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Abstract

The COVID-19 pandemic offers an unprecedented natural experiment providing insights

into the emergence of collective behavioral changes of both exogenous (government man-

dated) and endogenous (spontaneous reaction to infection risks) origin. Here, we charac-

terize collective physical distancing—mobility reductions, minimization of contacts,

shortening of contact duration—in response to the COVID-19 pandemic in the pre-vaccine

era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 mil-

lion anonymized, opted-in U.S. devices. We define five indicators of users’ mobility and

proximity to investigate how the emerging collective behavior deviates from typical pre-

pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze

both the dramatic changes due to the government mandated mitigation policies and the

more spontaneous societal adaptation into a new (physically distanced) normal in the fall

2020. Using the indicators here defined we show that: a) during the COVID-19 pandemic,

collective physical distancing displayed different phases and was heterogeneous across

geographies, b) metropolitan areas displayed stronger reductions in mobility and contacts

than rural areas; c) stronger reductions in commuting patterns are observed in geographi-

cal areas with a higher share of teleworkable jobs; d) commuting volumes during and after

the lockdown period negatively correlate with unemployment rates; and e) increases in

contact indicators correlate with future values of new deaths at a lag consistent with epide-

miological parameters and surveillance reporting delays. In conclusion, this study demon-

strates that the framework and indicators here presented can be used to analyze large-

scale social distancing phenomena, paving the way for their use in future pandemics to
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analyze and monitor the effects of pandemic mitigation plans at the national and interna-

tional levels.

Author summary

The COVID-19 pandemic resulted in some of the most significant disruptions to collec-

tive human behavior. In this study, we quantified the nature and scale of these disruptions

during the first nine months of the pandemic by estimating changes in daily routines

related to mobility, commuting, and social contacts. We used high-resolution mobility

data that describe the physical movements of over 5.5 million individuals in the United

States. Our findings indicate that the strength of the behavioral responses varied during

different phases of the pandemic, across locations (states and cities), and across social set-

tings (urban versus rural). We also found that reductions in commute flows were corre-

lated with employment characteristics and that our proposed indicators for social

interactions could be used as early warnings of potential future negative health outcomes

(e.g., new daily deaths), thus opening up the possibility of using these metrics as additional

situational awareness tools in future outbreaks.

Introduction

The near-ubiquity of mobile phone usage—coupled with state-of-the-art techniques for data

anonymization and user privacy [1, 2]—has led to unprecedented opportunities to gain insight

into the social response to the COVID-19 pandemic [3–11], to improve our understanding of

human behavior by quantifying reductions in mobility and changes in consumer behavior [9,

12], and it has contributed to the debate around the effectiveness of the different policies and

guidelines introduced to mitigate the spread of the COVID-19 pandemic [13–20].

Here, we present a framework aimed at characterizing collective patterns of physical dis-

tancing and we show some of its applications by looking at behavioral changes over time and

locations, and by examining the relationship between the observed changes and employment

characteristics and health outcomes. The proposed approach consists of several measures of

mobility and physical proximity: 1) the daily range of mobility for each user; 2) the fraction of

users that commute to work; 3) the fraction of users that travel between metropolitan areas; 4)

the number of unique contacts outside of home and work; and 5) the average duration of

those contacts. We compute these measures over a sample of anonymized, privacy-preserving

aggregated location data for a panel of approximately 5.5M users selected from more than 40

million mobile devices geolocated in the United States between January and September, 2020.

Together, these complementary measures provide a macroscopic signature of what happens to

a population when millions of individuals reduce their mobility and physical proximity. These

measures allow us to provide one possible working definition of collective physical distancing

in the United States during the first nine months of the COVID-19 pandemic, pre-vaccine era,

and to quantify how it emerged—and, to some extent, persisted—following work-from-home

policies, mobility restrictions, shelter-in-place orders, and other policy interventions imple-

mented and promoted during the COVID-19 pandemic [21–23]. We show that the defined

measures capture relevant differences of behavior changes in urban versus rural settings and

they are statistically associated with unemployment and teleworking rates. Notably, we also

find that the measures characterizing reduction in individual contacts are early indicators of
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COVID-19 deaths. These findings suggest that the proxy measures identified here can, in turn,

be used to calibrate epidemic transmission models aimed at defining the burden of the

COVID-19 epidemic [3, 24–26]. An interactive version of the results and measures included in

this manuscript (as well as access to the anonymized, aggregated dataset) is made publicly

available through the following online dashboard: https://covid19.gleamproject.org/mobility.

