
XTribe: a web-based social computation platform

Saverio Caminiti∗, Claudio Cicali‡, Pietro Gravino†§, Vittorio Loreto†‡,
Vito D. P. Servedio†, Alina Sı̂rbu‡ and Francesca Tria‡

∗Institute for Complex Systems (ISC), CNR, Rome, Italy
†Sapienza University of Rome, Physics Department, Italy.

‡Institute for Scientific Interchange (ISI), Turin, Italy.
§University of Bologna, Physics Department, Bologna, Italy.

Abstract—In the last few years the Web has progressively
acquired the status of an infrastructure for social computation
that allows researchers to coordinate the cognitive abilities of
human agents in on-line communities so to steer the collective
user activity towards predefined goals. This general trend is also
triggering the adoption of web-games as a very interesting labo-
ratory to run experiments in the social sciences and whenever the
contribution of human beings is crucially required for research
purposes. Nowadays, while the number of on-line users has been
steadily growing, there is still a need of systematization in the
approach to the web as a laboratory. In this paper we present
Experimental Tribe (XTribe in short), a novel general purpose
web-based platform for web-gaming and social computation.
Ready to use and already operational, XTribe aims at drastically
reducing the effort required to develop and run web experiments.
XTribe has been designed to speed up the implementation of those
general aspects of web experiments that are independent of the
specific experiment content. For example, XTribe takes care of
user management by handling their registration and profiles and
in case of multi-player games, it provides the necessary user
grouping functionalities. XTribe also provides communication
facilities to easily achieve both bidirectional and asynchronous
communication. From a practical point of view, researchers are
left with the only task of designing and implementing the game
interface and logic of their experiment, on which they maintain
full control. Moreover, XTribe acts as a repository of different
scientific experiments, thus realizing a sort of showcase that
stimulates users’ curiosity, enhances their participation, and helps
researchers in recruiting volunteers.

I. INTRODUCTION

Technology plays a fundamental role in connecting people
and circulating information, and affects more and more the
way humans interact with each other. The number of users
surfing the Web exceeded two billions in 2012 and an unprece-
dented huge amount of information is everyday exchanged
by people through posts and comments on-line, tweets or
emails, or phone calls as a natural aptitude of humans to
share news, thoughts, feelings or experiences. The Web is
thus entangling in an unpredictable way cognitive, social and
technological elements, giving rise in this way to the largest
interconnected techno-social system ever. Social networking
tools allow effective data and opinion collection and real-
time information sharing processes. The possibility to access
the digital fingerprints of individuals is opening tremendous
avenues for an unprecedented monitoring at a “microscopic
level” of collective phenomena involving human beings. We
are thus moving very fast towards a sort of tomography of
our societies, with a key contribution of people acting as
data gathering “sensors” and with a level of fine-graining that
only two-three years ago would have been considered science

fiction. All this has deep implications for the understanding of
the dynamics and evolution of our complex societies as well as
for our ability to start making predictions and face the societal
challenges of our era. Social Science disciplines, traditionally
depending on the recruitment of test subjects to perform
experiments, are for the first time experiencing the possibility
to gather significant data in a very effective and capillary
way, opening in this way the season of a computational social
science [1].

In this context, the use of the Web for research purposes
is changing the way research activities are conducted and
how data are generated and gathered in many scientific fields.
Despite the prediction, cast in 2009, that the new social
platforms appearing on the Web might have become a very
interesting laboratory for social sciences in general [1], Internet
based research still lies in its infancy and methodological and
procedural obstacles have to be faced in order to make it a
reliable tool of investigation. Two paradigmatic examples are
Planet Hunters1 [2], a game in which participants can help in
identifying new extra-solar planets using NASA data of star
brightness and Galaxy Zoo2 [3], in which players are asked
to classify astronomic objects of galactic type, by browsing a
catalogue of telescopic images. The above mentioned projects
have in common the involvement of individual volunteers or
networks of volunteers, many of whom may have non specific
scientific training, to perform or manage research related tasks
in scientific projects. In this sense these are two examples
of citizen science [4], [5], [6], i.e., a long-standing series of
programs traditionally employing volunteer monitoring for
natural resource management.

