
Epidemics 47 (2024) 100757

A
1
n

Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

A multiscale modeling framework for Scenario Modeling: Characterizing the
heterogeneity of the COVID-19 epidemic in the US
Matteo Chinazzi a,b,1, Jessica T. Davis b,1, Ana Pastore y Piontti b, Kunpeng Mu b, Nicolò Gozzi c,
Marco Ajelli d, Nicola Perra e,b, Alessandro Vespignani b,c,∗

a The Roux Institute, Northeastern University, Portland, ME, USA
b Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA
c Institute for Scientific Interchange Foundation, Turin, Italy
d Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public
Health, Bloomington, IN, USA
e School of Mathematical Sciences, Queen Mary University, London, UK

A R T I C L E I N F O

Dataset link: https://coronavirus.jhu.edu/, http
s://www.oag.com/, https://www.iata.org/, ht
tps://www.google.com/covid19/mobility/, htt
ps://github.com/OxCGRT/covid-policy-tracker

Keywords:
Metapopulation dynamics
Multi-strain epidemic modeling
COVID-19 pandemic

A B S T R A C T

The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United
States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale
model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic
and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142
subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling
us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different
epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration,
human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH,
and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the
COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and
present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7)
as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and
diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it
competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha
variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha
variant had on the effective reproduction number at the state level. Overall, we show that our multiscale
modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response
in the US.
1. Introduction

Mathematical and computational models have been essential in
understanding the transmission mechanisms of SARS-CoV-2, provid-
ing situational awareness throughout the COVID-19 pandemic, and
allowing the exploration of hypothetical intervention scenarios for
public health planning and response (Holmdahl and Buckee, 2020;
Jewell et al., 2020; Poletto et al., 2020; Brooks-Pollock et al., 2021;
Biggerstaff et al., 2022; Reich et al., 2022). Despite the many suc-
cessful applications of predictive modeling, there are often challenges
in communicating the results to policymakers and the public due to
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poor coordination among modeling teams, divergent results caused by
different underlying assumptions and scenarios, and a lack of clarity
regarding the implemented methods. To address these issues, the Sce-
nario Modeling Hub (Scenario Modeling Hub, 2023) has coordinated
multiple modeling teams in the generation and analysis of multi-model
projections of well-defined epidemic scenarios (Borchering et al., 2021;
Biggerstaff et al., 2022; Truelove et al., 2022; Howerton et al., 2023;
Borchering et al., 2023). This hub approach allows for a synoptic
analysis of results, ensembling different estimates, rigorous validation
of findings, and clearer communication of results.
vailable online 5 March 2024
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As of July 2023, we have contributed 17 rounds of projections
coordinated by the SMH, which consist of 70 different modeling sce-
narios defined at various points in time starting in 2021. Our mod-
eling approach combines two stochastic, age-structured, multi-strain,
metapopulation models operating on different scales (Balcan et al.,
2010). This approach allows us to model both the local dynamics
that integrate the vaccination rollout plans and the strength of non-
pharmaceutical interventions (NPIs) as well as the global dynamics
responsible for the introduction of new variants. In particular, the
Global Epidemic and Mobility model (GLEAM) which has been used to
study the international spread of pathogens such as Zika (Zhang et al.,
2017), Ebola (Gomes et al., 2014; Pastore y Piontti et al., 2016), and
the initial wave of COVID-19 (Chinazzi et al., 2020; Davis et al., 2021),
can simulate introduction events of new variants in the United States
(US) from other countries. The output of this model is used to define
the initial conditions of the Local Epidemic and Mobility model (LEAM-
US) that in turn simulates the disease dynamics in the US at the county
level.

Here we describe our general modeling approach and report the
detailed results obtained following the guidelines of the scenario design
of Round 5 of the SMH (COVID-19 Scenario Modeling Hub, 2021).
The four scenarios of this round address the impact of vaccination
coverage and relaxation of NPIs during the wave initiated by the Alpha
variant (Phylogenetic Assignment of Named Global Outbreak, PANGO,
lineage designation B.1.1.7). The Alpha variant was first identified in
December 2020 in the United Kingdom (UK) (Walensky et al., 2021;
World Health Organization, 2021). It was traced back to two samples
collected in September 2020 (Science Magazine, 2020; Rambaut et al.,
2020). The multiscale structure of our model and its capacity to link
international importations with domestic contact patterns and mobility,
provides a detailed characterization of the heterogeneous spread of the
Alpha variant in the US. We estimate that its introduction and trajectory
towards dominance exhibited significant spatiotemporal variation. In
particular, our model finds that by March 2021 the Alpha variant
accounted for 50% or more of the total infections only in roughly one
third of states. In contrast, other states did not reach this proportion
until the end of April or early May. Notably, this heterogeneity is even
more pronounced at the combined statistical areas (CSAs) level within
states. Additionally, we show how the emergence of the Alpha variant
affected variations in the effective reproduction number at the state
level.

Overall, our multiscale model offers a comprehensive and detailed
approach to projecting the COVID-19 pandemic in the US, incorpo-
rating factors such as population demographics, travel patterns, NPIs,
vaccination status, and new SARS-CoV-2 variants. These projections
can inform public health policy and decision-making by capturing the
heterogeneity and complexity of the COVID-19 pandemic response in
the US.

