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Abstract— Large-scale network traffic analysis is crucial for
many transport applications, ranging from estimation and
prediction to control and planning. One of the key issues
is how to integrate spatial and temporal analyses efficiently.
Deep Learning is gaining momentum as a go-to approach
for artificial vision, and transfer learning approaches allow to
exploit pretrained models and apply them to new domains.
In this paper, we encode traffic states as images and use a
pretrained deep convolutional neural network as a feature
extractor. Experimental results show how the extracted feature
vectors cluster naturally into meaningful network traffic states
and illustrate how these network states can be used for traffic
state prediction.

Index Terms— Network traffic, convolutional neural net-
works, deep learning, transfer learning

I. INTRODUCTION

For many applications within transportation, such as es-
timation and prediction of traffic conditions, and network-
wide traffic control and management, methods to efficiently
analyze large datasets associated with large-scale traffic
networks are crucial. For prediction purposes, for example,
by and large two categories of approaches can be identi-
fied - data-driven and model-based. Data-driven approaches
use general purpose parameterized mathematical models to
capture (learn) from data the correlations between traffic
variables (speed, travel time, flow) over space and time.
Examples include simple generalized linear regression [1],
[2], support vector regression approaches [3], [4], and a wide
range of different ANN models [5]–[7] to name a few (there
are many overviews, e.g. [8]–[11]). In the last few years
data-driven estimation and prediction approaches have been
developed that operate on entire networks, particularly using
deep learning techniques [12]–[15]. Data-driven approaches
require few prior assumptions; are typically robust to data
failure; and can operate largely autonomously at good per-
formance. The downside is that the past is not always a
good predictor for the future, e.g. in case of incidents and
accidents. Moreover, the lack of explanatory power makes
them difficult to use for studying and exploring the actual
traffic patterns, what-if reasoning or traffic management and
control optimization.

At the other end of the spectrum we find (simulation)
model-based methods. Examples include traffic flow models
coupled with (extended) Kalman filters or more generally
sequential Bayesian estimators [16]–[19]. The great advan-
tage is that these methods provide an integrated solution

1Delft University of Technology, The Netherlands; Email: [p.k.
krishnakumari,o.cats,j.w.c.vanlint]@tudelft.nl

2ISI Foundation, Turin, Italy; Email: alan.perotti@isi.it
3aizoOn, Turin, Italy; Email: viviana.pinto@aizoon.it

for network wide state estimation and prediction, and that
they use tractable behavioral and physical relationships,
which make them highly suitable for studying and explaining
traffic patterns, what-if reasoning, control optimization and
application under non-recurrent conditions. The price for this
explanatory power is that model-based methods are generally
complex to design and maintain, and sensitive to data errors.
Moreover, they require many inputs (e.g. traffic demand and
control settings) and contain many parameters (driving and
choice behavior) that need to be calibrated or even predicted
from data. As such, model-based approaches, particularly
in large networks, present many ill-posed problems and are
typically highly underdetermined solutions given the avail-
able data. Even in cases we have abundant amounts of data,
typically these do not encompass sufficient information (e.g.
demand, behavioral relationships, traffic mix, route choices)
for a large-scale model-based approach.

In this paper we explore whether a data-driven technique
can be used to shed light on spatiotemporal traffic patterns in
large-scale networks. Many network spatial analyses methods
are based on the assumption that a so-called macroscopic
fundamental diagram is well defined for a homogeneous
region [20]. Identifying such homogeneous regions allow us
to model sub networks as reservoirs with predictable charac-
teristics. Some of the works that are based on macroscopic
fundamental diagrams create these homogeneous zones us-
ing network partitioning methods such as k-means [21] or
snake similarity [22]. One recent and promising approach
is to incorporate time into the spatial partitioning method
based on macroscopic fundamental diagram, thus creating
3D zones [23] which can be used to create 3D network
states [24]. Two recent papers take a different perspective
to traffic data: they analyze network traffic as images [25],
[26]. In the first paper [25], traffic data of a corridor is
converted into spatiotemporal speed map; a convolutional
neural network (CNN) is then trained on these maps (images)
to make a traffic speed prediction. In the second paper [26],
a so-called long short-term memory (LSTM) model is used
to perform the predictions. The power of these ideas is that
they allow application of machine learning techniques from
the computer vision domain—e.g. deep convolutional neural
networks—to traffic data.