Citizen science projects are becoming increasingly focused on
scientific research [7], [8], [9] and amazing results have already
been obtained. For example, the 3D structure of viral enzymes
that challenged scientists for years has been discovered thanks
to the efforts of Foldit3 players [10], new candidate planets
identified by Planet Hunters’ participants managed to survive
data verification tests [2], and brand new astronomical objects
were discovered by Galaxy Zoo’s users [3]. These examples
show how social computation processes hold tremendous po-
tential to solve a variety of problems in novel and interesting
ways, and how amateur players are able to solve research
problems, even faster than their professional researchers coun-
terparts. Human ability to easily solve tasks that are difficult

1http://www.planethunters.org
2http://www.galaxyzoo.org
3http://fold.it

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.69

397

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.69

397

2013 IEEE Third International Conference on Cloud and Green Computing

978-0-7695-5114-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CGC.2013.69

397

to solve by machines has been largely exploited for instance
in labelling images, through the collaborative ESP Game [11],
or in language automatic translators, through the interactive
learning platform Duolingo4. In these last two examples, the
idea of linking playful activities with learning processes has led
to the paradigm of Games With a Purpose (GWAP) [12], i.e.
a way of engaging people in games that can extract valuable
information or work as a side effect of the game or the learning
dynamics. The playful rearranging of experiments, together
with their appealing graphic interfaces, has also proved to be
a fundamental ingredient for web-based experiments design,
boosting user participation and data reliability.

This idea of crowdsourcing, term coined in 2006 [13], is also
at the heart of on-line labour markets such as Amazon Me-
chanical Turk (AMT), where a job is distributed by employers
in small sub-tasks that on-line workers can perform in return of
proportionally small monetary payoffs. Interestingly, despite its
mercenary aspect, AMT has proven to be useful for scientific
purposes [14], [15], [16], by leveraging on its ease in recruiting
a potentially large number of experimental subjects. This
early experience with crowdsourced experiments has led to
the recognition that Web experiments, despite the unavoidable
partial control on the way participants are recruited and on
the context in which tasks are executed, can be successfully
used to study human collective behaviour and cognition and
can provide elements of validation of experimental practices
in the Web [17].

The tenets of social computation are being increasingly
exploited, but its use in the scientific community still lacks
systematization. The realization of a single project often re-
quires substantial effort and web-based experiments are still far
from being standard research tools. The lack of tools that can
greatly simplify and standardize the design of Web games and
experiments is a major bottleneck in the exploitation of such
new research opportunities. For example, despite its versatility,
AMT has not been conceived as an experimental platform,
lacking dedicated infrastructures for the design of experiments,
while offering some visual tools to develop simple interfaces.
Experimentalists are left with the task of designing their own
software solutions to manage interactions among participants
and to build effective interfaces. Moreover, individual solutions
to such problems often remain isolated with little or no
cumulative growth of tools and solutions. Hence the need
of a versatile platform to implement web-based experiments
with a very small coding effort. This is the aim of XTribe5, a
general purpose platform to carry on experiments in the form
of web-games. The word “game” is here intended as a real
time interaction protocol among few players implementing a
specific task, as well as a synonym of experiment on inter-
active behaviour. By providing the scientific community with
a general purpose platform for social-computation and web-
gaming, XTribe gathers otherwise separate efforts to use Web
resources for scientific purposes and provides the community
with a tool to design experiments on the Web, from simple
polls to more complex multiplayer games, bypassing much
of the “hard work”, e.g. hosting, user registry handling and
user pairing/grouping, communication protocols, exceptions
handling, etc.

4http://duolingo.com
5Already active and available at http://www.xtribe.eu

The aim of this paper is to describe the XTribe platform
and to provide the essential ingredients that would allow re-
searchers to create, submit and mantain their own experiments
with ease.