2. Methods

The multiscale modeling approach combines two distinct epidemic
models that work at different geographical resolutions: the Global
Epidemic and Mobility model (GLEAM) and the Local Epidemic and
Mobility model in the US (LEAM-US) (Fig. 1). Both models are stochas-
tic, spatial, age-structured, metapopulation models (Balcan et al., 2009,
2010; Pastore y Piontti et al., 2018; Chinazzi et al., 2020). LEAM-US,
considers 3142 counties (or their statistical equivalent) as individ-
ual subpopulations in each of the 50 US states and the District of
Columbia. GLEAM considers 3200 subpopulations across nearly 190
countries, defined as catchment areas of major transportation hubs.
GLEAM and LEAM-US integrate a human mobility layer, represented
as a network, using both short-range (i.e., commuting) and long-range
(i.e., air traveling) mobility data from different sources. International
and domestic airline mobility data, in the origin–destination format, are
from the Official Aviation Guide database and are used to model airline
2

m

transportation (OAG, 2020). Ground mobility and commuting flows
are modeled from data collected from statistics offices of 30 countries
on 5 continents and account for travel restrictions and government
policies (Hale et al., 2021). The model also considers the reduction
of internal country-wide mobility and changes in contact patterns
in each country and state (Google LLC, 2021a). In both models we
consider individuals divided into 10 age groups: 0–9, 10–19, 20–24,
25–29, 30–39, 40–49, 50–59, 60–69, 70–79, and 80+ years old. We use
effective contact matrices to model age-dependent and country/state
specific mixing across four settings: households, schools, workplaces,
and contacts occurring in the general community. The contact matrix
for a given location is a weighted linear combination of the derived
matrices for the four social settings and encodes information on the
average number of effective contacts (contacts that can lead to the
transmission of a disease) between individuals of particular age groups.
Details on the contact data and the construction of the matrices can be
found in Mistry et al. (2021) and Prem et al. (2017).

In the LEAM-US model, contact matrices, age-specific traveling
probabilities, and air traffic flows are properly mapped to the county-
level resolution. Counties’ populations and age distributions are based
on the Census’ annual resident population estimates during 2019, and
commuting flows between counties are obtained from the 2011–2015
5-Year ACS Commuting Flows survey and properly adjusted to account
for differences in population totals since the creation of the dataset (US
Census Bureau, 2024). Google’s COVID-19 Community Mobility Re-
ports data collected at the county-level resolution are used to model
mobility and the effects of NPIs on individual behaviors (Google LLC,
2021a).

2.1. SARS-CoV-2 transmission model

In both GLEAM and LEAM-US, within each subpopulation, we adopt
a classic 𝑆𝐿𝐼𝑅-like disease infection dynamics. Depending on the
SMH round, the model has been extended to account for the presence
of multiple lineages and vaccination protocols. After establishing the
mobility data layers and defining the dynamics of the disease, the
population count within each compartment, denoted as 𝑚, for each age
group 𝑖, and for each subpopulation 𝑗, is governed by a discrete and
stochastic dynamical equation. This equation is formulated as follows:

𝑋[𝑚,𝑖]
𝑗 (𝑡 + 𝛥𝑡) −𝑋[𝑚,𝑖]

𝑗 (𝑡) = 𝛥𝑋[𝑚,𝑖]
𝑗 +𝛺𝑗 ([𝑚, 𝑖]) (1)

here the term 𝛥𝑋[𝑚,𝑖]
𝑗 denotes the change attributable to transitions

ithin compartments, which are driven by the dynamics of disease
ransmission. Additionally, the operator 𝛺𝑗 ([𝑚, 𝑖]) captures the varia-
ions arising from individual mobility. This particular operator accounts
or long-range mobility, specifically via airlines, and establishes the
inimal integration time scale as one day. Finally, the impact of

ommuting flows on mobility is incorporated by defining effective
orces of infection. This is achieved through a time scale separation
pproximation detailed in Balcan et al. (2010), Balcan and Vespignani
2011). The function 𝛥𝑋[𝑚,𝑖]

𝑗 is defined as the aggregate of all transitions
nto and out of the disease compartment 𝑚 for individuals within age
roup 𝑖, denoted as [𝑚, 𝑖]. The operator 𝑗([𝑚, 𝑖], [𝑛, 𝑖]) quantifies the
ransitions from [𝑚, 𝑖] to [𝑛, 𝑖] over the time interval 𝛥𝑡. Each element of
his operator is derived as a random variable, following a multinomial
istribution. Therefore, the change in the compartment [𝑚, 𝑖] over the
nterval 𝛥𝑡, represented as 𝛥𝑋𝑗[𝑚,𝑖], is calculated by summing all the
andom variables {𝑗 ([𝑚, 𝑖], [𝑛, 𝑖])} as follows

𝑋[𝑚,𝑖]
𝑗 =

∑

[𝑛,𝑖]

{

−𝑗 ([𝑚, 𝑖], [𝑛, 𝑖]) +𝑗 ([𝑛, 𝑖], [𝑚, 𝑖])
}

. (2)

o illustrate the above equation with a specific example, let us in-
pect the dynamics of the latent compartment. Consider individuals
ithin age group 𝑖 of subpopulation 𝑗. These individuals have two
otential transitions: they can either move into the latent compart-