Deep convolutional neural networks, when trained, act
as hierarchical detectors of features, so that the learned
features get progressively more complex (from segments
to lines and contours) from the first layers further into
the network, whereas the last convolutional layer detects
high-level features [27]. In a trained convolutional network,
the features detected by the convolutional layers are then
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correlated with the class labels by means of fully-connected
layers. The main disadvantages of deep learning models are
the computational resources needed, and the large amount
of training data required to train a deep network from
scratch. One of the emerging fields that try to overcome
these limitations is transfer learning [28]. Transfer learning
follows the intuition that many shapes and visual features are
not domain-specific (e.g. a circular shape could correspond
to an ’eye’ in a face detector and with a ’headlight’ in a
vehicle detector), and therefore the features extracted from a
network (trained only once on some generic-purpose dataset)
can be used for different tasks.

To this end, we propose to use an opensource pretrained
network to extract the relevant features from the traffic data
represented as images. This is the first work to introduce
transfer learning in transport, to the best of our knowledge.
As of now, only limited number of features have been used
to define network traffic states such as homogeneous speed
regions, network connectivity, etc. From this work, the aim is
to investigate whether features extracted from the pretrained
model can be used to distinctly define network traffic states.
These extracted features can then be used to enrich our
knowledge into network traffic states. In this work, we also
illustrate how these different network states can be used for
look-ahead predictions, predicting the next traffic state given
the current one.

The paper is organized as follows: Section II discusses the
proposed clustering technique for network traffic states using
pretrained models and the one-step prediction. In section III
we discuss Amsterdam data and parameters used for the
methods. In section IV we quantitatively and qualitatively
discuss the results and conclude the paper in section V.

II. METHODS

In order to use transfer learning, we have to use already
existing pretrained models. However, most of the sophisti-
cated models that are readily available are trained on images
and not traffic speed data. So, the first step is to convert
the network traffic variables into meaningful images that
preserves both traffic data and spatial information. Once
the data is transformed into images, we use pretrained
deep learning networks to extract high level visual (spatial)
features of the traffic network. These features are then used to
automatically identify the different network traffic states. The
traffic states are identified by clustering the feature vectors
using hierarchical clustering and using the medoid of the
clusters to represent the traffic state of that cluster. In order
to illustrate the importance of identifying these traffic states
and to access the quality of the clusters for different transport
applications, we train a classifier to predict the next traffic
state’s clustering label, given the current traffic state. Thus,
for network traffic state prediction using transfer learning,
there are five steps - (A) data transformation, (B) feature
vector extraction, (C) network traffic state clustering, (D)
medoid construction and (E) one step prediction. These steps
are explained in detail below.

A. Data Transformation
Most of the pretrained deep learning models are trained

on images. There are different ways to convert network
traffic data into images. One such way is to construct
the adjacency matrix weighted with speed and convert this
matrix into an image. However, because of the scale-free
property of most car traffic networks, the adjacency matrix
is too sparse to extract any visible information. Furthermore,
the adjacency matrix does not preserve the network nodes’
relative positions (as rows and columns can be arbitrarily
permuted). Another promising data representation method
was introduced in [26]. The traffic data is encoded in a grid-
like matrix where each grid represents a spatial region of
0.0001◦ × 0.0001◦ (latitude × longitude), which is approxi-
mately 10m × 10m. In order to map the traffic data into this
grid, the transportation network represented by latitude and
longitude needs to be converted to a regular data grid with
the aforementioned grid resolution and then the traffic data
is encoded into the data grid.

To build the regular data grid, the maximum and minimum
latitude and longitude of the transportation network are used
to construct a boundary. A linearly spaced matrix with the
given grid resolution is constructed. Now that we have the
data grid, the next step is to encode the traffic data. The traffic
data is usually mapped on a road stretch represented by a set
of a consecutive coordinates. However, these coordinates are
not uniformly distributed and might be more than the grid
resolution, say 0.0001◦, apart. Therefore, the coordinates of
the road stretch are evenly spaced with 0.0001◦ between
the points and then the grids that intersect with these points
are filled with the traffic data value of the road stretch. An
illustration of the steps involved in traffic data transformation
is given in Fig 1.

Fig. 1: Data transformation - traffic data to image (a) Sample
traffic network. The color represents the traffic variable value
(b) Grid of specific resolution overlayed on the network (c)
Traffic data embedded in the grid.