Materials and methods

Mobility data

Mobility data are provided by Cuebiq Inc., a location intelligence and measurement company.

Through its Data for Good program (https://www.cuebiq.com/about/data-for-good/), Cuebiq

Inc. provides access to aggregated and privacy-enhanced mobility data for academic research

and humanitarian initiatives. Cuebiq Inc. collects its data primarily through its proprietary

location-based Software Development Kit (SDK) that partners embed in their mobile apps. In

other words, Cuebiq Inc. mobility data is collected from smartphone applications where loca-

tion is at the core of the app’s functionality. This includes app categories such as maps, naviga-

tion, weather, and geo-specific retail. All data is collected with the informed consent of fully

anonymized users under GDPR and CCPA compliant frameworks. As part of the opt-in pro-

cess, users consent to share their anonymized data directly with Cuebiq Inc. for research pur-

poses. Users may opt out at any time, request copies of their data, and request that their data

be permanently deleted under portability and erasure clauses. In addition to fully anonymizing

the device IDs of each user by utilizing an encrypted hash, the mobility data undergoes addi-

tional privacy protections by utilizing patented privacy enhancing technologies. First, the

inferred coordinates of users’ home and work locations are up-leveled so that the new coordi-

nates will correspond to the centroid of their corresponding Census block group [27], thereby

precluding identification of individual users based on home or work addresses data, while pre-

serving sociodemographic inference capabilities based on publicly available census data. Then,

the mobility data is also subject to cleansing to remove visits to sensitive points of interest,

including military bases, sexual reproductive health centers, places of worship, elementary

schools, and other places with heightened levels of privacy sensitivity.

While this mobility dataset has been released to researchers in an effort to assist COVID-19

response and epidemic modeling efforts, the data collection process on itself has not been spe-

cifically tailored for public health studies. In this study, we characterize collective physical dis-

tancing for a panel of 5,506,590 users that were active between January 7th and June 30th, 2020.

Specifically, users are included in the panel if all the following conditions apply. First, each

user must be active for at least 21 days in each month from January until June 2020. Second,

on average, the spatial coordinates of each user must be recorded at least once per hour (aver-

aged over the number of days in which a user is active). Lastly, the average geolocation accu-

racy for each device needs to be less than 50 meters for the period of coverage. The considered

panel of users is representative of the U.S. population for several socio-demographic character-

istics such as age, sex, race, educational attainment, and earnings (see S1 Text).

Demographic and employment data

County-level demographic data, including the rural-urban designation as well as demographic

data used for statistical corrections are from the United States Census and the American Com-

munity Survey (https://www.census.gov). County-level unemployment data are from the

United States Bureau of Labor Statistics. Data about the percent of teleworkable jobs are from

Dingel and Neiman [28] and Dey et al. [29] that provide estimates for the percent of jobs that
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can transition to telework for Metropolitan Statistical Areas (MSAs) based on their occupation

distribution within each region.

State-level COVID-19 testing data and reopening data

Data about the COVID-19 testing and cases are from the COVID Tracking Project [30], which

compiles data directly from state health authorities. Data about the dates that states initially

began to reopen was collected from the New York Times [23].

Collective physical distancing indicators

In this section, we introduce five different mobility and proximity indicators that we use to

quantify daily changes in collective physical distancing: 1) commute volume, 2) mobility range

(radius of gyration), 3) inter-CSA transit, 4) distinct contacts per user, and 5) average contact

duration.

Estimating short-range traveling using daily commute volume. Daily commute vol-

umes count the total number of home to work trips originating from a given county within 24

hours. Cuebiq Inc. provides a list of obfuscated “personal areas” for each user. Observations

geolocated from within these locations are deemed to be coming for either the home or the

work location of the individual and are therefore up-leveled to preserve user privacy. That is,

these coordinates are aggregated to the centroid of the Census block group level that each

observation falls into. In order to quantify the changes in commuting behavior to and from

work, we classify personal areas into the home or work location to be able to count commute

flows. In particular, we consider the most commonly-visited personal area during nighttime

hours (9:00pm—5:00am) as the home location of the user, while the most common non-home

personal area visited during daytime hours (9:00am—5:00pm) is classified as the work location

of the user. This method is imperfect (i.e., it may obfuscate users who exclusively work night

shifts), but it is based on assumptions about the typical worker in the United States. Then, one

commute is defined as a user visiting their “home” and “work” in a given day. Lastly, in this

study we take as reference the definition and location of personal areas as identified in the

period immediately prior to the lockdown measures. Therefore, our commute metric reflects

changes with respect to the status quo existing prior to the COVID-19 pandemic.

