
LETTERS
PUBLISHED ONLINE: 23 JANUARY 2011 | DOI: 10.1038/NPHYS1884

Universality beyond power laws and the average
avalanche shape
Stefanos Papanikolaou1*, Felipe Bohn2,3, Rubem Luis Sommer3, Gianfranco Durin4,5,
Stefano Zapperi6,5 and James P. Sethna1

The study of critical phenomena and universal power laws
has been one of the central advances in statistical mechanics
during the second half of the past century, explaining tra-
ditional thermodynamic critical points1, avalanche behaviour
near depinning transitions2,3 and a wide variety of other
phenomena4. Scaling, universality and the renormalization
group claim to predict all behaviour at long length and
timescales asymptotically close to critical points. In most
cases, the comparison between theory and experiments has
been limited to the evaluation of the critical exponents of
the power-law distributions predicted at criticality. An excel-
lent area for investigating scaling phenomena is provided by
systems exhibiting crackling noise, such as the Barkhausen
effect in ferromagnetic materials5. Here we go beyond power-
law scaling and focus on the average functional form of the
noise emitted by avalanches—the average temporal avalanche
shape4. By analysing thin permalloy films and improving the
data analysis methods, our experiments become quantitatively
consistent with our calculation for the multivariable scaling
function in the presence of a demagnetizing field and fi-
nite field-ramp rate.

The average temporal avalanche shape has been measured
for earthquakes6 and for dislocation avalanches in plastically
deformed metals7,8, but the primary experimental and theo-
retical focus has always been Barkhausen avalanches in mag-
netic systems5,6,9–11. Theory and experiment agreed well for
avalanche sizes and durations, but the strikingly asymmetric
shapes found experimentally in ribbons11 disagreed sharply with
the theoretical predictions, for which the asymmetry in the
scaling shapes under time reversal was at most very small4,6.
(We note that the relevant models are not microscopically
time-reversal invariant; temporal symmetry is thus emergent.)
Doubts about universality4 were resolved when eddy currents
were shown to be responsible for the asymmetry, at least
on short timescales12, but the exact form of the asymptotic
universal scaling function of the Barkhausen avalanche shape
still remained elusive.

Here, we report an experimental study of Barkhausen noise
in permalloy thin films, where a careful study of the average
avalanche shapes leads to symmetric shapes, undistorted by eddy
currents (which are suppressed by the sample geometry). We
provide a quantitative explanation of the experimental results by
solving exactly the mean-field theories for two general models
of magnetic reversal: a domain-wall dynamics model13 and
the random-field Ising model14. The two mean-field theories
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Figure 1 | Extracting average shapes from noisy data by Wiener
deconvolution. Time-series data (jagged line) are traditionally separated
into avalanches using a threshold Vth set above the instrumental noise
(dotted blue line)—here breaking one avalanche into a few pieces. We
instead do an optimal Wiener deconvolution (smoothed red curve, see
text), allowing the use of a zero threshold (solid black line), which avoids
distortions of the average shape and also gives more decades of size and
duration scaling. Averaging over all avalanches with this duration gives us
〈V(t,T)〉 (dashed green curve).

are shown to be equivalent, and allow us to compute the
average temporal avalanche shape as a function of typical
experimental control parameters such as the field rate and the
demagnetizing factor.

The relevant statistical information encoded in the Barkhausen
noise could in principle be derived from the joint two-point time-
velocity distribution Gc,k(V ,t ;V ′,t +1), yielding the conditional
probability that the noise at time t +1 is equal to V ′ if it was
equal to V at time t . Here, c is the external field rate and k the
demagnetizing factor. The standard avalanche distributions can be
derived from this parent distribution; for example the duration
distribution is given by

P(T )=−
∫
∞

0
dV ∂1Gc,k(0+,t ;V ,t+1)|1=T

The renormalization group makes use of an emergent scale
invariance for Barkhausen noise. Here, the two-point time-velocity

316 NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys1884
mailto:stefan@ccmr.cornell.edu
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1884 LETTERS

S∼T
2

S∼T1

V  (V)

P(
V

)
P(

T)

Estimated k 

P∼T ¬2

P∼T¬1

c

P∼S¬1

P∼S ¬3/2

10¬2

100

10¬4

10¬6

P(
S)

Estimated c 
c = 3.23 Ω

Ω 0.40
0

1

 S (μWb)