𝑖
ent, denoted as 𝐿𝑗 , from the susceptible compartment, represented
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Fig. 1. Visual depiction of the multiscale modeling approach that combines the GLEAM and LEAM-US models.
as 𝑆 𝑖𝑗 , or they can exit the latent compartment to enter the infectious
compartment, indicated by 𝐼 𝑖𝑗 . The components of the operator that
define the 𝐿𝑖𝑗 dynamic are thus determined by the following binomial
distributions𝑃𝑟𝐵𝑖𝑛(𝐿𝑖𝑗 (𝑡), 𝑝𝐿𝑖𝑗→𝐼 𝑖𝑗 ) and 𝑃𝑟𝐵𝑖𝑛(𝑆𝑖𝑗 (𝑡), 𝑝𝑆𝑖𝑗→𝐿𝑖𝑗 ), where 𝑝𝐿𝑖𝑗→𝐼 𝑖𝑗
and 𝑝𝑆𝑖𝑗→𝐿𝑖𝑗 are the transition probabilities from the latent to the infec-
tious state and from the susceptible to the latent state, respectively. We
model the transition process as memoryless, discrete, and stochastic.
The transition probability 𝑝𝑆𝑖𝑗→𝐿𝑖𝑗 , representing the force of infection, is
influenced by several factors: commuting flows, interaction patterns as
defined in age-structured contact matrices, and the implementation of
local Non-Pharmaceutical Interventions (NPIs). For a complete descrip-
tion of the analytical framework of the model, we direct readers to the
detailed presentation provided in Balcan et al. (2010).

In the removed compartment, individuals can no longer infect oth-
ers, meaning they have either recovered, been hospitalized, or isolated.
Hospitalizations and deaths are computed from the removed compart-
ment by considering a geometrically distributed time delay between
the time of removal to hospitalization and death (details on the delay
implementation are provided in the Supplementary Information). Infec-
tion hospitalization ratios (IHR) and infection fatality ratios (IFR) are
age-structured and taken from the literature to account for different
variants and vaccination statuses (Shapiro et al., 2021; Verity et al.,
2020; Salje et al., 2020). It is worth remarking that the model’s pa-
rameters vary across SMH rounds as new variants and knowledge on
vaccine efficacy emerged and as the prescribed scenarios changed.

2.2. Non-pharmaceutical interventions and human mobility

In our model, we dynamically incorporate international travel re-
strictions based on data from the Oxford COVID-19 Government Re-
sponse Tracker (Hale et al., 2021). To accurately reflect changes in
travel patterns since the pandemic’s onset, both international and
domestic travel flows are adjusted using real-time origin–destination
data provided by OAG (OAG, 2020), capturing the observed reductions
in air traffic. Additionally, we adjust short-range mobility by utilizing
workplace visitation data as a proxy. This approach, that consider the
mobility changes from pre-pandemic levels, is informed by Google’s
COVID-19 Community Mobility Reports (Google LLC, 2021a), and pro-
vides a dynamic characterization of mobility patterns during the pan-
demic. Contact patterns and mixing rates among different age groups
in our model are adjusted to reflect the impact of policy interventions
on individual behaviors. Specifically, we modulate the school contacts
matrix layer to simulate the effects of school closures, whether due
to governmental policies or scheduled holiday breaks. For workplace
and general community settings, we utilize data from Google’s Mobil-
ity Reports. The workplaces percent change from baseline
metric informs us of the reduction in contacts within workplaces, while
the retail and recreation percent change from baseline
3

gives insights into contact reductions in broader community settings.
We achieve this by proportionally rescaling the corresponding layers
in the contact matrices. This rescaling factor, 𝜔𝑠(𝑡) = 𝜔𝑠(1 + 𝑟𝑙(𝑡)∕100)2,
is applied, where 𝑟𝑙(𝑡) represents the daily percentage change in visitors
to specific locations 𝑠 relative to pre-pandemic levels. The squared
term in this factor reflects the understanding that the potential number
of contacts at a location is proportional to the square of the visitor
count. We selected specific fields from Google’s Community Mobility
Report data due to their alignment with the definitions of various place
categories. The ‘retail and recreation percent change from baseline’
field effectively represents mobility trends for locations such as movie
theaters, restaurants, cafes, and shopping centers. This particular data
is most representative of the interactions occurring within the general
community layer of our contact matrices. Meanwhile, the ‘workplaces
percent change from baseline’ field is instrumental in measuring the
mobility trends of individuals commuting to and from their workplaces,
providing valuable insights for our modeling purposes (Google LLC,
2021b).