B. Feature Vector Extraction
Transfer learning [28] can be implemented in several

ways, but the common underlying approach is to use a
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pretrained model and either remove the last layers(s) or re-
train them on the destination dataset (a process called fine-
tuning). In this work, we are using the first scenario of the
transfer learning where we use the pretrained model as the
feature extractor by removing the fully connected layers,
thus keeping the output of the convolutional layers. Most
of the openly available pretrained networks are trained on
ImageNet [29]: the ImageNet project is an ongoing effort
and currently has 14197122 images from 21841 different
categories; AlexNet, VGGNet, Inception, ResNet are some of
the popular pretrained networks. We used Inception-ResNet-
v2 network, an improved Inception network from Google, for
the feature extraction which achieves 95.1% top-5 accuracy
on ImageNet [30]. The assumption is that all the relevant
features that make different traffic states distinguishable are
captured by the deep convolutional layers and replacing the
final layers with a simple clustering technique can provide
meaningful groups of traffic states.

Due to weight sharing in the convolutional layers, it is
easy to run a pretrained network on images of different
size [28]. We fed each image, corresponding to a snapshot
of the entire network at a given time, through the Inception
model to extract the features. The Inception model has 128
filters of 3×3 kernel size and 32 filters of 5×5 size [30]; the
dimensional space is progressively reduced by maxpooling,
eventually resulting in a feature vector of dimension 1536.

C. Network Traffic State Clustering

To distinguish different traffic states, we cluster the feature
vectors obtained from the pretrained deep nets. Since there
is no general rule for defining the different network states,
we have no prior information on how many traffic states
there are. Two obvious anticipated categories are free flow
and congested network states. Other than that, the rest of
the network states heavily depend on the topology of the
network and the demand and supply conditions. The main
questions we hope to answer through the clustering is first, if
the feature vector are distinguishable for obvious categories
and second, if the feature vector can satisfactorily identify
different and meaningful traffic states.

There are lot of options for feature vector classification.
However, given that we do not have a priori information
of the distribution of the types of network states, we opted
for unsupervised hierarchical clustering. Hierarchical clus-
tering builds a hierarchy of states based on the dissimilarity
between them. By looking at the hierarchy construction,
we can make a more informed decision about the number
(and nature) of traffic states for a given network. The
hierarchy can be constructed in two ways - agglomerative
and divisive [31]. Agglomerative clustering is a bottom-up
approach where all the samples start as a single cluster and
then these clusters are merged together based on a distance
dissimilarity measure to form new clusters, thus building up
the hierarchy. In the top-down divisive clustering, all the
observations or samples start in one cluster and are then
split based on a distance dissimilarity measure for building
the hierarchy.

In this work, we are using agglomerative clustering with
the Euclidean distance as the dissimilarity distance measure.
This method initiates each feature vector xk as its own
cluster. The connectivity between any two feature vectors, xi,
xj with N dimensions, is calculated using Euclidean distance
given by:

d(xi, xj) =

√√√√ N∑
k=1

(xk
i − xk

j )
2 (1)

To measure the distance between two clusters, the average-
link scheme is implemented which takes average Euclidean
distance between all feature vector pairs from those clusters.
Then, the two closest clusters will be merged to form a
larger cluster. This process continues until only one cluster
remains. The results of the hierarchical clustering is usually
presented in a dendogram [32], a tree diagram illustrating the
arrangement of the clusters. This provides a better overview
of the structure of the hierarchy to judge the optimal number
of clusters for this task.

D. Medoid Construction

Now that we have the number of clusters, the aim is to
construct a representative feature vector for each cluster. The
most common one is centroids or mean of the clusters. But
this leads to creating new data points which is unrealistic
for traffic data. Instead, we are constructing a medoid of the
cluster which corresponds to an actual data point in that clus-
ter [33]. The medoid is chosen such that the average dissimi-
larity to all the objects within that cluster is minimized. Given
a set of n feature vectors x1, x2, ...xn with N -dimensional
real vectors and a dissimilarity Euclidean distance function
d, the medoid xmedoid is defined in equation 2.

xmedoid = argmin
y∈{x1,x2,...,xn}

n∑
i=1

d(y, xi) (2)

E. One-Step Ahead Prediction

In order to illustrate how this kind of clustering can be
used for real time applications, we demonstrate a rudimen-
tary one-step prediction of traffic state in this paper. Given
the current traffic state, we predict the next traffic state
using the feature vectors and cluster labels. The accuracy
of the prediction is a measure of the usefulness of the
feature vectors in defining traffic states and the quality of
the clustering.