10¬510¬7

〈S
〉 (

μW
b)

10¬4

102 103
10¬7

 T (μs)

0.05
0.10
0.15
0.20
0.30
0.40

Sp
ec

tr
um

10¬9

10¬11

10¬3 10¬1 (Hz)ω

Raw data
Wiener

¬2

2.0 × 10¬8 1.2 × 10¬7

108

102

107

106

105

104

 T (μs)

k 
(μ

s¬
1 )

0

0.1

Ω 0.40

a b

c d

ω

0.05
0.10
0.15
0.20
0.30
0.40

0.05
0.10
0.15
0.20
0.30
0.40

0.05
0.10
0.15
0.20
0.30
0.40

1010

108

106

1012

104

Ω (Hz) Ω (Hz)

Ω (Hz) Ω (Hz)

Figure 2 | Multivariable scaling; experiment (symbols) versus ABBM mean-field theory (lines), at different sweep frequencies Ω . a,b, For the
distributions of avalanche sizes S (a) and of durations T (b), we confirm c∼Ω , and k approximately constant (see insets, and also equation (2)), as
theoretically expected. Note the rate-dependent critical exponents P(S)∼ S−(3/2−c/2), and P(T)∼ T−(2−c). The error bars in the insets of a,b are estimated
errors of the best-fit parameters c and k based on random sampling around the best fit. (Vertical scales are shifted towards higher values for clarity.) c, The
mean avalanche size 〈S〉∼ Tx+1

= T2 below the demagnetization cutoff and∼T above it, and the power spectrum for Ω =0.05 Hz goes as
ω−(x+1)

=ω−2 (inset). d, The distribution of voltages P(V|k,c)∝Vc−1 exp(−kV). Note that a,b and d are three-variable scaling forms. The error bars have
been calculated by using the bootstrap method, with random replacement of entire magnetization cycles.

distribution, when coarse-grained in time by a factor b and
rescaled downwards in velocity by a factor bx , rescales at long
durations to itself:

Gc,k(V ,t ;V ′,t+1)= b−2xGc̄,k̄(V /b
x ,t/b;V ′/bx ,(t+1)/b)

where c̄ = byc is the rescaled field rate, k̄ = bwk the
rescaled demagnetizing factor and x,y,w are universal scaling
exponents. Repeating n rescalings until 1/bn = 1, leads to a
universal scaling form

Gc,k(V ,t ;V ′,t+1)=1−2x G(1−xV ,1−xV ′,1yc/c0,1wk/k0)

where G is a universal multivariable scaling function and c0 and
k0 are the small scale values of the field rate and demagnetizing
factor, respectively.

Universal scale invariant forms can then be derived for all
statistical quantities of interest, including the temporal average
shape. For avalanches of duration T , the average shape is defined
as the average velocity for avalanches that begin and end at V =0 in

a durationT . It has an associated universal scaling form,

〈Vc,k(1|T )〉 =
∫
dV ′V ′Gc,k(0+,0;V ′,1)Gc,k(V ′,1;0,T )∫
dV ′Gc,k(0+,0;V ′,1)Gc,k(V ′,1;0,T )

= T x V(1/T ,(k/k0)Tw ,c/c0T y)

where V(λ,K ,C) is a universal scaling function, dependent on
the rescaled time λ ≡ 1/T , the rescaled demagnetizing factor
K ≡ (k/k0)Tw , and the driving field C ≡ (c/c0)T y . It is universal
in the sense that in the scaling regime it does not depend on
microscopic features of the material, so long as the system is at
a critical point.

We record the Barkhausen noise by a standard inductive
technique on a 1-µm-thick permalloy film with polycrystalline
structure (see Methods section for details on the measurement
and sample preparation). The Barkhausen noise is composed of a
series of intermittent pulses, due to avalanches in themagnetization,
combined with background instrumental noise. In most crackling
noise phenomena, avalanches are usually identified by setting a
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Figure 3 | Experiment and theory: average shapes and scaling. a, The temporal average avalanche shape for different avalanche durations T, rescaled to
unit height and duration. Notice the symmetric, parabolic shape for short durations, and the flattening for longer durations. b, Mean-field calculation for the
average shape including a demagnetizing factor k as in equation (1). The shape is an inverted parabola, 4t/T(1− t/T), for short durations and flattens at
long durations. Here, k is 0.05 µs−1, slightly different from the value used in Fig. 2. c,d, Deviations from the inverted parabola. Note the quantitative
agreement between experiment and theory. The error bars have been calculated by using the bootstrap method, with random replacement of entire
magnetization cycles.

threshold Vth above the background noise. This method works
well if the signal to noise ratio is high, but can induce spurious
effects otherwise15. Our thin films have a correspondingly weak
signal, thus making the use of Vth inappropriate. In addition,
the measurement apparatus has a response function that distorts
the original pulses. We instead extract the pulses using Wiener
deconvolution16, which optimally filters the background noise and
avoids the use of thresholds (see Fig. 1).

