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ABSTRACT

The functional equivalence between mental images and perception or motion has been pro-

posed on the basis of neuroimaging evidence of large spatially overlapping activations between

real and imagined sensori-motor conditions. However, similar local activation patterns do not

imply the same mesoscopic integration of brain regions active during imagery and perception

or action. Here we present the first EEG evidence of topological equivalence between functional

network organization at intermediate and global scales during tasks. We show that the degree

of functional equivalence varies in the population and is associated with different magnitudes

in the restructuring of the functional connectivity between imagery and real tasks. In particular,

changes observed during imagery with respect to basal conditions account for the cognitive

effort experienced during imagery, and subjects characterized by stronger functional equiva-

lence exhibit smaller topological deviations in the imagination tasks performed after real tasks,

thus showing learning effects. Altogether, our findings point to different sensori-cognitive infor-

mation processing in the subjects showing different functional equivalence. We anticipate our

results to be a starting point for a novel dynamical description of functional equivalence, which

will be relevant for socio-cognitive theories of embodiment and cognitive formulations of how

different selves emerge from neurophysiological assets.

Mental imagery is one of our most striking cognitive capacities. It can be described as “the ability to
generate, represent and manipulate objects and events that are not physically present”1. It has long
attracted intense research as it plays an important role in human cognition, being involved in memory,
abstract/spatial reasoning, action planning, decision making, skill learning and language comprehension2, 3.
Researchers have long debated which cognitive process allows us to form perceptual/motor mental images
when the corresponding sensory stimuli are absent4. The leading hypothesis, formalized by Finke5 and
leading back to James6, is that a substantial “functional equivalence (FE)” exists between imagery and
perception (or motion). That is, the two cognitive activities share the same neurophysiological bases,
and imagery is an actual physical simulation of perceptual and motor experience7–9. Evidence of shared
mechanisms has been provided mainly by neuroimaging studies which have shown partially similar
brain activations during action or perception of all sensory modalities and the correspondent mental
images2, 3, 10–20. Indeed, spatial overlap between activations provides insights into which regions perform
similar roles during mental images and perception. However, local information about the spatial activation

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/268383doi: bioRxiv preprint first posted online Feb. 20, 2018; 

http://dx.doi.org/10.1101/268383
http://creativecommons.org/licenses/by-nc-nd/4.0/


is not sufficient to conclude that the temporal activation profiles evolve similarly. In fact, while the same
regions might activate in perception and mental images, their respective activation profiles might be
differently correlated21, and therefore activations alone are not sufficient to conclude that the brain codes
in the same way for sensory modalities and for mental images22. A stronger marker of genuine FE should
therefore lie in the coherent changes of the correlation patterns among regions’ activities.

Here we investigate this hypothesis in electroencephalogram (EEG) signals recorded during real and
imagined specific sensory conditions. This choice of recording modality highlights the focus on the
temporal features of brain activity rather than the spatial overlap. Since individual differences in the
ability of mental imagery modulate the degree of FE12, 23–27, we select a population for which behavioral
studies have suggested a higher variability in FE28, that is the subjects with high scores of hypnotizability
(Highs) compared to low hypnotizable individuals (Lows). Indeed, hypnotizability is a cognitive trait
predicting the ability to modify perception, memory and behaviour according to specific suggestions29,
both under hypnosis and in the ordinary state of consciousness30. Suggestions are instructions to imagine
sensory-cognitive contexts different from the real one, as occurs for the widely known suggestions of
analgesia that allow to control pain31. Hypnotizability is measured by scales32 that classify high, low and
medium hypnotizable subjects (respectively Highs, Lows and Mediums) who often exhibit characteristics
intermediate between Highs and Lows33. Different levels of hypnotizability have been associated with
structural and functional brain peculiarities34–36 , differences in sensorimotor integration and cardiovascular
control37 as well as in imagery abilities38–42 and in the behavioral effects of imagery43–48. In particular,
behavioural studies of the vestibulo-spinal reflex (VSR) suggested stronger FE in Highs48. The VSR,
elicited by galvanic stimulation of the labyrinth, induces body sway mainly in the frontal plane when the
head is directed forward and in the sagittal plane when the head is rotated toward one side49. Importantly,
the VSR earlier component cannot be voluntarily modulated50, 51. In the above cited behavioural study48

Highs and Lows were guided to imagine the rotated position of the head through both the visual and the
kinestethic sensory modality. Interestingly, despite the similar vividness of the mental image of rotated
head, Highs, but not Lows, exhibited the same VSR earlier component during the real and the imagined
position of rotated head. On these bases, we chose to study FE in Highs and Lows because they are
expected to exhibit very different degrees of FE.

