the
gradient operator54,68 starting from the city bounding box corner. In a cell i
with indices (α, β)

dVi

dx
¼ V ðαþ1;βÞ � V ðα;βÞ

Δx
¼ Wxðα;βÞ

; ð7Þ

and also

dVi

dy
¼ V ðα;βþ1Þ � V ðα;βÞ

Δy
¼ Wyðα;βÞ

; ð8Þ

the procedure is iterated until all cells have been assigned a potential. To
decrease the noise, we average the resulting potentials starting from the four
corners of the bounding box .

Parameter estimation
In our d-mix model, the single free parameter is ℓc, which directly deter-
mines whether the agents optimize or not the order of the trajectory stops.
For a given empirical dataset, we rely on ρ to estimate ℓc. To accomplish this,
we define the following function

Eð‘cÞ ¼ ∣ρdata � ρð‘cÞ∣; ð9Þ

where ρdata is obtained from the dataset for all trajectories, and ρ(ℓc) is
calculated through the d-mix model with parameter ℓc. The objective

function can be minimized to yield an estimated value of ℓc needed to
reproduce with d-mix the signs of the set of empirical trajectories.

Data availability
The D1 dataset on truck trajectories in China can be downloaded from the
National Road Freight Supervision and Service Platform (https://www.
gghypt.net/). TheD2dataset onFoursquare check-ins inNewYorkCitywas
obtained from the details given in ref. 65. The 2010 census divisions in the
case of New York were downloaded from https://www.census.gov/geo/
mapsdata/maps/block/2010/.

Code availability
The code used for this work is available at https://github.com/orgs/erjianliu.
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