Estimating mobility range using the radius of gyration. The radius of gyration [31]

characterizes the extent of a given user’s trajectory in a single day and its formal definition is:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

k~ri � ~rcmk
2

v
u
u
u
t ; ð1Þ

where n is the user’s number of observations on that day,~ri is the ith observed position of the

user, i = 1, 2, . . ., n, and~rcm ¼
X

i
~ri=n is the center of mass of the trajectory. This measure

gives us a standardized way to tell how far an individual is traveling from their average daily

position (center of mass), most likely their home and work locations, in a given day. I.e. a

larger radius of gyration corresponds to a trajectory with positions that are further away from

the person’s center of mass. The radius of gyration provides us with a way to measure the

“characteristic distance” [31] traveled daily by each individual and how their spatial range

changed during the different phases of the pandemic. From an epidemiological standpoint,

this measure is particularly relevant as reductions in people spatial ranges will reduce the rate

at which an epidemic will diffuse between (possibly distant) locations. Lastly, in order to
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compute typical mobility within a given region, we sum the total daily radius of gyration that

by users in that region.

Estimating long-range traveling using inter-CSA transit. To study the changes in long-

range traveling, we calculated the number of users who visited at least two separate U.S. Cen-

sus Combined Statistical Areas (CSAs) in a single day. In particular, CSAs are defined so that

each CSA groups together neighboring areas that share significant employment interchange

and that show a substantial degree of economic or social connection between them, often mea-

sured by commuting patterns. In other words, we measure the volume of long-range trips

between major metropolitan areas which allows us to capture—among other things—also vari-

ations in air traffic and long-range train and road trips.

Estimating social mixing using daily contacts. For the purpose of contact tracing, the

CDC defined a close contact as someone who was “within 6 feet of an infected person for at

least 15 minutes” [32]. Using this guidance, we operationalize the definition of contact as two

devices being within the same rectangular area of approximately 38m × 20m for at least 15

minutes and we define two measures quantifying contact mixing between individuals. Even

though defining contacts in this way can be noisy or imprecise due to the spatial resolution

considered, we show in the following that the measures introduced in this section positively

correlate with key epidemiological indicators, e.g., new deaths.

The method works as follows. Each time the time-stamped spatial coordinates of a user are

recorded, we associate the longitude-latitude coordinates to an 8-character geohash. A geohash

is a short string of letters and digits that allows to encode coordinates into a hierarchical spatial

data structure that tessellates the world surface into a grid. In our case, we consider geohashes

at an 8-digits resolution which encode rectangular cells of dimensions that are approximately

38m × 19m at the equator [33]. We define two users to be co-located if they are observed in

the same geohash for at least 15 consecutive minutes. For each user, we compute the number

of unique users that a device is in contact with during a single day and the total dwell time of

their daily contacts that fit the above criteria. We average these values across users in a given

region to arrive at county, state, and nationwide daily average contact duration and average
number of distinct contacts. Note, this method can record only contacts occurring outside of

personal areas due to Cuebiq’s privacy protection procedures that obfuscate the exact coordi-

nates for location events occurring within personal areas (e.g. users’ home and work

locations).

Typical behavior. In this manuscript, we report the metrics as percent of typical activity.

We select the period between January 16 and February 28, excluding holidays, as our baseline,

therefore defining what constitutes, in the context of this work, typical behavior. For each mea-

sure, we divide the indicator daily value by its average value during the baseline period for the

same day of the week (i.e., Mondays are compared to the average Monday during the baseline

period). Therefore, values of 100% denote typical behavior. For example, the timeline of the

percent of typical behavior for the commuting indicator at time t will be computed as
Ct=Nt
~C= ~N

where Ct denotes the number of commutes observed at time t, Nt denotes the number of active

users at time t, ~C denotes the number of commutes in the baseline reference period, and ~N
denotes the number of active users in the baseline reference period.