We analyse here the correlation patterns of EEG signals from a topological point of view52. Topology53,
one of the deepest branches of mathematics, describes the shape and connectivity of spaces in any
dimension. Tools based on topological ideas, collectively dubbed Topological Data Analysis (TDA)54,
emerged over the last decade to study systems where relevant scales range between different spatial and
temporal resolutions, and information is encoded in higher-order interactions55. They provide a natural
language to describe local, mesoscopic and global features of data, and are therefore well-suited to capture
the mesoscale functional organization of activation patterns. Indeed, the shape and the topological features
of a dataset –be it an image, a network or a matrix– is effectively described by the patterns of dense areas
and the regions of disconnectivity among the former. The structure and properties of these holes define
–in a Spinozian way– the structure of the whole dataset. This is called the homology of the dataset, and its
graded version, persistent homology, is able to deal with weighted, noisy, un-evenly sampled and complex
datasets. It works by producing a sequence of progressively finer approximations –called filtration– of the
data and by tracking the evolution of the voids across such filtration. Important features and structures in
the data live longer through the filtration spanning a large range of approximations or multiple scales (we
provide further details in the Methods and the SI).
Persistent homology techniques have been recently applied to neuroimaging data to characterize resting
states of consciousness, physiological56, altered57, and dynamical58, and sensory tasks59. They have also
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been applied to EEG data in humans to characterize cognitive tasks60 and in animal models to classify
normal61 and pathological behaviour62. Interestingly, topological features were also able to detect the
encoding of geometric structure from neural activity alone in rat neuron spike data63, 64, and have been
used to inform the mapping between structural and functional connectomes65, 66.

In light of previous findings48, we hypothesize that stronger FE should be associated with vivid and
effortless mental images. We show here that is indeed the case, by reporting the first topological evidence
of such stronger (weaker) FE in Highs (Lows). In particular, we show that the topological deviation

between basal and imagery states predicts the cognitive effort required by a given imagery task, and that
smaller topological deviations between the imagery state and the target real state correspond to increased
vividness of the mental imagery. Finally, we show that Highs exhibit reduced topological deviations in the
imagination tasks after performing the real task, pointing to a more efficient sensori-cognitive information
processing scheme with respect to Lows.

Results

Deviations from basal state during imagery predict cognitive effort.

We analysed EEG signals (32 channels per subject) recorded from 18 Highs and 19 Lows. Each subject
performed 5 different tasks, with each trial including a basal and task condition lasting 1 minute each.
In basal conditions participants were invited to relax at their best. Visual (v) and kinestethetic (k)
imagery tasks were performed both before (Time 1: v1,k1) and after (Time 2: v2, k2) a condition of real
rotated position of the head (rr) in order to study potential learning effects. The order of the visual and
kinesthetic imagery- which for individual subjects was the same for trials performed before and after rr -
was randomized among subjects. Full details are provided in the Methods section. After each imagery
task, subjects were invited to score the vividness of their mental images and the experienced cognitive
effort on a scale from 0 (minimum) to 10 (maximum). For each subject, task and corresponding basal
period, we computed the correlation matrices between the recorded EEG signals. We then computed the
persistent homology, as described in57, 67 for each combination. The main output of persistent homology
are persistence diagrams (Figure 1a): for each dimensionality of holes (zero-dimensional connected
components, one-dimensional loops, cavities and higher dimension analogues), a persistence diagram is a
multiset of points in two dimensions, where each point represents a specific topological hole and is labeled
by its birth time across the filtration and death time. Features are generally considered more important
the larger their persistence is. Crucially, it is possible to compute a similarity metric between persistence
diagrams. The similarity of persistence diagrams is calculated using the persistence scale-space kernel
proposed by68. This kernel is parametrized by a scale parameter s which captures how wide the Gaussian
kernels on each of the points in the persistence diagrams are, and hence implicitly defines how finely or
coarsely we are comparing the two persistence diagrams (Figure 1b and Methods for details).
A high similarity between two persistence diagrams corresponds to small differences in the topology of the
two corresponding spaces. Furthermore, for a group of subjects, we can measure the similarity between
all pairs of subjects within the group and compare it with the similarity within another group. These are
the two lines in Figure 1c. A higher group similarity will correspond to the (homological structure of the)
subjects being more uniform as group (dark brown dots) as opposed to a more heterogeneous group (light
yellow dots).

First, we compare how much the subjects’ one-dimensional homological structure (i.e. the H1 group
composed by cycles) changed between a task X and its corresponding basal bX (bX ! X). For clarity,
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we dub this change the topological basal deviation for task X . The task and basal sets are respectively
{X} = {k1,v1,rr,k2,v2} and {bX} = {bk1,bv1,brr,bk2,bv2}. For a subject i and a range of s values,
we compute the kernel Ks (Xi,bX

i) between the 1-dimensional persistence diagrams obtained for each
task X and its basal bX . We then aggregate the similarities within a group (Highs, Lows) and plot them
as a function of s in Figure 1d). Remarkably, we find that, for all values of s , Highs display a larger
group-similarity than Lows. This implies that functionally Highs are more similar between basal and task
conditions than it is in the case of Lows. In other words, Highs require smaller basal deviation to perform
tasks.
Note that the basal deviation quantifies the functional reconfiguration needed to perform the task and
can thus be considered as a task activation cost. We expect therefore that higher basal deviations should
correspond to increased effort. This is consistent with subjective reports, that indicate that over all tasks
Highs require lower cognitive effort than Lows (F(1,35) = 4.494, p < .041, h2 = .114, see Figure S.6
in SI). Although subjective experience can rarely be reconducted to a single physiological index69, in
this case we find further support for this interpretation from the significant anti-correlation (Spearman
R =�0.3, p < 0.05) that we find between W(bX ,X) and effort (Fig. S.7).