The universality class of the Barkhausen noise in a sample
is usually identified by measuring the voltage distribution, the
power spectrum and the distributions of avalanche sizes S and
durations T (ref. 17; Fig. 2). Notice the striking agreement
between data and simulations (roughly matched in number
of avalanches), including two well-known predictions: the
(unusual) rate-dependent critical exponents in Fig. 2a,b,d, and
the crossover in 〈S〉 versus T due to the demagnetization factor
in Fig. 2c (not before seen in the mean-field universality class5,
presumably hidden by eddy-current effects). Notice that in
Fig. 2a,b,d these are three-variable scaling functions, although in
the first two cases no analytical form is known. The remaining
small discrepancies have experimental explanations: the weak
dependence of the demagnetizing factor k on the rate is plausibly

due to changing experimental conditions, the rate-driven vertical
shifts in Fig. 2c are due to the presence of instrumental noise, and
the deviations in Fig. 2d are at voltages below the instrumental
noise level of 18 nV.

Finally, we focus on the measurement of the average temporal
avalanche shape, considering all the avalanches of a given duration
T and averaging the voltage signal at each time step t . (In practice,
we average the avalanches using duration bins centred at T and
with geometrically increasing sizes.) Figure 3a shows the resulting
nearly symmetric temporal average avalanche shape, which starts
out as a parabola and then flattens as the duration of the avalanche
increases (see Fig. 3c).

It has been argued that dipolar magnetic fields are sufficiently
long-ranged that mean-field theory should be quantitatively
applicable in three-dimensional samples18. Similar considerations
apply to many of the systems exhibiting crackling noise, such as
dislocation-mediated plasticity19 and earthquakes20 where long-
range interactions are provided by elastic strains. Our films are
thinner than polycrystalline ribbons known to exhibit mean-field
behaviour17, but thicker than previously studied two-dimensional
films21. The classic mean-field theory for domain-wall depinning
is the single-degree of freedom ABBM model13, which treats the
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domain wall as a rigid object at position X(t ), advancing in a
randompinning field statistically chosen as a randomwalk inX ,

dX
dt
= ct−kX+W (X) (1)

with 〈W (X)〉= 0 and 〈W (X)W (X ′)〉= |X−X ′| (Brownian noise).
The ABBM model predicts that the avalanche size and duration
distributions decay as power laws with rate-dependent exponents10.
The exact form of the scaling functions for these distributions,
including the cutoff to the power-law behaviour, can be computed
in the limit c = 0 (ref. 10). To compare with experiments for c > 0,
we resort to numerical integration of equation (1), obtaining close
agreement, as shown in Fig. 2.

The average avalanche shape in the ABBM model has not been
extensively explored numerically, but an approximate analytical
calculation10,22 gave a lobe of a sinusoid V(λ) ' sin(πλ). In that
calculation, the approximation 〈V (X(t ),T )〉 'V (〈X(t )〉,T )〉 was
made. (That is, the fluctuations in the growth of the avalanche
size with time were neglected, leading to a slight distortion of
the predicted temporal average avalanche shape.) We avoid this
approximation by using a transformation23,24 to a time-dependent
noise with a variance proportional to the avalanche velocity V
(ξ(t ) has unit variance)

dV
dt
= c−kV +

√
2V ξ(t ) (2)

which can be solved in the Stratonovich interpretation in the
limit c = 0, k = 0. After defining a new variable Y = V 1/2, we
have a stochastic equation that we may solve explicitly. Using the
resulting probability for the first return to the origin, we calculate
the temporal shape10,25 (see Supplementary Information):

〈Vc=0,k=0(t |T )〉=
1
8
t
(
1−

t
T

)
where in the future we will use t instead of 1 to denote the time
elapsed from the beginning of the avalanche. We have numerically
verified that the average shape is indeed an inverted parabola (and
not the lobe of a sine wave10).