2.3. Vaccine allocation and administration

Our model explicitly incorporates the time series data of daily
administered COVID-19 vaccine doses. In the United States, the allo-
cation of the daily vaccine stockpile for each county is based on the
observed vaccination rates at the state level. We then distribute these
doses within each state, proportionally to the population size of each
county. Furthermore, the strategy for vaccine rollout is designed to
align with the recommendations of the Advisory Committee on Immu-
nization Practices (ACIP). This approach involves prioritizing different
age groups in a phased manner, depending on the specific stage of the
vaccination campaign (Dooling et al., 2020). In particular, in phase
1a doses were distributed between the 10 age groups according to
the number of healthcare workers and long-term care facility residents
in the population; in phase 1b they were distributed with priority
to front-line essential workers and adults aged 75+; in phase 1c to
other essential workers, adults with high-risk conditions, and the 65–
74 age group; and lastly, in phase 2, doses were distributed to the
general population aged 18+. The vaccine uptake in the in-sample
calibration window follows the data provided by the CDC and Our
World in Data platform (CDC, 2021; Our World in Data, 2021). In the
out-of-sample projection period, the vaccine uptake of each SMH round
follows the directions of the specific scenarios, available at COVID-19
Scenario Modeling Hub (2021). Our model incorporates various vaccine
effects, including vaccine efficacy in reducing the risk of infection
(VE𝑆 ), hospitalization (VE𝐻 ), and deaths (VE𝐷). The specific values for
these vaccine efficacies vary across different scenario rounds and are
informed by the ongoing analysis of efficacy against different variants.
Additionally, the model accounts for the waning of vaccine-induced
protection starting from round 8.
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Fig. 2. (A) We implement a 𝑆𝐿𝐼𝑅-like model extended to account for the presence of two strains and vaccination. The superscript 𝛼 refers to compartments with individuals
infected with the Alpha variant of concern. Subscripts 𝑣𝑎𝑥1 and 𝑣𝑎𝑥2 are used to identify compartments with individuals who received one or two doses of the vaccine, respectively.
Vertical dashed lines represent transitions between compartments due to vaccinations. (B) Ratios of WIS scores between the GLEAM/LEAM-US model and the COVIDhub baseline
reference model. (C) Ratios of WIS scores between the GLEAM/LEAM-US model and the COVIDhub ensemble reference model.
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2.4. Model calibration

The model is initialized by considering the introductions of infec-
tions during the early stage of the COVID-19 pandemic by coupling the
LEAM-US model to the importations from the GLEAM model calibrated
as reported in Davis et al. (2021). In each state, we assume a flat
prior for the effective reproductive number 𝑅𝑒𝑓𝑓 at the start of the in-
sample calibration time window. In order to account for variations in
the IFR and IHR across states, we also consider a ± 30% difference with
respect to the baseline parameterization, assuming a uniform prior. The
specifications set by the SMH in each round inform the time window
used to calibrate the model. We calibrate our model using an Approxi-
mate Bayesian Computation (ABC) rejection approach (Sunnåker et al.,
2013). This process involves comparing the model’s weekly estimated
deaths and/or hospitalizations with the actual figures reported by the
Johns Hopkins Coronavirus Resource Center (Dong et al., 2020) and
the U.S. Department of Health and Human Services (US Department
of Health & Human Services, 2021). To assess the accuracy of our
model, we calculate the distance, denoted as 𝑠(𝐸′, 𝐸), between the
surveillance data (evidence 𝐸) and the model estimates (𝐸′) for each
stochastic realization. Distances are measured using either the weighted
mean absolute percentage error or the residuals. We then establish a
tolerance level, based on a selected quantile of the empirical distance
distribution, to serve as our threshold. Any realizations that result in
distances exceeding this threshold are rejected (Beaumont et al., 2002).
Specifically, we keep the top 2.00% of realizations with the smallest
distance. For each specific SMH-scenario definition, we performed
between 15,000 to 50,000 stochastic independent realizations. We have
also performed extensive sensitivity analyses testing the calibration
approaches at the global and local level as reported in Davis et al.
(2021).

2.5. Round 5 specific model design: Integrating the alpha variant

To incorporate the emergence of the Alpha variant mechanistically
we employ a two-strain model. This model allows us to mechanistically
capture the cocirculation of the ancestral SARS-CoV-2 lineages and
4

the Alpha variant. The model considers the following compartments: c
susceptible; two latent and infectious compartments (capturing individ-
uals infected with both the ancestral lineages and the Alpha variant);
and the removed compartments. Additionally, each of the previous
compartments appears in the model in three different ways (as shown
in Fig. 2A) to distinguish between unvaccinated individuals, individuals
who received the first vaccine dose, and vaccinated individuals who
received two doses. Susceptible (𝑆) individuals become latent through
interactions with infectious individuals carrying either the ancestral
lineage or the variant. In the first case, individuals will transition
into the ancestral lineage latent compartment (𝐿); in the second they
will transition into the variant latent compartment (𝐿𝛼). We assume
that the two lineages have different transmission rates (𝛽 and 𝛽𝛼) but
the same latent and infectious periods (𝜀−1 and 𝜇−1). Furthermore,

e capture the increase in transmissibility of the Alpha variant by
ssuming that 𝛽𝛼 = 𝛽(1 + 𝜓) (Galloway et al., 2021). The increase of
ransmissibility was introduced following previous studies indicating
hat the Alpha variant was 30%–70% more transmissible with respect
o ancestral SARS-CoV-2 lineages (NERVTAG, 2020; PHE, 2021; Davies
t al., 2021). Latent individuals move to the infectious stage, 𝐼 for
he ancestral lineage and 𝐼𝛼 for the Alpha variant, at a rate 𝜀 that
s inversely proportional to the latent period. Infectious individuals
ransition to the removed compartment (𝑅) at a rate 𝜇 that is inversely
roportional to the infectious period. In our model, individuals transi-
ion between different compartments through stochastic binomial chain
rocesses. These transitions are guided by parameter values sourced
rom existing literature, which outline the natural progression of the
isease. During the period of our projections, the vaccination campaign
as focused on administering the initial complete regimen of two doses.
ccordingly, our model accounts for varying levels of vaccine efficacy
gainst infection, hospitalization, and death, distinguishing between
he effects after the administration of the first and second doses. In
ollaboration with the SMH, the vaccine efficacy (VE) values for one
ose and two doses were established at 70% and 90% for susceptibility
o infection (VE𝑆 ), and 75% and 95% for both hospitalization (VE𝐻 )
nd deaths (VE𝐷). It is important to note that during the scenario design
hase, detailed information on vaccine efficacy was limited, except for
he efficacy against symptomatic disease, which was informed by phase

trials (Polack et al., 2020; Pilishvili et al., 2021). The protection

onferred by the vaccination for the Alpha variant was assumed to be
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similar to those of the ancestral lineages, after considering the increased
transmissibility.