Ethics statement

The details of the IRB/oversight body that provided approval for the research described are:

Northeastern University, the Office of Human Subject Research Protection (HSRP), IRB

exemption number 20–03-23.
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Results

Quantifying spatial mobility and social mixing

On March 16, 2020, the United States government issued guidelines promoting nonpharma-

ceutical interventions (NPIs) to reduce the spread of the COVID-19 [21]. Such interventions

included school closures, state of emergency declarations requiring non-essential businesses to

close, and shelter-in-place orders to minimize person-to-person contacts. By April 7, 95% of

people in the United States were being urged by their states’ governors to stay home due to the

pandemic [22] and by early May 2020, daily commuting volume shows that across the United

States there has been a reduction of approximately 65% of the typical daily values (Fig 1a, com-

mute volume). Notably, in our data, the aggregate trend in commute volume has remained rel-

atively stable since early May, at about a 60–70% reduction, though it is beginning to trend

upwards again as of early September. We suspect this trend is both a reflection of the reality of

the “new normal” of work-from-home policies, along with increases in unemployment due to

COVID-19 in the fall of 2020. Commuting behavior informs us about the fraction of individu-

als that still go to their workplaces and this information is also relevant for the modeling of dis-

ease transmission in workplace settings [34–36]. At the same time, we also observe a sharp

decline in long-range traveling, as measured by the number of users traveling between CSAs

(Fig 1b) as compared to the baseline in every CSA included in this analysis. At its peak, the

amount of inter-CSA transits among the users in our panel had decreased by almost 50%, on

average.

Lastly, we capture the change in the range of individual daily traveled distance during the

COVID-19 pandemic and we show that by early May, the average radius of gyration of users

in our panel decreased by between 45–55% relative to a typical weekday, as shown in Fig 1a

(mobility range). Similar results have been reported previously for New York City [5]. The

range of distance traveled increases steadily throughout May and June, and by early July

Fig 1. Changes in mobility and social mixing over time. Graphs show deviations from typical behavior for the same weekday in the United States. (a)

Mobility: Individual mobility (radius of gyration), commute volume, and inter-CSA transit. (b) Contacts: Number of distinct contacts and average

contact duration events outside of work and home. By the national declaration of emergency (March 13), reductions in spatial mobility measures had

begun, reaching approximately 50% of typical values by April 1; while contact measures show a reduction greater than 75% by the same date. A 7-day

rolling average is shown alongside each measure. Two grey vertical dashed lines denote the introduction and expiration, respectively, of the CDC non-

pharmaceutical interventions guidelines.

https://doi.org/10.1371/journal.pdig.0000430.g001
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returns to about 95% of the typical behavior. This increase follows the rescinding of stay-at-

home orders and the steady reopening of businesses across the country, meaning increases in

mobility for both employees and consumers. However, it is also likely related to increased con-

fidence among the general public that activities requiring traveling, such as trips to the beach

and hikes, could be done while practicing social distancing, making them safe to engage in.

Indeed, this return to near-typical mobility range is not accompanied by a return to near-typi-

cal person-to-person contact events, giving support to the evidence that public’s confidence in

the safety of low-contact activities increased in time.

As a first measure of social mixing we considered the number of distinct contacts that a user

has in a given day, outside of work or home. These contacts quantify the opportunity for dis-

ease transmission to/from distinct individuals, being at the same coffee place, interacting at a

grocery store, and so on. On average, there was a dramatic decline in the number of distinct

contacts that users had in a day with the onset of this decline around March 11 (see Fig 1).

Users in our panel had approximately 75% fewer distinct contacts per day by mid-April.

Unique contacts increased steadily starting in May and through June, leveling off for the

remainder of the summer at approximately 40–50% reduction. This trend reflects a general

loosening of physical distancing, consistent with reopening of businesses as well as increased

comfort with outdoor gathering. Importantly, however, we do not see a full return to typical

behavior, suggesting that even faced with newly reopened amenities (shops, restaurants, etc.)

people in the United States remained reluctant to return to pre-pandemic levels of social

activity.