In addition to smaller basal deviations, Highs as a group display more homogeneous topologies. To show
this, we compute the kernel similarity Ks (Xi,X j) for task X and Ks (bX

i,bX
j) for the corresponding

basal bX where we consider all pair of subjects i, j in the two groups. We did not observe any specific
dependence on the value of s , so we can eliminate it and obtain a more compact indicator of the difference
between persistence diagrams by integrating away s . Formally, for a task/basal a, group g (Highs - H,
Lows - L) and subjects i, j belonging to g, we consider the quantities Wg(a,a) = hKg

sl
(ai,a j)i(i, j)2g,s ,

where the average is taken over all pairs and ss. In Figures 1d and 1e we report the values of W obtained
respectively for all tasks and for all basal conditions in Highs and Lows. We find that in all conditions
Highs report higher values of W (t-test, p ⌧ 0.001, t 2 {4,10}), implying that the Highs are more similar
to each other than Lows are in all task and basal conditions.

Task accuracy associates with vividness.

The main claim of FE is that the neurological basis for perception and mental images is the same. Vivid
perceptual mental images should therefore be associated with brain states that are close to the one attained
during the actual perception. The more vivid the imagination, the more closely the imagined state should
reproduce the real one, and hence the closer their topological structures should be. We study therefore
the accuracy with which imagined states reproduce the target one (rr). We quantify the accuracy of an
imaginative task X as W(X ,rr). Then we ask how much imagery modifies the task patterns between Highs
and Lows. We do this by considering the difference of accuracy between Highs and Lows:

DWX ,rr

HL
= WH(X ,rr)�WL(X ,rr)

Positive values of DWHL(X ,rr) mean that that the functional topologies of Highs during imagery tasks
and real rotations are closer than for Lows. Note that DW is related to the area between the two similarity
curves that are being compared. In Figure 2a we display the results. We find that Highs have more similar
functional properties between tasks and the real rotation itself, as compared to Lows. Moreover, in the
same way, we can also compare how imagery tasks are encoded before and after performing the actual
head rotation, by considering

DWX1,X2
HL

= WH(X1,X2)�WL(X1,X2)
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Figure 1. Tasks are split in visual (v) and kinesthetic (k) and k1,v1 and k2,v2 refers to tasks before and
after real rotation (rr) respectively. a) From correlation matrix (left) to persistence diagrams (right)
through persistent homology (topological features). b) Given two persistence diagrams (PDs) we define a
similarity measure (depending on sigma) between them. c) Similarity measure applied on a set of PDs for
two different groups. d) Comparison of similarity between Highs and Lows for all basal-task pairs
bX ! X : the basal deviation of Highs is always smaller (Ks (X ,bX) is higher) than in Lows. Confidence
intervals have been computed assuming normal distribution of the sampled mean at 95% of confidence. e)
and f) Higher homogeneity in Highs group respect to Lows both in basal and task condition, respectively.
Confidence intervals have been computed using the bootstraping technique on the subsampled averaged
on a 95% level.
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Figure 2. Similarity difference between imagined and actual position of rotated head. a)
Difference between Highs and Lows in imagery tasks as compared to actual head rotations. Positive
values indicate that Highs are topologically nearer to the real rotation than Lows. Error bars correspond to
95% confidence level on the mean. b) Difference between Highs and Lows of the alteration of topology
between tasks before and after rotation (v1 vs v2, k1 vs k2). Positive results mean that Highs display more
similar topologies before and after the rotation, as compared to Lows. a) & b) Confidence intervals have
been computed using the bootstraping technique on the subsampled averaged on a 95% level.

We find that as a group Highs again display smaller distances between the encoding of the respective
imaginations (v1/v2, k1/k2) before and after the real rotation. Consistently with the topological results,
subjective reports indicate that Highs report higher vividness than Lows across both modalities (F(1,35) =
11.975, p < .001, h2 = .255). Results show a significant positive difference for all imagery tasks. This
indicates that –in all tasks– the topology of the imagination of Highs is nearer to that of real rotation as
compared to Lows (Figure 2b) (t-test, p-val p < 0.05, for all values go to SI, Table S.1 and Figure S.5 in
SI). With regard to the significant correlations reported between effort and basal deviation, the vividness
did not significantly correlate with topological variables (Fig S.7, Spearman correlations not significant at
95%). However, the absence of significant correlation between topological and subjective indices does not
challenge the relevance of the group level association accuracy-vividness, as the subjective experience is
typically multidimensionally determined69, 70.

Imagery performance improves in the subjects with stronger FE after real task.