Interestingly, an inverted parabola was reported6,9 in numerical
studies of the (nucleated) random-field Ising model in the
mean-field limit (the ‘shell’ model)14. Front depinning and
nucleated transitions have different upper critical dimensions and
different short-range critical exponents, and it was conceivable
that their mean-field theories had different average shapes, albeit
sharing critical exponents.

On closer examination, these two models are the same in the
continuum limit. The shell model has a set of interacting spins
Mi=±1with random fields hi distributed by aGaussian, interacting
with a strength J/N with all other spins; each spin flips when
the net field it feels, hi + H (t ) + J/N

∑
j Sj , is positive. Here,

H (t ) = H0 + ct is the external field, increasing with rate c , and
the spin feels the magnetization M = (1/N )

∑
j Sj through both

the infinite-range coupling J/N and the demagnetizing factor k.
A shell-model avalanche proceeds in parallel, with a shell of Vn
unstable spins flipping at the n-th time-step, then triggering a new
set of spins Vn+1 to flip:

Vn+1= P(2JVn)

where P is the Poisson distribution for the set of spins Vn+1
to be included in the range {f , f + 2JVn}. For large V , we may
approximate the Poisson distribution as a Gaussian P(V )= V +√
V ξ , leading to Vn+1−Vn '−k̃Vn+

√
JVnξ(t ), which is clearly a

discretized version of equation (2), where k̃= 1−2J is the distance
to the critical threshold. This equivalence, in retrospect, provides an

alternative explanation for the origin of Brownian noise statistics for
the ABBM domain-wall potential18.

Finally, we consider the effects of the two main physical
perturbations, the driving field c and the demagnetizing factor k.
The transformed equation (2) now takes the form

dY (t )
dt
=

c
Y
−kY (t )+

1
√
2
ξ(t )

Under rescaling
√
V =Y→ b−x/2Y , t→ t/b, and for uncorrelated

Gaussian white noise, we have ξ→ b1/2ξ . By balancing the noise
with the left-hand side, we find x = 1; thus the driving field is
marginal (y = 0), and the demagnetizing factor is relevant, with
scaling dimension w = 1. The demagnetizing factor k sets the
characteristic maximum of the avalanche size and duration. The
two-point probability function in the case c = 0 can be found
exactly26 and the functional form of the resulting shape is

〈Vc=0,k(t |T )〉=
1
2k

(e2k(T−t )−1)(e2kt −1)
e2kT −1

and hence the scaling function is

V(λ,K ,0)=
1
K

(eK (1−λ)
−1)(eKλ

−1)
eK −1

Intuitively, the form of the scaling function leads to a flattening of
the average shape at long times because k acts to cap the velocities.

As can be seen in Fig. 3, this behaviour is verified by our
experiments: the value of k is chosen to be 0.05 µs−1, slightly
different from the value used to fit the data shown in Fig. 2;
this difference is expected because our analytical form is available
only for c = 0; simulations at c,k given in the insets of Fig. 2a
and b respectively, yield good, albeit noisy, agreement with
experiment. Also, the small residual asymmetry remaining is
plausibly attributable to amplifier-induced distortions that were
not possible to correct for. The impulse response functions of
the individual instruments (amplifier, low-pass filter and sensing
coils) were measured subsequently to taking the data, and used to
deconvolve the resulting signal (see Supplementary Information).

The effect of the driving field c , a marginal field at mean-field,
can be calculated exactly at k = 0 using a result from ref. 27: for an
absorbing boundary condition at V = 0, the two-point probability
function for the Brownian motion in a logarithmic potential is
Gc,k=0(V ,t ;ε,0)= 4/(0[1+ν])(4t )−(1+ν)ε2νV e−V 2/(4t )(1+O(ε2)),
where ν = (1 − c)/2. Using this expression, the scaling
form is reduced in magnitude but remains parabolic, with
V(λ,0,C)= (1/8)(1+C)λ(1−λ).

What lessons can be drawn from our work? The optimal
extraction of signal from noise is an understated but remarkably
powerful tool in the study of crackling noise. Using such tools,
modern experiments that allow simultaneous analysis of multiple
properties can provide sharp tests of proposed theories. Finally,
universal multiparameter scaling functions are powerful predictive
tools in problems with emergent scale invariance, going far beyond
power laws: shapes aremore informative than slopes.