Characterizing effective contacts for disease transmission must take into account that the

probability of transmission increases also with the duration of the contact [37]. For this reason

we measured each user’s average total duration of contacts with other users, based on how

long their devices were located near each other. The total duration of contacts per day followed

a similar pattern to the number of unique contacts. By mid-April, the duration of contacts was

reduced by about 75% compared to typical behavior before social distancing measures took

effect. Through May and June there was a steady increase up to about a 45% reduction from

typical. The fact that total duration of contacts was reduced further than distinct contacts per

day indicates that the increase in distinct users met is not always accompanied by an increase

in time spent together. Again, some of this could be due to increased comfort with outdoor,

socially distanced behavior, such as passing others on a walk through the park. Similar to the

mobility range trends discussed earlier, throughout May and June there was a steady increase

in contact events. However, the trend does not approach typical behavior by the end of July,

instead hovering between 50–65% of typical.

The phases of collective physical distancing

The COVID-19 pandemic has brought some of the most substantial disruptions to collective

human behavior in living memory. The timeline of these behavioral disruptions is clearly visi-

ble in Fig 2, where we report an aggregate index for each state computed as the average per-

centage reduction with respect to the typical activity of the five previously introduced mobility

and proximity indicators. Using this aggregate index, we can characterize four distinct phases

of collective physical distancing behavior in the United States:

• Typical activity. From late January to late February, we observe a baseline period that define

the typical activity.

• Peak reductions. During this period we observe the dramatic reduction of all indicators fol-

lowing the federal and state mandates and mitigations.
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• Heterogeneous reopenings. The time window from early May to late June was marked by

states’ reopening of businesses and schools according to different schedules and strictness in

residual NPI’s.

• New normal. From July onward when mobility range and inter-CSA transit increased to val-

ues comparable to pre-pandemic levels, while commuting flows (i.e., people going to work)

and contact measures generally remained at values lower than typical pre-pandemic levels,

characterizing a new stage for people living through a pandemic.

During these four time frames, we see a combination of nationwide reductions in commut-

ing volume to/from work. People’s daily social routines changed dramatically as well, with

daily mobility being reduced by up to 60% in April, along with approximately 80% fewer con-

tacts with others per day at the peak of physical distancing. It remains a challenge to identify

any single cause of these changes in behavior. However, when looked at together, they offer a

way to characterize the evolution of our collective behavior, giving us a baseline for

Fig 2. The phases of collective physical distancing in the United States. (Top) County-level maps of collective physical distancing, with each county

colored by an average of its typical daily commute volume, individual mobility range, inter-CSA transit, unique contacts outside of home and work, and

total duration of contacts for the time frame listed. (Bottom) Heatmap of reductions in contacts and mobility, emphasizing key dates in every state and

the key phases of the pandemic in the U.S. (reopening data from [23]).

https://doi.org/10.1371/journal.pdig.0000430.g002
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understanding how societies react to such a massive disruption. In the Supporting Informa-

tion, we provide measure-specific curves for each state (S12 Fig) and for several major metro-

politan areas (S13 to S29 Figs).

Commuting, working from home, and unemployment. Commuting volume decreased

dramatically in early March, and, in most states, did not increase in the same way that the

other mobility/contact measures have. This is likely due to several reasons, from the historic

waves of unemployment in the spring and early summer, to a dramatic increase in telework-

ing. Indeed, throughout the COVID-19 pandemic in the U.S., we see a strong negative correla-

tion between the percentage of teleworkable jobs and commute volume in metropolitan

statistical areas (MSAs). For public health officials planning for future pandemics, this rela-

tionship between telework and commute volume is especially insightful; many of the NPIs that

have been introduced throughout the pandemic were designed to limit the amount of work-

place infections, and as such, reductions in commute volume that are due to increased tele-

work (as opposed to increased unemployment) could illustrate a preferable balance of

economic and public health priorities.

During the COVID-19 pandemic, many employers eliminated in-person interactions,

although many jobs in the United States cannot easily transition to remote work [28, 29, 38].