We showed that basal deviation is closely associated with cognitive effort, with Highs displaying small
deviations and more uniformity topological structure as compared to Lows. In addition, and consistently
with the vividness results, the topology of Highs’ functional structure during imagination is closer (as
compared to Lows) to the one of real rotation. We ask now whether performing the real rotation before
the late imagery tasks (v2,k2) induces any changes in how such imagination task is performed. From the
accuracy point of view, we find for both groups negligible changes in accuracy between the early (v1,k1)
and late (v2,k2) tasks. On the basis of the results of the previous section, we would therefore expect to
find no significant change in the reported vividness scores. For Highs indeed we find that decomposition
of the significant Time x Hypnotizability interaction (F(1,35) = 5.035, p < .027, h2 = .132) reveals that
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Highs report the same vividness before and after the condition of real rotated head. Lows on the contrary
experienced lower vividness during later tasks with respect to the earlier ones (Time, F(1,18) = 4.284,
p < .053, h2 = .192). Since the topological accuracy remains essentially unchanged (relative accuracy
variation DW

<W> ' 0.04, below the vividness resolution), a second factor should be responsible for the lower
reported vividness in Lows. A possible explanation for this effect might lie in the different ways in which
subjects perceive their own performance of the imagination. This can be coarsely quantified by comparing
the basal deviation of the real rotation with that of the imagined ones. In particular, for a group g we
consider

Xrr,X
g

= |Wg(rr,brr)�Wg(X ,bX)|

In Figure 3 we show the results for the all imaginations tasks. The difference reported point toward a
substantial decrease of DWrr,X

g in Highs after the real rotation and an increase in Lows for both imaginations.
In parallel to these results, decomposition of the significant Time x Modality x Hypnotizability interaction
(F(1,35) = 5.591, p < .024, h2 = .138) reveals that Highs experienced lower cognitive effort during
later imagery tasks independently of the imagery modality, while Lows reported higher effort for visual
imagery after the actually maintained rotation of the head than before it (Time, F(1,18) = 4.788, p < .042,
h2 = .210) and no Time difference for the kinaesthetic modality.
We argue therefore that the reported lower vividness of Lows stems from the increased difference from the
brr ! rr deviation, resulting in an increased perceived effort, while not being rewarded by a significant
improvement in topological accuracy. Conversely, Highs do not improve significantly their accuracy, but
their reduced brr ! rr distance results in lower perceived effort and improved vividness. In other words,
while all subjects do not objectively improve their imagination, Highs are able to reproduce effectively the
actual brr ! rr transition, while Lows are not able to. These results are in line with previous evidence
indicating greater imagery abilities in Highs43, 48, 71, which was supposed to be sustained by the larger
superimposition of the activations involved in real and imagined sensory conditions in these subjects. Our
results based on EEG data support this but by phrasing it in terms of similarity in co-activation shapes
across different EEG signals, rather than of spatial similarity of regional activations.

Discussion

We showed that topological properties describe hypnotizability-related differences in the functional equiv-
alence between imagery and perception and, more broadly, in sensori-cognitive-information processing. In
fact, these measures indicate that, with respect to Lows, Highs a) represent a more homogeneous sample,
b) change significantly less during real and imagined perception with respect to basal conditions , c) show
significantly lower differences between real and imagined perception, d) report subjective vividness of
the mental images and related cognitive effort which can be accounted for by their topological features,
e) display learning effects in mental imagery after experiencing real perception. Crucially, the reported
differences –being topological in nature– stem from changes in the overall structure of brain activation
patterns, rather than from localized or region-specific changes.

Functional equivalence of mental images We report the first evidence of stronger functional equiva-
lence in Highs as they display smaller differences between the physically and imaginatively rotated head
position with respect to Lows (Figure 2), supporting the hypotheses raised from behavioral studies48.

The stronger functional equivalence between imagery and perception observed in Highs may provide
significant advancement in the physiology of the response to suggestions. In fact, theoretically a better
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Figure 3. Imagery induced alteration of topology compared to rotation induced changes. We
quantify using Xrr,X

g the change in effort before and after the real rotation, which can be related to task
adaptation. Highs display a decrease of the difference between basal deviation between real and
imagery-task, while Lows show a clear increase. This is associated with the decreased effort experienced
by Highs and the increased effort experienced by Lows during later imagery tasks. Confidence intervals
have been computed using the bootstraping technique on the subsampled averaged on a 95% confidence
level.
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simulation of physically induced perception may facilitate the response to sensori-motor suggestions and
possibly account for the involuntariness in action reported by the Highs experiencing the subjective and
behavioral effects of sensori-motor suggestions28.

The perception of involuntariness in action is a main component of hypnotic responding and has been
differentially interpreted72 by the neo-dissociative73, 74 and socio-cognitive75, 76 theories of hypnosis.
The former assume that hypnotic responding is reported as involuntary for the dissociation between
behavior and conscious experience, which could be likely accounted for by the observed modulation of the
functional connection between the salience and executive circuits in Highs36. In contrast, socio-cognitive
theories propose that the experience of involuntariness may be sustained by peculiar configurations of
cognitive, emotional, relational and sociocultural traits which make the suggested perception/behavior the
most adequate to a given situation, so that it is triggered automatically and experienced as effortless and
involuntary75, 77. We think that, at least for sensori-motor suggestions, stronger functional equivalence
between imagery and perception can support the socio-cognitive views by including the degree of imagery-
induced cortical activation among the many factors involved in the response to suggestions28.
In clinical contexts, the strength of the functional equivalence between imagery and perception may predict
the efficacy of imaginative training in neuro-rehabilitation78, 79 and sports9, 80. In this respect, hypnotic
assessment could become an easy and cheap tool to orient the set-up of individualized mental training.