II. ANATOMY OF A MULTIPLAYER ONLINE EXPERIMENT

The GWAP applications cited above show a vast variety
of features and a very heterogeneous set of targets. But even
these motley experiences have elements in common, beside the
general idea of exploiting the force of the crowd. In order to
introduce the necessary steps to build a GWAP, in this section
we shall analyze the structural and technical components of a
generic GWAP, from an abstract point of view without going
into detailed technicalities. As a guide we shall consider here
the structure of the ESP Game, the most famous GWAP. In
this game, two players are asked to tag the same image, trying
to match their tags. They will input as many tags as they want
until one tag is in common to both; then they move to the next
image. Within a time limit of 2.5 minutes, the players have to
agree on as many images as possible, to increase their score.
The goal of the game from the experimenter perpective is to
obtain realistic valuable tags for online images, to be used by
search engines. We shall consider this game as a prototype that
will make the analysis of the typical game components more
clear.

At one extreme of our abstract structure lies the developer,
i.e. a researcher willing to create a web experiment. At the
other end lies the community, i.e. the ensemble of users who
will play the game. Depending on the experiment, this can
be a wide community or a subset filtered by age, gender,
language, interests or even geographical location. In the case
of ESP, those are the players who tag images. Developer and
users are just the two ends of a complex structure and in the
following subsections we shall describe what lies in the middle
and permits the execution of the game.

A. The interface: interacting with the user

In the GWAP experiments there is a flow of information that,
in most cases, starts from the user, e.g. in response to a given
question (“how will the other player tag this picture?”, in
the ESP Game case). Therefore, the application will need a
user interface allowing players to insert their answers. The
interface should be designed by researchers with the goal of
optimizing users’ experience, ensuring an easy and enjoyable
interaction. The user has to invest her time in paying attention
to the application and the entertainment itself offered by the
interface can be a reward for the user interaction. Moreover,
a successful interface design will not only persuade the user
to spend her time on the application but will also stimulate
her to involve other people. A well designed interface should
also help her in voluntary recruiting acquaintances, e.g. by
leveraging on social networks features, such as tweets about
the results, Facebook sharing of the results, etc. Even if the
fanciness of the interface is crucial, the designer has always to
keep in mind the biases introduced by the interface. Each kind
of interaction introduces biases, even the simple fact that users
are interacting through a computer. As we said, the reliability
of the information gathered is a fundamental point. Thus, the
impact of each bias introduced has to be carefully considered

398398398

in order to find a good compromise between the reliability of
results and the user experience.

B. The server side logic and storage

Once the information has been gathered by the interface, in
order to give feedback to users or results to the developer,
it is very likely that some elaborations will be needed. So
the application will need a logic elaboration part. In the ESP
case, the logic component receives the tags from each of
the two players, compares them and when a match is found,
feeds the interface with a new image to be labeled. When
the time is over, this component computes a score and sends
it to both players. While the interface runs on the browser,
i.e. on the user computer, the information processing should
happen server side, in order to guarantee reliability and security
(reducing the risk of failures, cheating and hacking). Moreover,
the game logic may require complex computation involving
data that the researcher cannot or does not want to make
available to the user browser. Beside this, there is also a matter
of control: the logic part has to be directly managed by the
developer, the other end of our scheme. Hence, it should run on
a machine under the developer control where all data generated
by the experiment can be properly stored for further research
and analysis. The logic part will also provide content for the
application (e.g., pictures in the ESP Game). In other words,
the logic part will take care of filling the interface with input
and feedback, as well as of gathering results.

C. The rest: technical but necessary issues

The interface and the logic are the nearest neighbour of
the user and of the developer, respectively. These two parts
are the core of the application, the “unique” parts designed by
researchers precisely on the project target. But the application
itself it is still far from being complete. There are at least three
missing fundamental parts:

1) a communication protocol between the two parts;
2) a user handling system;
3) an instance processing mechanism.

1) Communication: The communication between the inter-
face and the logic is potentially very difficult to implement. If
we consider the simple case of a client initiating the commu-
nication by sending a message to a server, the solution is quite
easy to carry out (e.g., with a HTTP request). But in case of
more complex communication structures, such as bidirectional
asynchronous client-server communication or, in multiplayer
games, client-client communication, the implementation can be
quite a difficult task requiring more sophisticated technologies
(e.g., web-sockets).