Furthermore, it is difficult to quantify the ubiquity of remote work across the United States

and various surveys have been conducted trying to estimate this number [39]. In addition, typ-

ical commuting patterns were also impacted by an unprecedented surge in unemployment

[40]. Therefore, we explore the relationships between commuting, unemployment, and tele-

working by combining our commute metric with two additional data sources: the Bureau of

Labor Statistics’s Local Area Unemployment Statistics (LAUS) dataset, which provides

monthly estimates of county-level unemployment rates; and Dingel and Neiman’s and Dey

et al.’s estimates of the proportion of jobs in an area that can be feasibly worked from home

[28, 29]. The teleworkability estimates are at the Metropolitan Statistical Area (MSA) level, and

the LAUS data at the county level. For this reason, in our analysis, we aggregate our measure-

ments to the MSA level, excluding rural counties. Note that while local unemployment and

commute volume vary month-to-month, the estimated proportion of teleworkable jobs is

largely a static quantity.

In Fig 3, we present the relationship between commute volume, unemployment, and tele-

workability in February, April, and July, with each month corresponding to a distinct phase of

the pandemic. In February—the baseline period for which we use to define “typical” activity—

there is no correlation between the percent of typical commutes in MSAs and the percent of

teleworkable jobs, nor is there a correlation between commuting and unemployment at that

point (Fig 3a and 3d). This is expected, as the United States had not yet experienced large dis-

ruptions resulting from the COVID-19 crisis. Then, in April, following the updated guidelines

about physical distancing and the massive surges in unemployment, commuting volume

dropped substantially across the United States (on average, about 40% of baseline levels, see

Figs 1a and 3b). During this lockdown period, the percentage of jobs that can transition to tele-

work show a -0.533 correlation with commute volumes (Fig 3b); we also observe a significant

negative correlation between commute volume and unemployment rate during this period

(Fig 3e).

Collective physical distancing in rural and urban areas. We also observe different levels

of collective physical distancing in different parts of the country, which reflects the heterogene-

ity in policy response, disease incidence, geography, and population structure across the US

(see e.g. [41]). By grouping our collective physical distancing measures with the National Cen-

ter for Health Statistics (NCHS) urban-rural county classification scheme [42], we can com-

pare the responses of people living in urban versus rural settings. We observe that large central
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metro (code 1) areas showed the largest reductions in our collective physical distancing mea-

sures for contacts and mobility range (Fig 4a–4c); the more rural the county, the less reduction

from typical behavior. However, users living in more urban counties also had lower baselines

for these measures (Fig 4d–4f), which we show using a standardized index as opposed to the

“percent of typical” values shown in Fig 4a–4c. As a point of comparison, by the beginning of

April, the median reduction of the number of distinct contacts for users in large/medium

metro counties approached a level similar to the baseline of a typical user in rural, micropoli-

tan counties (Fig 4f).

More-urban areas also began physical distancing behaviors earlier than more-rural areas;

for example, large central and large fringe metro areas dipped to 80% of typical for their con-

tact measures about five days earlier than small metropolitan areas, micropolitan areas, and

non-core areas. During the first week of May, micropolitan and non-core counties showed

mobility range that was around 75% of typical, while large central and fringe metro areas

remained at around 50% of typical (Fig 4a). A similar rural-urban gap is seen in the percent of

typical behavior for both measures of contacts (Fig 4b and 4c).

Collective physical distancing and the toll of COVID-19. Lastly, we validate the use of

the proximity/contact measures introduced in this manuscript as coarse-grained approxima-

tions for true person-to-person contacts. As such, we would expect to find a positive

Fig 3. Unemployment, teleworking and commuting patterns. Grouping county-level employment data to the Metropolitan Statistical Area (MSA),

we correlate commute volume with the percent of jobs that can readily transition to teleworking according to Dingel and Neiman [28] (top row) and

unemployment rate (bottom row) over time. (a & d): February, during the baseline period; (b & e): April, during the peak lockdown; (c & f): July, after

unemployment declined but commuting remained low—during the “new normal” phase).

https://doi.org/10.1371/journal.pdig.0000430.g003
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correlation between these measures and key epidemiological indicators, such as new deaths.

More specifically, we would expect that a lagged correlation would best capture this relation-

ship since it accounts for: a) the time from exposure to symptom onset (about 6 days); b) the

median number of days from symptom onset to death (between 13 to 17 days depending on

the age group considered); and c) the median number of days from death to reporting date

(varying from 19 to 21 days depending on the age group) [43]. Because of these factors, the

median delay we would expect in the correlation between our proxies for contacts and new

deaths is in the range 38–44 days. Nationwide, we see that this is indeed the case.