Sensory-cognitive information processing We hypothesize that the scarce topological changes in
Highs are the effect of largely distributed information processing. This is in line with the findings of
spectral analysis revealing more widespread desynchronization in Highs than in Lows during both visual
and somesthetic imagery81. In addition, the scarce changes elicited by tasks in Highs agree with the
findings of Recurrence Quantification Analysis which failed to detect differences in the EEG recurrence
plot of Highs when they did and did not receive efficacious suggestions of analgesia during nociceptive
stimulation70.

Although the performance at cognitive and motor tasks has been associated with reconfiguration of the
brain functional connectivity82, 83, higher intelligence has been found associated with scarce task-related
brain network reconfiguration83 and spectral analysis supports the view that the lower the power changes
the higher the cognitive performance84–86(Cheron et al., 2016). Indeed, we have sufficient evidence for
the Highs’ extraordinary ability to perform cognitive tasks. It is indicated by their peculiar attentional
ability87, 88, their proneness to disregard irrelevant information89, to voluntarily modulate their conscious
experience according to specific suggestions30 and to modify their state of consciousness voluntarily90.

It has been proposed that the mechanisms underlying cognitive activities change activation patterns
characterized by a more segregated, within network structure into other patterns characterized by pre-
eminent between networks connectivity91. The shift from one to the other could be induced by ascending
neuro-modulatory systems92, 93. The latter might be more efficient in Highs and maintain their EEG activity
in a highly distributed mode of functioning independently from tasks. In Highs, in fact, we have indirect
evidence of hyperactivity of the cholinergic and/or noradrenergic system indicated by their shorter reaction
times in attentional tasks94, 95 and of higher dopaminergic tone96, although the mechanism classically
considered responsible for it - less efficient dopamine catabolism by Catechol-O-Monoamine-Oxidase97 –
has not been confirmed98, 99.

Limitations. Although imagery is bilaterally represented in the brain100, the actual position of head
rotated toward the right side may have activated the left and right hemisphere differentially. Thus, a
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limitation of the study is that the EEG laterality was not taken into account. It would have increased
the number of factors of variability too much with respect to the sample size. Indeed, a much larger
sample would also allow for a more sophisticated hypnotic assessment able to differentiate Highs and
their topological features according to their hypnotic profile (that is the quality of the items they passed
on the scoring scale) rather than simply to the total score reported on hypnotizability scales101. Finally,
present findings allow to suggest that the Highs’ response to sensory suggestions could be facilitated by
larger superimposition of the cortical activations associated with imagined and physically induced sensory
experience, thus sustaining the reported involuntariness in action. Nonetheless, this mechanism may be
not sufficient to explain the effects of suggestions in different domains such as distortion/suppression of
memories.

Conclusions

Topological properties provide the first evidence of EEG functional equivalence rooted in the coevolution
of brain activations. They reveal hypnotizability-related sensory-cognitive information processing and
of stronger functional equivalence between imagery and perception of the position of a body part in the
subjects with high scores of hypnotizability. Moreover, our results provide insights of efficient versus
expensive information processing between high and low type of hypnotizable subjects. Crucially, this
stronger functional equivalence is supported by non-local activation patterns, rather than by local regional
activations, pointing to the need to characterize the changes in functional connectivity at the mesoscopic
scale102, 103. The relevance of topological approaches to this problem lies precisely in their capacity to
provide quantitative measure of such observables57, 104.
Our findings are relevant in the field of hypnotizability, as they indicate a different embodiment of mental
images supporting the socio-cognitive theories of the response to suggestions, and in cognitive science,
as the hypnotizability-related information processing can be a model to describe how different selves
may emerge from neurophysiological assets. In this respect, the question “whether highs and lows live
in the same world”71, that is how they represent and reconstruct sensori-motor information, seems to be
efficaciously addressed by TDA.

Methods

Subjects

Hypnotizability was measured in a sample of 150 healthy students of the University of Pisa through the
Italian version of the Stanford Scale of Hypnotic Susceptibility Scale (SSHS), form A105 and classified as
highly (highs, SHSS score � 8/12), medium (mediums, SHSS score: 5�7/12) and low hypnotizable
(lows, SHSS score  4/12) . Among them, 20 consecutive Highs (SHSS score (mean+SD): 9.47±1.65)
and 20 consecutive lows (SHSS, mean+ SD: 2.01±1.89) with negative anamnesis of neurological and
psychiatric disease, drug free for at least the latest 2 weeks were invited to complete the Edinburgh
Handedness Inventory (EHI) aimed at characterizing their handedness106. Two Highs and 1 Low subject
were excluded because not strictly right-handed (EHI score < 16/18); the remaining 18 Highs ( age,
23±1.9 yrs 11 females) and 19 Lows ( age, 22.7±1.5 yrs; 10 females) were invited to participate in the
second part of the study consisting of EEG recording during various experimental conditions.
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Experimental Procedure