2) User handling: When dealing with users, a certain set
of functionalities is likely to be useful such as user registration
handling and profile management. At a basic level, it is a
matter of security and reliability, because registration can
provide a first filter against bots. Beside this, many experiments
require a certain level of profiling of the users, to differentiate
or group them depending on the gender, age, language, etc.
On the other side, users may enjoy to see the result of their
efforts, in the form of scores, ranks, etc. So they would prefer
their “player” identity to be recorded by the game. Obviously,

linked to this, there are also privacy issues: the developer has
to guarantee to the user that his personal data will not be
disclosed.

3) Instances: Once the interface has been prepared, the
logic is running, they are communicating and the user is
registered (if required), an instance of the game still has to be
created, in order to allow the user to join the experiment. By
instance we mean the single execution of the experiment task
involving one or more users. This management is relatively
easy for single player games, but it becomes non-trivial in
case of multiplayer games. A “waiting room” has to be
implemented, in order to make the users wait for others to
join.

These three parts have two things in common. They are
needed (if not all necessary they are at least all very useful) in
almost every kind of web-application and are not particularly
influenced by the specific experiment or game. Hence, since
this three parts are almost unrelated to the experiment, they
are the most technical and dull to implement. That is why a
framework or, even better, a platform that can take care of these
functionalities automatically would make it easier to create
web experiments. This is where the XTribe platform comes
in, to provide the technical “middleware” (i.e. Sec. II-C) and
allow the author of the game to focus on the game-specific
interface and logic (i.e. Sec. II-A and II-B). But the benefits
of the XTribe platform are not limited to these.

III. XTRIBE PLATFORM IN DETAIL

The XTribe platform has been designed with a modular struc-
ture so that most of the complexity associated to running an
experiment is hidden into a Main Server (called Experimental
Tribe Server or ET Server for short). In this way most of the
coding difficulties related to the realization of a dynamic web
application are already taken care by the ET Server and the
realization of an experiment should be as easy as constructing
a webpage with the main utilities for it. There are different
kinds of users of the platform: the system administrator who
runs the whole ET Server and provides all the necessary API’s
for it; the experimentalists who run individual experiments; and
the players who participate in one or more individual games.

On the XTribe platform each user/player interacts with one
or more of the available experiments/games. Each game is
conceived by the game developers/researchers who monitor
the evolution through their local machines. Games have two
components: the user interface (UI) and the logic - game
manager (GM). The interface is what is visible to players,
and will interact with them. The GM is represented by those
functional parts that process the action of the players in order
to implement coordination and specific game logics. These
two components (the UI and GM) have to be developed by
the researchers, since they are highly dependent on the game
itself. XTribe mediates the communication between the two
and hosts the game interface. The GM part of the game is
hosted by the researchers on their own server. In this way
they can directly collect the data in real time and have full
control over the experiment progression. It is important to
remark that XTribe does not store the data coming from the
hosted experiments. All scientific data collected during an
experiment can be conveniently stored by the GM, so that only

399399399

Users/Players

Game managers

ET

ser
ver

Blindate

Nexicon

...
...

Interfaces

Generic
Game

Fig. 1. A graphical representation of the system and its interactions.

the researcher who developed and published the experiment
benefits of the outcome of his/her work. Beside this, gathering
data directly grants the opportunity to analyse them as soon
as they enter the system in real time.

The XTribe platform also offers a page for the description
of the game rules, compiled by the researcher, from which
players can access and play the game. Additionally, it handles
player/user management (registration, authentication and pro-
filing) and manages the actual instances of each experiment
(creation, user grouping, error handling, feedback to users and
managers, etc.). A graphical representation of the platform is
depicted in Figure 1.

A. User management and community

Since experiments are created for research purposes, the re-
searchers are interested in many types of statistics related to
players. Beside this, they may also be interested in filtering
players for specific purposes, e.g. according to their age,
gender, language, geographical location, etc. To this aim,
XTribe handles a user registry in which players will be allowed
to register, if required, and play while the system maintains
all the information about them, such as scores, ranks, game
settings, leaderboards, etc. together with profile information.
If needed, this information can be sent to the GM, i.e. to the
experimentalist. Furthermore, based on this information, when
properly configured, the system will grant the access to the
game only to certain profiles. Being in charge of the handling
of the user registry, the system would also spare the researcher
from dealing with privacy and security issues since all data will
be properly anonymized and, possibly, encrypted. However, by
default, it is still possible for unregistered users to access the
games. Filters are applied only if set by the researcher.