Methods
Sample preparation and experimental measurements. A 1-µm-thick
ferromagnetic film with nominal composition Ni81Fe19 (permalloy) is deposited by
magnetron sputtering from a commercial target, on a glass substrate covered by a
2-nm-thick Ta buffer layer. The deposition is carried out with the substrate moving
at constant speed through the plasma to improve the film uniformity, with the
following parameters: base vacuum of 10−7 torr, deposition pressure of 5.2mtorr
(99.99% pure Ar at 20 sccm constant flow), and 65W radiofrequency power.
The deposition rate of 0.28 nm s−1 is calibrated with X-ray diffraction, which
also confirms the polycrystalline character of the film. Quasi-static magnetization
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curves obtained with a vibrating sample magnetometer indicate isotropic in-plane
magnetic properties with an out-of-plane anisotropy contribution, a behaviour
related to the stress stored in the film, and to the columnarmicrostructure28–30.

Barkhausen noise time series are obtained using the inductive technique in
an open magnetic circuit. The sample has dimensions 10mm×4mm. Sample
and pickup coils are inserted in a long solenoid with compensation for the effects
of the border. The sample is driven by a triangular driving magnetic field with
an amplitude high enough to saturate the film (±15 kAm−1). The driving field
frequency is varied in the range 0.05–0.4Hz. Barkhausen noise is detected by a
400-turn sensing coil (3.5mm long, 4.5mm wide, 1.25MHz resonance frequency)
wound around the central part of sample. A second pickup coil, with the same
cross-section and number of turns, is adapted to compensate the signal induced
by the magnetizing field. The Barkhausen signal is then amplified and filtered with
a 100 kHz low-pass filter, and data finally acquired at 0.2 and 4 million samples
per second. The data at different rates are statistically very similar after Wiener
filtering (spurious peaks are present in the high-frequency regime of the spectrum,
independently of the rate), with very small differences at short durations and small
voltages. Wiener filtering is practically more efficient at large rates, for uncorrelated
noise, but the noise amplitude remains larger than at low rates. Thus, the optimal
use of this filter depends on the observables studied. For the distributions in Fig. 2,
to gain more accuracy at short durations and small avalanche sizes by reducing
the noise level, the low rate is used. For the average temporal shapes, in Fig. 3, it
being more important to capture variations of the signal at small timescales by
a more accurate Wiener filter, the large rate is used. The time series is acquired
just around the central part of the hysteresis loop near the coercive field, where
the domain-wall motion is the main magnetization mechanism24. By using a thin
film, we have removed the confounding effects of eddy currents, whose timescale12
for the present sample is estimated to be Tp ∼ 0.04 µs, much smaller than the
avalanche durations studied.

Data analysis. To address the low signal from the thin film, we analyse the
data by using Wiener deconvolution16. The output signal is assumed to be of
the form Vout(t )= (h? (V +n))(t ), where h(t ) denotes the impulse response
function, V (t ) the original microscopic signal, and n(t ) the background
noise. Given an estimated impulse response Fourier series h̃(f ), an estimated
deconvolved noise power spectrum |ñ(f )|2 and a theoretically expected frequency
spectrum for the deconvolved signal |ṽ(f )|2, the filtered data V (t ) is the inverse
Fourier transform of

Ṽ (f )=
Ṽout(f )
h̃(f )

|ṽ(f )|2

|ñ(f )|2+|ṽ(f )|2

Here, the impulse function is estimated by measuring the impulse response of
the individual instruments composing the apparatus. We note that if the signal
has a high resolution, a detailed knowledge of the impulse response function is
needed to remove the effect of the instrument. As a signal function, we use a
power fit |ṽ(f )|2 ∼ f −γ (see also Supplementary Information). To estimate the
noise contribution |ñ(f )|2, we measure the power spectrum of the instrumental
noise, recorded without the material, maximizing over several runs. The Wiener
deconvolution, shown in Fig. 1 and in the inset of Fig. 2c, smoothens the signal
and removes spurious high-frequency oscillations due to the amplifier and filters
used in the experiments. Importantly, this procedure also allows us to avoid the
use of thresholds for defining the temporal extent of the avalanches, improving our
estimates for both the scaling exponents and the average avalanche shapes.
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