The assumptions of the future levels of NPIs and vaccination uptake
were incorporated based on the scenarios presented by the SMH. A
full description of all scenarios can be found at this link (COVID-19
Scenario Modeling Hub, 2021). In round 5 we explore two scenarios
that assume different levels, moderate and low, of NPIs. More precisely,
starting on May 1, 2021, we consider a reduction in the effect of
NPIs on mobility and contacts relative to the effectiveness of control
during the last two weeks in April, 2021. The two scenarios assume a
gradual reduction of social distancing measures by October 31, 2021
with respect to the April 2021 levels: an effective 50% reduction in
the moderate NPI scenario, and an effective 80% reduction in the low
NPI scenario. For example, if NPIs caused mobility to decrease to 50%
of its pre-pandemic value at the end of April, an 80% reduction in the
effectiveness of the interventions would imply a final mobility value by
end of October, 2021, that would be equal to 90% of its pre-pandemic
value (i.e., 0.9 = 1 − (1 − 0.5) × (1 − 0.8)).

Similarly, in the out-of-sample region, we consider two different
cenarios for vaccine uptake. The high vaccination scenario assumes
hat vaccination coverage saturates at 83% of the eligible population,
hile the low vaccination scenario assumes a 68% coverage. These
ifferent scenarios were used to address the impact of vaccine hesi-
ancy. Vaccination data was taken from Ref. Our World in Data (2021),
DC (2021) until May 1, 2021. Afterward, according to the SMH
cenario specifications, 50 million first doses were available per month,

following the 2-dose protocol (100 million total doses per month).
In round 5 the introduction of the Alpha variant in the US is mech-

anistically modeled by simulating the international spread using the
GLEAM model. The GLEAM model is initialized with the introduction of
a cluster of Alpha variant infections during the week of September 13–
19, 2020, specifically in London and Kent, UK. These initial infections
are modeled as being drawn from a Poisson distribution with a mean
of 40. This approach is based on the fact that the UK was sequencing
approximately 5% of positive COVID-19 cases at that time (WHO,
2020). We have incorporated into our model the assumption that the
Alpha variant is 50% more transmissible than the ancestral strain,
denoted by 𝜓 = 0.5. From this setup, the model generates around
300,000 stochastic realizations, each tracing the movement of indi-
viduals exposed to the Alpha variant traveling to the United States.
By aggregating this data, we are able to statistically characterize the
timeline of the stochastic introductions of the Alpha variant into the
US. This timeline is particularly important as it provides a day-by-day
count of individuals traveling from various international locations to
US entry points that is used at run time by the LEAM-US model as it
simulates the dynamic of the Alpha wave.

3. Results

Our multiscale model has been used to generate scenario projec-
tions for all rounds of the Scenario Modeling Hub (SMH). Each round
required modifications to the model to accommodate specific analy-
ses and variations in the epidemic landscape, such as the emergence
of new variants and changes in mitigation and vaccination policies.
This required adapting the model during the different scenario rounds
to incorporate the mechanistic description of multiple co-circulating
variants (up to 4 strains), waning vaccine efficacy (after round 7),
and variations in key disease progression times. The Supplementary
Information (SI) provides a narrative description of the model’s changes
over the 10 rounds, along with a summary table of key parameters used,
and an assessment of model performance. In the following, we focus on
the results concerning the emergence of the Alpha variant in early 2021
(round 5 projections). We will discuss the scenario assumptions and
show how our multiscale modeling approach enables us to analyze the
introduction and spread of the alpha variant across the US, emphasizing
the role of geographical heterogeneity.
5

3.1. Out of sample projections

Our model is calibrated using the complete epidemic history within
the US, spanning from March 2020 to May 2021, with the calibration
process based on weekly reported deaths (in-sample model estimates
and goodness of fit details are provided in the SI). The model is
calibrated separately for each of the four round 5 scenarios (COVID-19
Scenario Modeling Hub, 2021). We generate out-of-sample projections
for the expected number of deaths and hospitalizations, along with
associated uncertainties expressed as quantile ranges. These quantile
ranges are determined by considering the out-of-sample dynamics of
individual stochastic trajectories, selected using an ABC rejection al-
gorithm during the in-sample calibration period. Specifically, for each
scenario, our models provide target projections consisting of 23 quan-
tiles (ranging from 0.01 to 0.99 with increments of 0.025), covering
each week of the projection period. These quantiles represent ex-
pected incident hospitalizations and deaths. To facilitate the visual
representation and assessment of the probabilistic estimates, the quan-
tile projections are transformed into central prediction intervals (PIs).
These prediction intervals encapsulate the model’s level of confidence
that future observations will fall within a specified range of values.

