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We analyze the Bures metric over the canonical thermal states for the Kitaev honeycomb mode. In this way
the effects of finite temperature on topological phase transitions can be studied. Different regions in the
parameter space of the model can be clearly identified in terms of different temperature scaling behavior of the
Bures metric tensor. Furthermore, we show a simple relation between the metric elements and the crossover
temperature between the quasicritical and the quasiclassical regions. These results extend the analysis of Zhao
and Zhou �e-print arXiv:/0803.0814v1� and Yang et al. �Phys. Rev. A 78, 012304 �2008�� to finite
temperatures.
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I. INTRODUCTION

In the last few years the use of the notion fidelity between
quantum states to analyze quantum phase transitions �QPTs�
has proven to be very fruitful �1–26�. The motivation comes
from the fact that a major change in the ground state of a
many-body system takes place near a quantum phase transi-
tion �27�. This statement can be made quantitative by bor-
rowing concepts from quantum information, in particular,
distinguishability measures between quantum states �28�.
The simplest of such measures is provided by the amplitude
of the overlap between the two states. The quantum phase
transition can be detected by a drop in the fidelity between
two ground states corresponding to slightly different values
of the parameters defining the system. Moreover, this proce-
dure gives rise to an associated metric tensor g in the param-
eter space associated with the system Hamiltonian, whose
divergences can signal quantum critical points. This strategy
has been successfully applied to many different systems. In
particular Refs. �16,29–31� deal with quantum phase transi-
tions involving topological order �32�, where a local order
parameter does not exist.

One can further generalize this fidelity approach to study
how temperature affects the quantum phase transition. This is
done by considering the Uhlmann fidelity �33� between
Gibbs states corresponding to the many-body quantum sys-
tem. In �14,34� it has been shown that different regions in the
parameter space, called quasiclassical and quantum critical,
can be clearly identified by the different scaling behaviors of
the resulting Bures metric tensor g with temperature.

In this present work we study the effects of temperature
on the topological phase transition in the Kitaev honeycomb
model �35–37�. We extend the results of �29,30� to finite
temperature by considering the metric tensor in the param-
eter space that comes from the Uhlmann fidelity between
nearby Gibbs states. We find indeed that different regions in
the parameter space can be identified according to different
scalings in temperature of the metric elements, and more-

over, we point out that the crossover behavior near the criti-
cal point can be identified by considering a ratio of metric
elements.

Let us begin by reviewing some of the background mate-
rial supporting the idea that near a quantum phase transition
the degree of distinguishability between mixed states of a
many-body Hamiltonian is enhanced. The mixed states � we
will be interested in depend on a set of parameters, e.g.,
tunable couplings, ���� that defines the Hamiltonian of the
system. The problem of distinguishing nearby quantum states
can then be recast into a problem of estimating the value of
the parameters ���� �38�. The estimation is made from the
probability distribution of the possible results of measure-
ments performed on the many-body states �������. To be
concrete, let us assume that generalized measurements
�E��i�� are performed on the states �������, with possible
results ��i�. This gives rise to the probability distribution
p��i � �����=Tr�E��i��������� for �i, given the parameter ����.

A natural distance, called Fisher-Rao distance, can be in-
troduced in this probability space and is given by

ds2 =
1

4�
i

dpidpi

pi
, �1�

which induces a metric g�� onto the parameter space ����
given by

g�� =
1

4�
i

1

p��i����
	 �p��i����

���

	 �p��i����

���

 . �2�

The Bures distance between two density matrices � and
�+d� is the natural distinguishability measure that arises as
the maximization of �1� with respect to all the possible gen-
eralized measurements

dsBures
2 ��,� + d�� = max�E���� �

��

g��d��d��. �3�

Following Refs. �14,34� this last expression can be ex-
panded in the following way: ds2=���g��

c d��d��

+g��
nc d��d��, with the classical and nonclassical metric ele-

ments g��
c and g��

nc given by*abasto@usc.edu
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g��
c =

1

4�
i

��pi��pi

pi
,

g��
nc =

1

2 �
i�j,�

�pi − pj�2

pi + pj
��i����j����i����j�� , �4�

where we have used the diagonal basis for �, i.e., �=�ipi�i�,
with pi its eigenvalues, together with the dependence of these
states on the set ����. We see that the line element separates
into a classical and a nonclassical part, the first one depend-
ing only on the probability distribution �pi�, while the second
one depends on the set of eigenstates ��i�� themselves. The
classical part is still the Fisher-Rao distance between nearby
probability distributions pi and pi+dpi, after the maximiza-
tion over the generalized measurements is performed �39�.
The expression for these measurement operators is known,
and turns out to be a projective measurement associated to
the Hermitian observable �40�

M =
1


�



��� + d��
�
1


�

. �5�

Let us consider the expectation value of M for the thermal
state �,

Tr��M� = Tr

��� + d��
� = 1 −
1

2
dsBures

2 , �6�

after expanding this expression in d� �38�. Since the metric
elements diverge at the critical point for T=0, or have a finite
peak for T�0, we see that in principle, by measuring this
observable it would be possible to detect the quantum phase
transition and get an optimal estimation of the Hamiltonian
parameters �15�. Notice that M depends on the �possibly un-
known� state �; therefore, the experimental realization of this
measurement may require iterative strategies �15�. We point
out that the divergence of the metric elements across a QPT
is a sufficient but not a necessary condition �7�.

In the next section we will obtain the explicit form of the
Bures metric elements for the thermal states of the Kitaev
honeycomb model.

II. BURES METRIC AND THE KITAEV
HONEYCOMB MODEL

The Kitaev honeycomb model �35� is one of the most
important examples of a solvable model in two dimensions
that exhibits topological phases, with non-Abelian anyons.
We will study the effects of temperature over its critical
lines, by considering the Bures metric for nearby thermal
states. We will first briefly review the model and its diago-
nalization and then compute and analyze the associated
Bures metric.

A. Honeycomb model

The model consists of spins-1 /2 placed at the sites of a
honeycomb lattice, with nearest-neighbor interactions. There
are three types of links at each site, called x, y, or z, depend-

ing on their direction in the lattice. The Hamiltonian of the
model is given by

H = − Jx �
x links

� j
x�k

x − Jy �
y links

� j
y�k

y − Jz �
z links

� j
z�k

z , �7�

where the ends of the corresponding links are labeled by j, k,
and Jx, Jy, and Jz are the corresponding model parameters.
The phase diagram can be separated basically into two re-
gions of the parameter space, given by the following in-
equalities:

�Jz� � �Jx� + �Jy�, �Jy� � �Jz� + �Jx�, �Jx� � �Jy� + �