For the one step prediction, we are using an ensemble
of classifiers: Multi-Layer Perceptron, K-Nearest Neighbors,
Random Forest, Support-Vector Machine, and a Gaussian
Process [34]. First, we randomly split the dataset into a
training and a test set (encompassing 80% and 20% of the
data, respectively). Each classifier is trained on the feature
vectors of time n with the cluster label of time n + 1 as
the output. Note how this approach can be extended for k-
lookahead prediction (simply by pairing the features vectors
of time n with the labels of time n+ k) and for taking into
account the recent history as well (for instance, by including
the feature vectors of time n− 1, n− 2, ..., n− k as inputs).
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Each classifier has hyperparameters that were optimized
by means of grid-search and random-search. Each trained
classifier, when given an image from the validation set,
outputs a probability vector with size equal to the number of
clusters. For our prediction task, each element i of this vector
corresponds to the estimated likelihood, for the traffic state
determined by the input image and according to the trained
classifier, that the state will evolve into a state belonging
to the i-th cluster. The predictions of the five classifiers are
then composed by means of the majority rule, thus creating
an ensemble classifier.

A confusion matrix (also called a contingency matrix) [35]
is used to analyze the accuracy of this global prediction
against the ground truth. In this study, the ground truth is
the hierarchical clustering label for the following time slice.

III. EXPERIMENTAL SETUP

The data used in this study is travel time data collected
from license plate recognition systems at different critical
points of the major street network of Amsterdam, The
Netherlands. The shortest path between these points was
mapped on Open Street Maps (OSM) to create the network
shown in Fig 2(a). This mapped Amsterdam network com-
prises of 7512 links and 6528 nodes, excluding freeways.
The travel time is converted into mean speed per link in the
network for every 10 minutes between 00:00 AM and 23:50
PM for the 7512 links. Thus, there are 144 time slices for
each day. The data is available for 42 days from 22 February
2015 to 4 April 2015. For more details about data preparation
for creating the mapped network and converting travel time
to speed, we refer to [23].

Fig. 2: Data transformation of one time slice of Amsterdam
network (a) Amsterdam network with latitude as x-axis,
longitude as y-axis and the color represents the speed in m/s
at that time slice (b) Corresponding data matrix with grid
resolution 0.001◦. Speed is normalized between 0 and 1.

For the data transformation, we used a grid density of
0.001◦ for both latitude and longitude, thus creating images
of resolution 143 × 286 as shown in Fig 2(b). Some of
the time slices in the 42 days have no observations due
to faulty equipment and missing data. After removing these
time slices, we have 5775 images for the 42 days. Inception-
Resnet-v2 was trained on images that were scaled to 0 to 1. In
order to have consistent data, we used a maximum speed of
25m/s (90km/hr) to normalize all the images, corresponding
to the highest speed limit in the case study network.

IV. RESULTS AND DISCUSSION

This section presents the results of the clustering and
the prediction. The feature vector of 1536 dimensions are
obtained from the Inception-Resnet-v2 model for the 5775
images. Thus, we reduced the complexity from 7512 to 1536
for a single time slice, approximately 80% reduction. Since
some of these features might not be informative for the traffic
problem, a further direction of work would be to further
reduce the feature vector dimension either by investigating
which of the layers in the deep network is returning a con-
stant output for all images or using dimensionality reduction
methods such as principal component analysis (PCA), linear
discriminant analysis (LDA), etc. In this paper, we use the
1536 dimensions to analyze the network states.

Fig. 3: Dendrogram of the feature vectors

The dendogram of the hierarchical clustering of these
feature vectors is presented in Fig 3. From the dendogram,
the feature vectors are clearly distinguishable. The vertical
height is an indication of the distance between the individual
data points (feature vectors) or the clusters. We decided to set
the number of clusters to 5 for understanding the different
network states in each cluster. Each cluster is represented
by a different color in the dendogram structure as shown in
Fig 3. The cluster size can be modified per the application
requirement.

From the dendogram, we can observe that there are clearly
two distinct branches comprising of (i) classes 1,2,3 and (ii)
classes 4,5; and even further down the dendogram, there
is clear separability. A more in-depth assessment on these
classes is given in Table I. From the medoid of these classes
in Table I, we can broadly identify these two branches as
congested and free flow branch respectively. The congested
branch comprising of classes 1,2,3 are more closer in feature
space compared to the free flow classes as seen in the
dendogram. This can be confirmed visually as well. It is
hard to visually judge the difference between the medoid of
these classes (Table I) without additional meta information
such as a difference images of the medoids or quantitative
measures such as the average speed of the medoid of each
class. A closer inspection does provide insight into the
difference which is related to the difference in the spread
of congestion into the network links. Fig 4 provides a
quantitative variability between and within the classes - the
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TABLE I: Description of Amsterdam network traffic states.