B. Communication made easy

The communication between the UI and the GM is mediated by
the ET Server through a message based protocol. The general
functionality of a game can be summarised with the following
flow:

����
��

��	

��
��������

�
��

��
��

	�
��

�
�

��
��

�

��

	

�

������� ������� ���	�� ��
����

��	
��	

����
����
��	

	

��
��

��
��� ����
�����

���� �����

��
��������

��
����������
��� ����
����������

��
��������

��
�������
���
�������
� ��
�������
�
��
������
��

���
������
��

�

�������
����
��

���
��

�

������������������

����
��

Fig. 2. The communication flow of a two-player game on XTribe.

• Once the players have accessed the game, the system
will create an instance of the game. There may be
given rules for the game to start. A basic rule is
the number of players. There may also be different
constraints, e.g., pair players with similar scores or
players playing from different geographical locations.
As soon as there is a sufficient number of players
satisfying the grouping constraints, an instance of the
game starts.

• The interface will transmit the actions of the players to
the GM, but all messages will pass through the system,
which will group them by match instance number after
having anonymized them.

• The GM will then receive the data, will elaborate them
and will send the results of the elaboration back to
the system, which in turn will transmit them to the
UI of the various players. Obviously, the GM will
also save the data of interest locally (as it runs on
the researcher’s machine).

It is important to remark that the GM can send messages to
the UI either as a response of a message coming from a player
(responding to that player, to the others or broadcasting to all
of them) or by initiating the connection autonomously (e.g.,
after a given time). The platform will also handle errors and
exceptions. For instance, if one of the players disconnects
unexpectedly, the system will detect and notify it to the
remaining players and will send a message to the GM. Since
there is no direct communication between GM and interface,
the GM will experience no trouble at all.

In Figure 2 we depicted the communication flow of a two
player game: a first player joins the experiment and waits
for the second one to come. When both players are there an
instance is created and the player’s browsers are instructed

400400400

to load the game UI. When loading is completed the UI
notifies XTribe which in turn notifies the GM. Up to this point
everything is automatic. The GM will probably send custom
data back to the players to let the game start. During the game
custom data are exchanged between UI and GM, until the game
is over and the instance is closed.

All these features, especially the user registry and the
instance handling, usually require a lot of coding, quantified
in time and money, to be realized. Within XTribe, they
can be realized with a straightforward procedure. After the
configuration, the system will automatically take care of all.
What researchers have to do is to write the code of the UI and
of the GM only.

The UI has to be structured as a web page with plenty of
freedom in using HTML, CSS, Flash, etc., while the interaction
between the interface and the system has to be achieved by
means of the ET Server API, which are internally developed
as Javascript functions. With this simple set of functions the
interface will interact with the platform and, through it, with
the GM. Basically, the GM has to work as a simple HTTP
server hosted on the researcher’s machine. The communication
with the system takes place through the HTTP protocol and
all messages are coded in JSON format. The GM receives
the message as a POST string variable and sends back one
or more messages with a JSON string in the response body.
Besides a restricted set of system messages, the researcher is
given full freedom to decide custom messages for the internal
game protocol.

C. Social network integration

Since the strength of online games comes from large par-
ticipation, the XTribe platform has been integrated with the
most powerful online social network application, Facebook.
Through Facebook the recruiting of new users is easier, since
the new platform can spread through the network faster. The
integration consists of the possibility to view the XTribe inter-
face within the Facebook website and play games as Facebook
games. Additionally, it provides seamless user registration,
integrating the Facebook user information with the XTribe user
registry. Hence, players have a better user experience connect-
ing to XTribe without having to insert their information again,
while researchers can collect more demographic information
about the players of their games. Regular posts on user activity
on the platform are published on user walls, and in this way
additional players can be attracted to the system. Researchers
wishing to build new games take advantage of this integration
without any additional effort from their side.