In Fig 5, we plot the nationwide percents of typical average contact duration (a) and distinct

contacts (b) against the daily number of new deaths per 100,000 people nationwide. The con-

tact measures are correlated at a delay d 2 [37, 44] days for each measure, which was selected

by maximizing the correlation between contact patterns and new deaths. We do the same com-

parison for the number of new infections in the S4 Text (S11 Fig), highlighting the robustness

of this correlation nationwide.

The color of the markers in Fig 5 corresponds to time; darker colors indicate later dates.

Here, we see an important relationship between our contact measures and the course of the

pandemic. Namely, as contact patterns increased in the early summer (lighter colored mark-

ers), new infections and new deaths followed; this, in turn, was followed by decreases in contact

events, followed again by decreases in new infections by late August (darker colored markers).

This is approximately the same time as when the curves in Fig 1b (the contact measures)

started to level off, while mobility and inter-city transit continued to rise (Fig 1a). What this

disconnect between mobility and contact patterns suggests is that our collective social behavior

Fig 4. Differences in county-level behavior based on rural-urban codes. Each county in the United States is assigned a rural-urban code, ranging

from 1 (large central metro) to 6 (highly rural, “non-core” counties). We average the percent of typical behavior per user (top row) and a standardized

index (bottom row) across counties grouped by these six rural-urban code designations. The standardized index obscures raw values but preserves

relative differences between groups; we do so by normalizing by the median value across all counties. (a & d): mobility range; (b & e): contact duration;

(c & f): distinct contacts. Seven-day rolling averages are plotted in bold above raw values plotted as thin curves.

https://doi.org/10.1371/journal.pdig.0000430.g004
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can reduce the rate of new infections and, as a result, new deaths. This finding is possibly trivial

to epidemiologists and public health officials, but it is nonetheless important for our under-

standing of how our collective behavior impacts the trajectory of a pandemic, to validate our

contacts measures as proxies for true person-to-person contacts, and it is also consistent with

other findings throughout the literature on COVID-19 [11, 44–46]. The ability to measure

these patterns in almost real time shows the potential benefits of using mobile device data in

forecasting (or “nowcasting”) the trajectory of a virus, and moving forward, they present a

baseline for our collective behavioral response to future pandemics.

Discussion

The massive efforts to comply with the CDC’s physical distancing guidelines came at a substan-

tial cost to the economic and social well-being of people in the United States. By quantifying

these nationwide behavioral changes, we get a glimpse into the relationship between large scale

collective behavior and the course of the pandemic. Learning from these patterns is necessary to

prepare for future pandemics; most notably because despite large-scale collective physical dis-

tancing, during the time window from February to December 2020, the United States reported

over 13 million cases of COVID-19. Furthermore, considering the period up to December 31st,

2020, more than 385,000 deaths were attributed to COVID-19 on death certificates [47]. This

suggests that in the pre-vaccine era, the timing, magnitude, and synchrony [48, 49] of collective

physical distancing in the United States was ultimately insufficient to completely mitigate the

nationwide outbreak. However, studies have shown that combining social distancing with other

interventions such as extensive testing, quarantines, and contact-tracing can help to keep the

Fig 5. Collective physical distancing and new deaths. Here we correlate daily contact measures nationwide with new reported deaths [30] between

April 30 and November 5, 2020. The horizontal axes correspond to the percent of typical contact patterns, while the vertical axis corresponds to the

(lagged) number of new deaths per 100,000. (a) Average contact duration (b) Distinct contacts. A lag of d days was selected for each state so as to

maximize the correlation between new deaths and contact measures. Maximum correlation is observed at d 2 [37, 44] (d = 44 is visualized) days that is

consistent with CDC estimates [43] that account for disease dynamics and reporting delays. In each subplot, darker colors indicate later dates and

marker size corresponds to an estimate of the median effective reproductive number (Rt) across all 50 states and District of Columbia (source: rt.live).

These contact measures are also positively correlated with new reported cases (but at a shorter lag, see S11 Fig).

https://doi.org/10.1371/journal.pdig.0000430.g005
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epidemic incidence to lower levels thus helping the local healthcare systems, while allowing for a

certain degree of relaxation of social distancing measures [34]. Indeed, that was the approach

that some countries, such as South Korea, Taiwan, and China had followed [50–52]. Ultimately,

for such a combined approach to work, it is essential to be able to quantify collective social dis-

tancing utilizing near-time indicators, like the ones discussed in this work.