Evaluating scenario projections requires a fundamentally different
approach compared to forecast models. While accuracy in predicting
actual outcomes is the main goal in forecasts, scenario projections have
different purposes. They are developed to map the range of possible
epidemic dynamics, rather than to offer precise predictions. Therefore,
assessing the quality of scenario projections it is not just about how
closely they match the ground truth, but also about the robustness of
the underlying assumptions of each scenario and the effectiveness in
enveloping the spectrum of potential trajectories. The consideration
of both accuracy and the quality of scenario-based assumptions is
the key for scenario modeling performance evaluation. Despite these
caveats, to assess the performance of scenario projections, we utilize
the weighted interval score (WIS) as a performance indicator (Gneiting
and Raftery, 2007; Bracher et al., 2021). The WIS considers the size
and positioning of prediction intervals relative to actual outcomes.
Lower WIS values indicate better forecasting performance (see SI for
a discussion of WIS methodology). For comparison, we consider two
reference models generated by the COVID-19 Forecast Hub: the naive
baseline forecast, which predicts weekly values similar to the median
of the previous week with observed fluctuations, and the ensemble
forecast, aggregating predictions from all modeling teams from the
Forecasting Hub (Cramer et al., 2022). Both reference models focus
on four-weeks ahead predictions. We calculate the WIS for our weekly
model projected incident deaths during the first six weeks of the
projection period (from May 8 to June 19, 2021) for each state in the
US and the District of Columbia. We compare these WIS scores with the
WIS scores of the baseline and ensemble forecasting models from the
COVID-19 Forecast Hub. Weeks beyond this period are excluded due
to the emergence of the Delta variant, which was not considered in
the scenario design. To compare the performance of the scenarios with
the reference models, we compute a WIS ratio. This ratio is obtained
by dividing the WIS of a given scenario and location by the WIS of
the corresponding reference model. A ratio smaller than one implies
a better performance of the projections with respect to the reference
scenario (lower WIS). An inferior performance is indicated by a WIS
ratio larger than one. The distribution of the WIS ratios of the scenario
projections is presented in Fig. 2B and C for each analyzed region and
scenario, comparing them against the COVIDhub baseline and 4-weeks
ahead ensemble models. The WIS ratios indicate that the scenario
projections outperforms the naive baseline in all scenarios and performs
comparably to the four-week ahead ensemble model. The median ratios
are well below one for the baseline model and close to one for the 4-
week ahead ensemble, suggesting similar performance for nearly half
the states performing better and the other half performing worse. No

significant differences in performance are observed across scenarios,
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Fig. 3. (A) Out of sample model projections of weekly reported deaths for the US and selected states until June 28, 2022. The solid lines represent the median values, the darker
shaded regions the IQR and the lighter shaded regions the 95% reference range. (B) Out of sample model projections of weekly hospital admissions for the US. The solid lines
represent the median values, the darker shaded regions the IQR and the lighter shaded regions the 95% reference range. (C) 𝑅𝑡 estimates for the US and selected states. The solid
lines represent the median values and the lighter shaded regions the 95% reference range.
l
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likely due to the relatively short assessment window of six weeks.
Additional rounds of the SMH are evaluated for the most plausible
scenarios in the SI. A comprehensive discussion of the performance
evaluation of scenario projections is provided in Howerton et al. (2023)
and in this issue (Bay et al., 2023).

In analyzing the performance of our models, it is however crucial
to recognize that both the baseline and the four-weeks ahead forecast
models are not naive in their design. These models undergo weekly
revisions incorporating updates in surveillance data and changes in
contact and mobility levels. This iterative updating process sets them
apart from scenario projections. Unlike the forecast models, scenario
projections are based on a set of initial assumptions and do not adjust
on the basis of new information gathered in the out-of-sample regime.

3.2. The dynamics of the alpha variant

To analyze the evolution of the Alpha variant across the US, we
focus on the scenario assumptions of the high vaccination scenario
and ensemble the moderate and low NPIs together, assuming a future
decline in NPIs effectiveness ranging from 50% to 80%. These two
scenarios can be regarded a posteriori as the most plausible scenarios,
meaning they closely align with the actual occurrence. In Fig. 3A and
B we show the results of the out-of-sample projections for 7 weeks
of the weekly number of deaths and hospitalizations for the US and
selected states (see SI for all states). In the figure, the out-of-sample
data are considered up to June 28, 2021, after that date the epidemic
trajectory shows the emergence of the Delta variant (lineage B1.617.2),
which was not considered in the scenario design. Our projections align
with the trajectories of the deaths and hospitalizations that capture the
decline of Alpha wave.

With a two-strain model we can distinguish between the infections
that are generated from the ancestral lineage and Alpha variant sep-
arately. Using the daily time series of new infections per lineage, we
can disentangle the contribution of each lineage to the effective repro-
6

duction number, 𝑅𝑡. The effective reproduction number represents the a
average number of secondary infections generated by a single infected
individual at time 𝑡. The 𝑅𝑡 value is a useful metric because it is af-
fected by factors such as population immunity and behavioral changes
(e.g., NPIs). In Fig. 3C we report the effective reproduction number
𝑅𝑡 of each lineage, including the overall 𝑅𝑡 for the US and selected
states (see SI for all states). The 𝑅𝑡 was estimated using a Bayesian
approach on the time series of the daily new infectious individuals
for each lineage taken from the median estimates of the calibrated
model (Zhang et al., 2020). We observed large heterogeneity’s across
states in the behavior of the overall effective reproduction number.