XTribe can be used in conjunction with the Amazon
Mechanical Turk (AMT) platform in order to exploit its ability
to recruit users with a modest monetary investment. AMT can
be used to enhance participation and possibly in the initial
phase of an experiment, to provide the necessary pool of data
to begin with. The integration has been implemented by simply
releasing an AMT payment code at the end of every single
match or experiment.

IV. XTRIBE FOR DEVELOPERS

The XTribe platform already features several experiments
mainly about language, map perception, and opinion dynamics.

XTribe platform http://www.xtribe.eu
Documentation http://doc.xtribe.eu
Test platform http://lab.xtribe.eu

TABLE I. IMPORTANT XTRIBE RELATED URLS.

All scientists interested in developing experiments to be hosted
on the platform can take advantage of the documentation and
tutorials available on http://doc.xtribe.eu. Moreover they can be
granted access to a sandbox version of the platform available
at http://lab.xtribe.eu, where experiments can be tested during
their development phase. All important XTribe related URLs
are summarised in Table I.

In the following we will briefly describe how implementing
a multiplayer experiment on XTribe is a matter of hours,
provided that the developers have basic knowledge of HTML,
Javascript, and any server side language. We will use as a
sample the Minority Game, described below.

Minority Game. The game requires three players, who are
presented with two choices (e.g., two numbers or two amounts
of money). Each player has to choose one of the two options.
If all of them agree on a single choice nobody wins and
nothing happens. If only two players agree on their choice,
they lose while the other player wins the amount they chose.
A working version of the Minority Game can be played on
http://lab.xtribe.eu.

In this very simple experiment a scientist may be interested
in comparing user choices when numbers are shown with or
without a currency sign or whether changing the ratio or the
order of magnitude of the amounts results in behavioural shifts.
Implementing this as a web game from scratch would require
a lot of effort in managing waiting rooms for users in order to
group them 3 by 3. Moreover, the players make their choices
asynchronously. This means that when the last player makes
the choice the game terminates and the server has to contact
the other two players with the result: handling server to client
communication within standard HTML pages is not easy and
requires efforts in the implementation and even in the server
side configuration6. On XTribe the experimenter is left with the
only duty of implementing the HMTL interface and a server
side script that, given a group of three players (identified by
the platform with a unique instance number), chooses the two
values to show, collects answers, and determines the winner
(broadcasting the result to the players).

User Interface. The implementation starts with creating an
HTML page with two buttons, one for each choice. The
developer then has to include, in the page head, the script
Client.js which makes ET Server API available to the
experiment. The game UI will be hosted on the XTribe server
where the API is. In order to use the ET Server API it is
enough to instantiate it:

c = new ETS.Client();

and then register a user defined callback function to receive
messages:

c.receive('manager', myFun);

6Consider for example the fact that a user firewall may block communi-
cations on ports other than 80. To bypass this, all communication (including
websockets) has to be routed through well known ports.

401401401

The UI can receive messages both from the manager or
from the system (especially useful to handle errors). Each
message has a topic (a string describing what the message
is about) and a params field which can contain arbitrary data
about the message. In our game the manager will send to the
user two types of messages, one with the two choices at the
beginning of the game, and one with the result at the end of
the game. Consider these to be mgChoices and mgResult
respectively.

A possible implementation of myFun would be:

function myFun(msg) {
switch(msg.topic) {
case 'mgChoices':
play(msg.params[0], msg.params[1]);
break;

case 'mgResult':
answer(msg.params);
break;

}
});
where play and answer are two user defined functions
that change the HTML page according to the received values:
the first one will fill the two buttons with the proper values
chosen by the game manager, while the second one will show
a message to the users depending on whether they win or lose.

The last thing that should be implemented on the UI is
sending a message to the manager in response of a user
interaction (i.e., button click). This can be easily achieved with
ET Server API as follows:

c.send('manager', 'mgUChoice', v);
where mgUChoice is the arbitrary topic that describe this
kind of message and v is a variable that refers to what the
user chose.