During the experimental sessions, which were conducted between 11 a.m and 2 p.m., at least 2 hours
after the last meal and caffeine containing beverage, participants were comfortably seated in a semi-
reclined arm-chair in a sound- and light-attenuated, temperature controlled (21 degree Celsius) room.
The experimental procedure was entirely conducted with eyes closed and consisted of 5 trials. Each trial
included a basal and a task condition lasting 1 minute each. In basal conditions participants were invited
to relax at their best. The tasks consisted of the visual or kinesthetic imagery of a rotated head position
performed before (Time 1: v1,k1) or after (Time 2: v2,k2) maintaining an actually rotated head posture (rr).
The order of the visual and kinesthetic imagery- which was the same for the trials performed before and
after rr - was randomized among subjects. The scripts for the visual and kinesthetic imagery were prepared
ad hoc and aimed at presenting the same mental images studied in earlier behavioral experiments48. They
were read to each participant immediately before the specific condition (v1,v2,k1,k2) and sounded as
follows: for visual imagery: “Please imagine that your head is rotated towards the right side; try to

see your chin aligned with your shoulder and maintain this mental imagine until I will tell you to stop

” ; for kinesthetic imagery: “ Please imagine that you head is rotated towards the right side; try to feel

the tension of your neck muscles and maintain this mental imagine until I will tell you to stop ”. After
each imagery task, subjects were invited to score on scales the vividness of their mental images and the
experienced cognitive effort a scale from 0 (minimum) to 10 (maximum). At the end of each imagery
condition they were also asked to indicate whether they had obtained better mental image of rotated head
at the beginning, at the end or in the middle of the task, in order to allow to select for analysis the 20
EEG seconds in which they reported to have performed the requested task at their best. During the task of
actually rotated head position, the subjects were instructed to maintain their head rotated toward the right
side in order to align their chin with the right shoulder until the experimenter will allow them to change
their head posture. The head position was visually controlled by one of the experimenters sitting behind
the subject throughout the session.

EEG acquisition and processing

EEG was acquired (sample rate:1000 Hz) through a Quick-CapEEG and QuickCell R� (Compumedics
NeuroMedical Supplies) standard system. Thirty-two EEG electrodes were placed on the scalp according
to the 10-20 International System. In addition, 2 auricular (A1, A2), 4 eye (right and left medial/lateral)
and 2 EKG electrodes (standard DI lead) were placed. The electrode used as reference during acquisition
was FCz; off-line the signal was referred to A1/A2 and FCz was restored. Electrodes impedance was
kept under 10 kW. Filters were applied a posteriori (notch at 50 Hz, bandpass 0.5-45 Hz) for the signal
pre-preprocessing. The bad channels interpolated using the spherical interpolation method (EEGLAB
pop_interp function) were maximum 1 in each subject. Then, data were decomposed into source
component using Indipendent Component Analysis (infomax ICA algorithm, EEGLAB function runica).
Components were visually inspected in order to remove motion, muscular and ocular artefacts. The signal
(total duration = 10 min) was divided into 20 seconds epochs (20.000 samples). The automatic selection
process (deletion criteria: amplitudes > 100µV , median amplitude > 6SD of the remaining channels)
removed not more than 1 epoch in each subject. For basal conditions and for the condition of really rotated
head, the earliest less noisy 20 seconds interval (mostly between sec 0 and 30) was chosen for analysis.
For the imagery tasks the selected epoch was chosen in each subject according to the interview (between
sec 10 and 30 in 69% of Highs, and 64% of Lows).
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Variables and statistical analysis

Subjective reports. The scores of the vividness of the mental images (range: 0-10) and of cognitive effort
(range: 0-10) associated with the imagery tasks were analyzed through repeated measures ANOVA with
Hypnotizability as between subjects factor. Imagery modality (visual, kinesthetic) and Time (T1,before rr -
real rotation (v1,k1); T2, after rr (v2, k2)) were within subjects factors.
EEG homological signal analysis. Persistent homology on a transformation on the correlation matrix
obtained from EEG temporal series by subject, group and condition. Persistence diagrams are the main
feature obtained from persistent homology analysis. We have used them joined to a similarity measure
adapted to persistent diagrams to differentiate groups and conditions. The EEG topological parameters
(persistence diagrams) were analysed through a measure of similarity adapted to this feature which depends
on a free parameter understood as the desired scale of comparison. We define a normalized measure of
similarity between two persistent diagrams based on Reininghaus kernel68. We first computed similarity
between condition and basal mode for each subject inside the same group (e.g. highs v1 condition vs
basal condition) and we showed the mean similarity inside the group and compared it between groups
(Highs and Lows) for different conditions. This analysis was followed by an uniformity analysis intra
group. Secondly, we computed similarity between real rotation and conditions (e.g. condition v1 and rr)
on the same subject and compare results between groups (Highs and Lows). All these results are showed
with their corresponding confidence interval at 95% (assuming a Gaussian error distribution).