As the more transmissible variant spreads, its prevalence, 𝑃 , defined
as the proportion of infections generated by that variant, increases
which could result in an increase in the overall effective reproduction
number. However, other factors such as population immunity, vac-
cination prevalence, and NPIs could limit the disease burden of the
more transmissible lineage. Across the US we find a heterogeneous
burden of the Alpha wave. It is also important to stress that a more
transmissible variant is bound to become dominant even if the overall
number of cases is decreasing and the overall effective reproductive
number is smaller than one. This is evident for a number of states where
the increase of the Alpha variant was not associated with a sustained
increase in epidemic activity.

While a full mechanistic understanding of the dynamics of mul-
tiple strains is beyond the scope of this study, it is possible to use
a simple two-strain deterministic model with full cross-protection to
obtain the expression for the early growth of the prevalence of the more
transmissible strain as

𝑃 (𝑡) ≃ 𝑒𝜇𝜓𝑅𝑡(𝑡−𝑡0), (3)

where 𝑅𝑡 is the effective reproductive number of the dominant and
ess transmissible strain during the initial introduction and spread of
he new variant (during the time window 𝑡) and is assumed to be
onstant, 𝑡0 is the time of introduction, and 𝜇 is the generation time
ssumed to be the same for both strains (a full derivation of this result
nd its assumptions are reported in the SI). This expression shows
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Fig. 4. (A) Weekly fraction of infections due to the Alpha variant for each state as a function of time for each state in the contiguous US. The black circles indicate the median
day the variant becomes dominant. The gray lines indicate the IQR and the white lines the 90% reference range. The triangles show when the variant became dominant for some
states according to the Helix data source (Helix, 2021). (B) Fraction of cases due to the Alpha variant over time for: California, Florida, and Michigan. The green line (median) and
the shaded areas (90%RR) are the results projected by our model. The orange circles are the reported Helix data and the orange line corresponds to the 5-day moving average.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
that the emergence of a more transmissible strain’s dominance can be
highly variable across geographic regions, contingent upon the timing
of its introduction and the local effective reproductive numbers of the
ancestral strain, which in turn depend on factors such as NPIs, residual
immunity, and vaccination rates that vary among different states.

3.3. The introduction and establishment of the alpha variant

In our study, we used a compartmental structure specifically de-
signed as a two-strain model that intentionally excludes direct genomic
data integration. This decision was made to prioritize the validation
of the simulated epidemiological dynamics, enabling the model to
effectively characterize the general behaviors of multiple viral strains
without relying on detailed genomic information. During the calibra-
tion process, specific data on the growth and prevalence of the Alpha
variant were not incorporated. Remarkably, despite the absence of
direct genomic data, our model is capturing the prevalence trends of
the Alpha variant over time. Indeed, the multiscale modeling approach
used here leverages the international travel patterns that drive the
initial dispersion and introduction of the Alpha variant. Our results
show that the amount of international travel generated by the global
transportation network is strongly associated to the initial seeding
time of the Alpha lineage (see SI). However, the internal mobility
and contact patterns at the county level, which are integrated into
the mechanistic structure of the multiscale model, highlight that the
local factors play a critical role in the spread of the Alpha variant as
it competes with the ancestral lineage. This result parallels findings
concerning the heterogeneities in the initial introduction of SARS-CoV-
2 to the US during the beginning of the COVID-19 pandemic (Davis
et al., 2021). The heterogeneities found here go beyond the simple
expression reported in Eq. (3). Therefore, to study in detail the path
to dominance of the Alpha variant across the US, we calculate time-
varying prevalence of the Alpha lineage according to our model. We
7

define the time of dominance as the date when the prevalence of the
variant exceeds 50%; i.e. more than half of the new infections are due
to the Alpha variant.Fig. 4A shows the weekly fraction of infections due
to the Alpha variant over time. The results highlight the heterogeneous
paths towards dominance. The median estimates of the dominance
times span three months across the states. Our results are in agreement
with previously published projections that found that the variant would
become dominant by the end of March 2021 (Davies et al., 2021;
Galloway et al., 2021; Washington et al., 2021).

To further validate our results, we use data from the The Helix
COVID-19 Surveillance Dashboard (Helix, 2021) that is based on S-gene
target failure. The data reported by this dashboard include the state of
residence, the date of collection of the sample, the number of positive
tests results, the number of positive tests results with S gene target
failure, the number of sequenced test results with S gene target failure,
and the number of positive test results that were sequenced and known
to be of the Alpha variant (for biases and limitations see Helix (2021)).
By using these metrics, we can build a timeline of the prevalence of the
Alpha variant for each state reported in the dataset and compare it to
our estimates. In Fig. 4B, we compare the daily fraction of infections
due to the variant from our model (median and 90% reference range)
with the data from Helix for three states: California, Florida, and
Michigan. The surveillance data from Helix generally fall within the
confidence interval of our model. However, for some states, we observe
a plateauing after reaching dominance which deviates from our results.
This is due to other strains like the Gamma (or P.1) and Delta (or
B.1.617.2) variants of concern increasing in prevalence, which are not
included in our modeling scheme. In the SI, we show a comparison for
all states reported by Helix with a statistically significant number of
samples.