Game Manager. The game manager runs on the experimenter
server and can be implemented in any programming language
(we use PHP in this example). It receives messages from
XTribe as a POST variable exactly as a common script receives
strings from an HTML form. The variable name is message
and it is a JSON encoded structure:

$msg = json_decode($_POST['message']);
Looking at the sender (either system or client) and

topic fields of the message, the manager will be able to take
proper actions. Other relevant fields of the received message
that have to be used are instanceId and clientId. These
are two numbers generated by XTribe that univocally identify
the instance this message refers to and the user who sent this
message (if applicable).

In our game, as soon as three players joined the experiment,
XTribe creates a new instance and notifies this to the manager
with a message with sender = system and topic =
instance. This is the perfect moment to generate the two
values these three players will be playing with. These values
can be stored, in association with the provided instanceId
in a database table or in some persistent data structure (easier
for GM written with Java, NodeJS, Python). The players will
be loading the HTML interface in the mean time. As soon
a each player is ready, this event is automatically notified to
XTribe and in turn to the manager. The manager can then
send a first message to the player, in our case a message with

topic mgChoices with the two values as params (e.g., as
an array). To send a message back to XTribe the manager
simply writes it (as a JSON encoded string) in the body of the
response: it is as easy as returning plain text:

$resMsg = array(
'recipient' => 'client',
'topic' => 'mgChoices',
'clientId' => $msg.clientId,
'instanceId' => $msg.instanceId,
'params' => array(v1, v2)

);
print(json_encode($resMsg));

Each time the manager receives a message with topic
mgUChoice it stores the user choice updating the database
or the persistent data structure. No response is required for the
first two players, but when the third one answers the manager
computes the winner and sends a broadcast mgResult mes-
sage back to all users plus an over message to the system to
inform it that this instance is over. Both messages can be sent
together as an array.

$resMsg[0] = array(
'recipient' => 'client',
'topic' => 'mgChoices',
'broadcast' => true,
'instanceId' => $msg.instanceId,
'params' => winner

);
$resMsg[1] = array(

'recipient' => 'system',
'topic' => 'over',
'instanceId' => $msg.instanceId,

);
print(json_encode($resMsg));

Optionally, with the over message, the manager can provide a
score for each player that will be used for the game leaderboard
automatically managed by XTribe.

Deploy the game. Once the UI and GM are ready the
experimenters will simply create a new experiment on XTribe,
providing basic information such as game name, description,
icon, screenshots, number of players, etc. Then they will
simply upload all the UI files on XTribe and provide a URL
to contact the GM running on their server.

V. CONCLUSIONS

XTribe is a general purpose platform that handles all the as-
pects of the realization of web experiments that do not concern
directly the game itself. In this way, it allows researchers to
focus only on the core of the experiment, leaving the rest to
the system.

The platform is already running and has proven its use-
fulness with several games already implemented by different
researchers. The already existing games refer to studies in
language and opinion dynamics, where the human component
plays a crucial role, and are designed as web based social
experiments. They show the versatility of the platform and
its ability to host experiments on a diverse range of topics, as
words association games, citizen mapping, response of individ-
uals to traffic information, expressing political opinions. These
are prototype experiments where issues concerning different

402402402

aspects related to results reliability and to the recruitment
ability of the platform, as well as of single games, can be
addressed. Besides their immediate scientific interest, they are
meant to open the way to the use of this online laboratory, also
involving other potentially interested research groups. In the
immediate future, the platform will also host an air pollution
mapping game that will be part of an international competition
related to environmental awareness.

An important result of the project is to allow researchers
working in different fields, who lack computer science exper-
tise, to create web-based experiments and games. In order to
further facilitate this, the next step is to create a set of “default”
GMs for games corresponding to the most standard types of
web experiment, such as surveys or coordination games. For
the time being, there is a default GM available that broadcasts
to all the players the messages received from each one.