Class Medoid
Distribution of
time slices in
each class

Distribution of
days in each
class

1

2

3

4

5

distribution of the average speeds in each class. Even though
the congested classes are similar, there is clearly variability in
speeds and network structure that was captured by the deep
networks. Thus, we broadly defined the class 1,2,3 as severe
congestion network state, class 4 as free flow and class 5
as free flow with mild congestion. Based on the application,
merging or further division of classes can be done. In this
work, we proceed with 5 classes as the aim is not to find
optimum number of classes but rather to see if predictable
traffic pattern emerges.

Fig. 4: Variability of speeds in each timeslice within classes

A more in-depth look at the clusters also provides insight
into the temporal differences among the clusters. The third
column of the Table I shows the distribution of the time
slices in each cluster. The first and second set of red bar
plots corresponds to the morning (6.30 am to 9 am) and
afternoon (4.30pm to 6pm) peak period in the Netherlands
respectively. It can be seen that the afternoon peak period is
more severe than the morning peak period for these 42 days
as the occurrence of free flow class 4 for the afternoon peak
period is significantly low. The most frequent congestion
pattern during both the peak periods is the class 5, implying
mild congestion is the regular network state in Amsterdam.
Further study can reveal which network state corresponds to
special or non-recurrent incidents, but this requires reliable
incident data.

This study also reveals the day-to-day regularity in the
congestion patterns by examining the distribution of days
within each cluster, shown in the column 4 of Table I.
It is clear that severe congestion is absent on Sundays.
Only class 4 and 5 network states occurred on Sundays
within the 42 days. Another find was that Monday have
less severe congestion for a working day with class 5 as its
most recurrent network state. Monday is comparatively more
similar to Sundays than the weekdays. Among the weekdays,
Friday is the most severe in terms of ratio of frequency of
congestion to free flow condition occurrences.

TABLE II: 80-20 one-step prediction results

PREDICTED
KNOWN Class 1 Class 2 Class 3 Class 4 Class 5
Class 1 0.28 0.23 0.32 0.07 0.10
Class 2 0.07 0.63 0.23 0.07 0.00
Class 3 0.13 0.29 0.47 0.05 0.06
Class 4 0.00 0.02 0.06 0.84 0.08
Class 5 0.02 0.03 0.08 0.17 0.70

We present one of the application of network state cluster-
ing in this study - one-step prediction. This shows how time
dimension can easily be integrated. Table II presents the 80 -
20 cross-validation results of the one-step prediction. It gives
an average accuracy of approximately 58% using the naive
classification approach. Even though the accuracy is not high,
the classifier is clearly learning some patterns emerging in
the temporal dimension using these feature vectors. More
complex time series based methods, such as LSTM, can be
used to encode the evolution of the feature vectors in the
temporal dimension for better accuracy.

V. CONCLUSION AND FURTHER RESEARCH

In this paper, we introduced transfer learning to solve
the problem of spatial clustering in the traffic domain. The
assumption is that even though the pretrained networks are
trained on natural images, the approach can be generalized to
create feature vectors that can used to identify meaningful
network states. This is proven in this study. The data di-
mension is reduced from 7512 to 1536, a reduction of 80%
- simply by presenting data-as-images to pretrained neural
networks. This process requires no training, and therefore
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is fast, scalable, and does not suffer from overfitting. This
kind of analysis opens up many possibilities for new ways of
looking at network traffic from the perspective of computer
vision.

There are various promising future directions for this
study. One of the main directions is to unravel the deep
network to understand which filters are aiding in identifying
these patterns. This can help in further reducing the dimen-
sionality of the feature vectors and also in understanding
some of the known or unknown traffic phenomena that the
deep network identified in its 160 filters. Another topic that
is interesting for future research is to look into 3D deep
networks with 3D kernels or filters so that the temporal
dimensions are incorporated into the deep network rather
than approaching it as two step process - spatial, then
temporal or vice versa. The spatiotemporal feature vectors
could provide more insight into spatiotemporal evolution
of congestion in a network. Since we have successfully
applied transfer learning for understanding spatial patterns
in network traffic patterns, other potential applications can
be public transport network analysis, water network or any
other domain with spatiotemporal data.
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