Topological markers: persistent homology and persistence diagrams

One of the main tools in TDA is persistent homology (PH)107, 108. Persistent homology captures topological
data information, where topological in this context refers to the shape of the data. In other words, persistent
homology shows the evolution of “holes” that define the shape of the data at different dimensions (0-
dimensional holes correspond to the set of connected components (points), 1-dimensional holes correspond
to cycles, 2-dimensional holes correspond to cavities, and so on). PH provides a robust multiscale summary
of a whole dataset thanks to its capacity to capture the global topological structure of point cloud data or
a weighted network rather than their local geometric behavior, thereby making the summaries robust to
missing data and small errors. One of its big potential is its threshold freeness. While homology provides
information about the existence of n-dimensional holes at a given threshold, PH use all possible thresholds
to follow the evolution of each n-dimensional hole. The picture of possible subdata sets for each threshold
is called filtration. More details on persistent homology and it mathematical definition are provided in the
SI.

PH accepts as input point cloud data and weighted networks. In our study we work with weighted graphs
obtained from correlation matrices computed on EEG time series signals. A weighted network is a way to
represent pairwise relationships and encode their strength. In our case, the nodes “EEG points: electrodes”
and links between nodes are weighted by the Pearson correlation between the nodes’ signals. In order to
consider a filtration from stronger to weaker correlations, we transform the correlation values by using one
minus the absolute Pearson’s correlation coefficient. We then convert a weighted network to a series of
simplicial complexes by taking the clique complex of progressively increasing thresholded networks.

A clique is a subset of vertices such that they induce a complete subgraph (Ki is the full connected
graph of i nodes). That is, every two distinct nodes in the clique are adjacent. A simplicial complex
is a topological space constructed by simplices where simplices are points, lines, triangles, and their
n-dimensional counterparts (see Figure S.2 in SI). We obtain a simplicial complex from a network through
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cliques by mapping k-cliques to (k-1)-simplices (see Figure S.2 in SI). Interestingly, although all the
information is encoded in the pairwise interactions, converting a graph to a simplicial complex reveals
mesoscopic organizational structure that was not appreciable at the network level, thanks to the non-locality
of the topological invariants of the simplicial complex. In the presented work, the filtration used for the
computation of persistent homology consists in a family of clique complexes, Xi one inside the other (
· · · ✓ Xi�1 ✓ Xi ✓ Xi+1 ✓ . . . ) obtained from the progressive thresholding of a weighted network as in
Figure S.3 in the SI shows.

Persistent homology can be computed to find n-dimensional holes. Here we focus on 1-dimensional holes
that correspond to cycles which correspond to the generators of the homology group H1. Roughly speaking
a hole is defined as a closed object which is not a boundary of any other object. That is, a n-dimensional
hole encloses a subspace, a cavity. Thereby, PH consist in computing H1(Xi) for each Xi along filtration.

The output of PH is summarized in a topological invariant called persistence diagram. A persistence
diagram consist of a set of tuples of numbers, corresponding to the starting point (birth step) and ending
point (death step) of each hole along the filtration. The importance of a hole is proportional to the length
of its interval of existence, called its persistence. In other words, cycles that live for large intervals in the
filtration capture the main features of the shape of the dataset, while shorter ones are usually considered as
noise. In terms of persistence diagrams, this interpretation gives more importance to points further from
the diagonal.

In order to compare persistent diagrams we use a similarity measure defined by a kernel function (see
example in Figure S.4 in SI) based on68. Given two persistence diagrams F and G (sets of birth and death
cycle points), we define:

Ks (F,G) =
2K

unnorm
s (F,G)

K
unnorm
s (F,F)+K

unnorm
s (G,G)

, Ks 2 [0,1]

where,

K
unnorm

s (F,G) =
1

8ps Â
p2F,q2G

e
� ||p�q||2

8s � e
� ||p�q̂||2

8s ,

q̂ is the mirror point of q (if q = (q1,q2), q̂ = (q2,q1)) and s is a parameter related to the filtration step
size. Note that Ks (F,F) = 1 for any F persistence diagram. Then, two persistence diagrams are more
similar the closer their Ks is to 1.
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Mathematical formulation of homology and persistent homology

We introduce some technical notions in the context of persistent homology: chain complex, boundary map

and the formal definition of homology
1, 2

.

The set of n-dimensional chains Cn(X) of a simplicial complex X is the formal sums of n-simplices.

Formally written as,

Cn(X) = {r1s1 + r2s2 + ...|ri 2 Z,si 2 Xn}. (1)

Then we can define a boundary map ∂n between n-dimensional chains Cn(X) to (n� 1)-dimensional

chains Cn�1(X) that corresponds to our intuitive notion of boundary.

∂n : Cn(X)!Cn�1(X) (2)

[v1, ...,vn] 7!
n

Â
i=0

(�1)i[v0, . . . , v̂i, . . . ,vn] (3)

where the hat denotes the omission of the vertex and this map satisfies ∂n∂n+1 = 0 8n. For example,

if we have a simplex of dimension 2 (a full triangle), it will be converted to its boundary, that is, three

concatenated edges (simplices of dimension 1). The boundary of a simplex is the alternating sum of

restrictions to its faces.