We leverage the resolution of our model to study combined statisti-
cal areas (CSA, 2020). Our results at a higher geographical resolution
confirm that the heterogeneity in reaching dominance is not only
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Fig. 5. (A) The fraction of Alpha variant infections during 4 different weeks across the US for all CSAs. (B) The time to dominance for selected states and their CSAs. The dark
green triangles indicate the median date the variant becomes dominant in a given state and the dark (light) gray bars indicate the IQR (90% reference range). The light green
circles indicate the median date the variant becomes dominant in a given CSA that is a part of that state. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
present at the state level but also when we look within a state. In
Fig. 5A we show the dynamics of the prevalence of the Alpha variant
across 4 selected weeks in early 2021. In early March (epiweek 2021–
09), most CSAs have either no detections or a less than 25% prevalence
of the Alpha variant according to the model except for a few high-traffic
regions such as New York-Newark, NY-NJ-CT-PA, Chicago-Naperville,
IL-IN-WI, and Miami-Port St. Lucie–Fort Lauderdale, FL Springs, GA-AL.
Zooming in, in Fig. 5B, for states containing multiple CSAs, we find
high intra-state heterogeneity with respect to the time of dominance of
the Alpha variant. The results show that the heterogeneity is not only
observed at the state level but also at CSA level. Interestingly, across all
eight states, the week marking the dominance of the Alpha variant in
several of their CSAs is outside (and mostly occurring after the median)
the 90% reference range computed at the state level. However, some
CSAs anticipate the state median. This is the case for Miami and New
York. These two cities in particular are the location of two important
international port-of-entries in the US that are associated with a large
incoming flux of travelers as they have the first and third largest traffic
volume in the US, respectively.

4. Discussion

As of March, 2023, the multiscale model presented here has been
used to submit 17 rounds of projections to the SMH. Our approach has
undergone many changes to adapt to the scenario specifications and
variations in the epidemiological landscape. The model’s calibration
time window has also varied based on the SMH coordinating team’s
direction. Despite these changes, the basic geographical structure and
resolution of the model have been maintained. Further details on how
the epidemic transmission model and other parameters have changed
can be found in the SI. Additionally, we report the performance of our
model across 10 rounds by measuring the WIS for the projection period
and calculating the ratio between the scores of two reference COVID-
19 ensemble forecasting models. It is important to note that the initial
conditions of the model were developed as scenarios and not with the
goal of forecasting. The scenario projections are also analyzed over
a longer time window, unlike the COVID-19 Forecasting Hub models
which only forecast a maximum of 4 weeks ahead. For a full assessment
of all rounds and models submitted to the SMH we refer the reader
to Howerton et al. (2023).
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The results concerning the introduction of the Alpha variant in
the US indicate that the importation events were both temporally and
spatially heterogeneous and determined by the source location’s con-
nectivity in the global transportation network. The initial importation
events and the prevalence of the more transmissible Alpha variant
progressed differently across various locations due to the changes in
mobility patterns, the distribution of population, and the strength
of NPIs. The initial importation of variants into different regions of
the US are linked to the global airline traffic determining the entry
points and early spread patterns of the virus. Furthermore, international
transportation hubs generally resides in areas with high population
densities with densely interconnected local mobility (commuting) net-
works. These networks in their turn contribute to the disease spread
in nearby regions. Finally, the strength and adherence to NPIs also
varied considerably, further contributing to the heterogeneous dynamic
of variants. Specifically our model indicates that these factors led to
considerable differences in the time when the Alpha variant became
the dominant strain, ranging across states from March to May, 2021.
Leveraging the resolution of the model we also studied results at the
level of CSAs. In doing so, we uncover high heterogeneities even within
states. CSAs featuring high mobility fluxes and populations experienced
an early growth of infections caused by the new variant with respect to
less populated and more secluded areas (when considering within state
results). This is evident in the contrast between international travel
hubs, where the Alpha variant dominance was noted as early as March,
and more isolated regions, which saw a later dominance in mid-August.

Like all modeling approaches, our multiscale model has limitations
and requires specific assumptions. Although two geographical levels
of analysis are considered, there could be heterogeneity in the tim-
ing of variant establishment at even smaller scales. Moreover, when
projecting scenarios, it is often challenging to obtain accurate informa-
tion about the growth advantage of emerging variants, which can be
attributed to increased transmissibility and/or immune escape (Volz,
2023). Assumptions about how to handle this growth advantage at the
mechanistic level can generate different results on long-term projec-
tions. Additionally, changes in characteristic times such as the genera-
tion time, which are not always available at the moment of estimating
the impact of an emerging variant, can also contribute to uncertainty.
Furthermore, scenario modeling requires assumptions about vaccine
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uptake, as well as changes in pathogen transmissibility due to popula-
tion behavioral changes. Therefore, scenario projections should not be
considered as a forecast of the epidemic’s future trajectory but rather
an attempt to bound possible future trajectories based on different
assumptions.

Although the results presented here focused on a particular variant,
the methodology can be extended to study how other, more transmis-
sible strains can spread quickly, take over the share of new infections,
and drastically alter the epidemic trajectory even during a successful
vaccine rollout. While modeling approaches cannot replace ground
truth data, mechanistic modeling frameworks can complement genomic
surveillance efforts to track the unfolding of variants of concern and
model their introduction, establishment, and path to dominance at a
fine-grained geographical scale.
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