During the “new normal” period from July to December 2020, there were millions of new

cases and hundreds of thousands of new deaths in the United States; during this same time

period, we see mobility patterns return to 100% of baseline levels while contacts remained at

around 65% of typical activity. This suggests two key things. First, a national average of

approximately 65% of typical contacts was not sufficient for avoiding the large number of

cases seen during that period. Further modeling efforts are needed to estimate the potential

effects that larger decreases in contacts would have had (e.g. 60%, or 50%, etc. instead of 65%).

Second, this suggests that over the course of the pandemic, people may have learned to adapt

their behavior in a way that allows them to travel while still limiting opportunities for contact

with others. For example, visiting a park or hiking are activities that are likely associated with

higher mobility but not necessarily more contacts. Indeed, in many cities across the United

States, we see a relative rise in visits to parks [9] during this time period. Learning from this

might inform goals or benchmarks for policy responses to this or future pandemics.

In this work, we quantified the unprecedented behavioral response to COVID-19 in the

first 9 months of the COVID-19 pandemic in the United States—collective physical distancing

at a nationwide scale—using five different measures of mobility and contact patterns. By

studying the daily mobility patterns of millions of anonymous mobile phone users, we show

how people altered their typical behavior, limiting daily interactions with others to comply

with policy interventions and in an effort to reduce their chances of becoming infected with

the virus. Understanding precisely and quantifying how individuals’ behavior changed over

the course of the pandemic is critical, and in this work we present several measures that trans-

form large-scale mobile device data into near real-time epidemiological insights. Of particular

importance, the contact proximity measures introduced here correlate with the onset of new

deaths nationwide; this correlation is maximized at a delay of 37–44 days, in line with the

range reported by the CDC [43].

Recent work has shown that a more nuanced understanding of typical human mixing pat-

terns can have dramatic effects on the spread of a disease and our models of the spread of a dis-

ease; it is particularly useful to understand age-based, setting-specific contact patterns within a

population [36, 53]. The current study is limited by the absence of this data, and in many ways

traditional surveying methods may offer more robust estimates (see [53]). However, the mea-

sures of collective physical distancing behavior that we introduce can be potentially general-

ized by using differences in Census tracts age distributions to estimate (on aggregate) age-

specific mobility and contact reductions. Lastly, we quantify contacts based on geographic

proximity and we do not attempt to link locations to information about the setting where these

contacts take place in (i.e., at a restaurant, workplace, park, etc); this information is particularly

relevant because the odds of disease transmission are much higher with contacts in closed

spaces compared to open-air environments [35, 54]. This can be addressed by measuring con-

tact events within a pre-identified list of points-of-interest.

Cuebiq Inc.’s mobility data used in this work have both strengths and weaknesses. As shown

in this study, it is clear that this data can play a significant role in enriching our understanding

of the effects of policy interventions and therefore enhance our ability to realistically model and

predict disease spreading during an ongoing outbreak by providing us with a real-time situa-

tional awareness tool that can allow us to monitor changes in physical behaviors and mobility.

However, these data also have some limitations: reliability may be impacted by the user opt-out
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mechanism if a significant number of users decide to opt-out of the data sharing agreement; we

do not have information regarding the specific list of apps the Cuebiq users’ are utilizing and

therefore we cannot directly control for potential self-selection biases in the user population;

GPS data can sometimes be imprecise, particularly in densely populated urban areas or loca-

tions with poor GPS signal, which could affect the quality of location-based data; and the gener-

alizability of the data might be limited due to its collection from apps where location is central

to functionality. In this study, we addressed the data limitations by building a selected panel of

users and by assessing its representativeness with respect to key sociodemographic characteris-

tics. Nevertheless, we have shown that it is possible to quantify collective physical distancing, at-

scale, during an ongoing pandemic using high-resolution location data. Moving forward and

despite the limitations listed above, the use of mobility and proximity indicators like the ones

proposed in this work will enable us to devise more precise and effective mitigation strategies,

allowing for the possibility of integrating social distancing approaches with other interventions,

and ultimately informing our actions and policies in the face of future pandemics.
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