A simplicial complex X induces the chain complex, · · ·!Cn+1 !Cn !Cn�1 ! · · · through boundary

maps ...∂n+2,∂n+1,∂n,∂n�1, ...

The n-homology of this complex is defined by the quotient of two vector spaces, the kernel of the map ∂n

quotiented by the image of the boundary map one upper dimension, ∂n+1,

Hn(X) = ker∂n/ im ∂n+1, (4)

where n indicates the dimension of the generators in the homology group. We call the kernel ker∂n the nth

cycle module, denoted Zn, and the image im ∂n the nth boundary module, denoted Bn.

Formally, given a simplicial complex X , a filtration is a totally ordered set of subcomplexes Xi ⇢ X , that

starts with the empty complex and ends with the complete complex, indexed by the nonnegative integers,

/0 = X0 ✓ X1 ✓ ...✓ Xm = X (5)

such that if i  j then Xi ✓ Xj. The total ordering itself is called a filtration. The subcomplexes Xi are the

analog of the sublevel sets in the Morse function setting
3
.

In order to define persistent homology
4, 5

, we use superscripts to denote the index in a filtration. The ith

simplicial complex Xi in a filtration gives rise to its own chain complex (Ci
•,∂ i

•) and the kth chain, cycle,

boundary and homology modules are denoted by C
i

k
, Z

i

k
, B

i

k
and H

i

k
, respectively.

For a positive integer p, the p-persistent kth homology module of Xi is

H
i,p

k
= Z

i

k
/(Bi+p

k
\Z

i

k
). (6)

The form of H
i,p

k
should seem similar to the formula for H

i

k
, except that instead of characterizing the k-

cycles in Xi that do not come from a (k+1)-chain in Xi, it characterizes the k-cycles in the Xi subcomplex

that are not the boundary of any (k + 1)-chain from the larger complex Xi+p. Put another way, H
i,p

k

characterizes the k-dimensional holes in Xi+p created by the subcomplex Xi. These holes exist for all

complexes Xj in the filtration with index i  j  i+ p.
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Tables

Condition t-test p-value

k1 22.75 4.83e-20

k2 27.00 4.19e-22

v1 24.86 4.22e-21

v2 19.60 2.85e-.18

Dk 65.76 4.07e-33

Dv 19.42 3.64e-18

Table S.1. t-test results on the mean value for different conditions in Figure 2.

Figures

Simplicial complex X

A

B C

⇠

A B C

[A],[B],[C]

A

B

B

C

C

A

[A,B],[B,C],[C,A]

0-dimensional simplices

1-dimensional simplices

2-dimensional simplex

A

B C
[A,B,C]

Figure S.1. An example of simplicial complex, X and its pieces:

X = {[A], [B], [C], [A,B], [B,C], [C,A], [A,B,C]}. In other words, a full triangle is composed by three

0-simplices (points), three 1-simplices (segments) and a 2-simplex (a full triangle).
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Figure S.2. Clique complex of a network. Cliques in the network are mapped (filled) to simplices of the

corresponding dimension in order to obtain a simplicial complex.
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Figure S.3. Clique complex filtration over weights of a weighted network.
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Figure S.4. Examples of persistent diagrams in a),b) c) and similarity measure between them. Points

further from the diagonal (dotted line) in persistent diagrams represent cycles with a larger persistence

along filtration. Similarity between a) and b) is higher than similarity between a) and c) and b) and c),

Ks (a,c)⌧ Ks (a,b) and Ks (b,c)⌧ Ks (a,b).
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Figure S.5. Difference between Highs and Lows of imagery tasks and real rotation across similarity

curves obtained from persistence diagrams. Left: Difference between Highs and Lows of imagery tasks

alteration of topology relate the actual rotations (rr). Positive results shows how Highs are always

topological nearer to the real rotation than Lows for all imagery conditions. Right: Difference between

Highs and Lows of imagery tasks alteration of topology before (k1,v1) and after (k2,v2) the actual

rotation. Positive results show how Highs both in kinesthetic and visual imaginations are always

topological nearer to the real rotation or that real rotation does not inference in their imagination than

Lows for all imagery conditions.
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Figure S.6. Subjective reports (Mean, SEM) of vividness of imagery (left panel) and cognitive effort

(right panel). Highs (green) reported significantly higher vividness and lower effort than Lows. Lows

reported lower vividness for later tasks. The Highs’ effort was greater for earlier than for later tasks. v1/k1

and v2/k2: visual and kinesthetic imagery before/after the actually rotated position of the head,

respectively. For statistics see text.

Figure S.7. Individual correlations. Aggregating all imagery tasks, we show the relation between the

subjective values between effort and W(bX ,X) (left), and between vividness and W(rr,X) (right). In the

first case, as expected we recover a (significant, r =�.33, p < .05) negative correlation between basal

deviation and reported effort. For vividness at the subjective level our results are inconclusive as we do

not find significant correlations.
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