As already stressed, the platform is expected to act as
a reference point for interested users, giving a fundamental
boost in facing a typical issue related to web experiments: the
recruitment. It is often quite difficult to gather a critical mass
of “suitable” players, and this can be an easier task for an
organized and collective platform than for single games. A first
step towards facilitating recruitment was Facebook integration.
In time, this process will become easier for new games. Since
they are hosted on the platform, and shown on its main
page, other players already involved in other games would
probably join, attracted by curiosity. We expect a community
of players to gather around XTribe playing different games and
also giving researchers feedback about their experiments. We
also expect researchers to aggregate into communities, sharing
advices and best experimental practices with each other. In the
near future, the platform will made available classic tools for
cooperation such us forum, to discuss experimental procedures,
and a repository for GM and UI, where willing researchers can
make their own code free for download and reuse.

ACKNOWLEDGMENT

We acknowledge the EveryAware European project nr. 265432
under FP7-ICT-2009-C for financial support.

REFERENCES

[1] D. Lazer and et al., “Social science: Computational social science,”
Science, vol. 323, no. 5915, pp. 721–723, 2009.

[2] D. Fischer and et al., “Planet Hunters: The First Two Planet Candidates
Identified by the Public using the Kepler Public Archive Data,” Monthly
Notices of the Royal Astronomical Society, vol. 419, pp. 2900–2911,
2012.

[3] K. Schawinski and et al., “The Sudden Death of the Nearest Quasar,”
The Astrophysical Journal Letters, vol. 724, no. 1, p. L30, 2010.

[4] S. Arnstein, “A ladder of citizen participation,” J. of the American
Institute of Planners, vol. 35, no. 4, pp. 216–224, 1969.

[5] M. F. Goodchild, “Citizens as Voluntary Sensors: Spatial Data Infras-
tructure in the World of Web 2.0,” International Journal of Spatial Data
Infrastructures Research, vol. 2, pp. 24–32, 2007.

[6] E. Paulos, R. Honicky, and B. Hooker, “Citizen science - enabling par-
ticipatory urbanism,” in Handbook of Research on Urban Informatics:
The Practice and Promise of the Real-Time City, M. Foth, Ed. IGI
Global, 2009, pp. 414–433.

[7] B. A. Nosek, M. R. Banaji, and A. G. Greenwald, “E-research: Ethics,
security, design, and control in psychological research on the internet,”
Journal of Social Issues, vol. 58, p. 161, 2002.

[8] M. J. Salganik and D. J. Watts, “Web-Based Experiments for the Study
of Collective Social Dynamics in Cultural Markets,” Topics in Cognitive
Science, vol. 1, no. 3, pp. 439–468, 2009.

[9] S. Cooper and et al., “Predicting protein structures with a multiplayer
online game,” Nature, vol. 466, no. 7307, pp. 756–760, Aug. 2010.

[10] F. Khatib and et. al, “Crystal structure of a monomeric retroviral
protease solved by protein folding game players,” Nat Struct Mol Biol,
vol. 18, pp. 1175–1177, 2011.

[11] L. von Ahn and L. Dabbish, “Labeling images with a computer game,”
in CHI ’04: Proceedings of the SIGCHI conference on Human factors
in computing systems. New York, NY, USA: ACM, 2004, pp. 319–326.

[12] L. von Ahn, “Games with a purpose,” Computer, vol. 39, no. 6, pp.
92–94, 2006.

[13] J. Howe, “The rise of crowdsourcing,” Wired, vol. 14, no. 06, 2006.

[14] L. B. Chilton and et al., “Seaweed: a web application for designing
economic games,” in Proceedings of the ACM SIGKDD Workshop on
Human Computation, ser. HCOMP ’09. New York, NY, USA: ACM,
2009, pp. 34–35.

[15] W. Mason and D. J. Watts, “Financial incentives and the “performance
of crowds”,” ser. KDD-HCOMP ‘09, Paris, France, June 28 2009.

[16] G. Paolacci, J. Chandler, and P. Ipeirotis, “Running Experiments on
Amazon Mechanical Turk,” Judgment and Decision Making, vol. 5,
no. 5, pp. 411–419, 2010.

[17] S. Suri and D. J. Watts, “Cooperation and contagion in web-based,
networked public goods experiments.” PLoS ONE, vol. 6, no. 3, p.
e16836, 2011.

403403403

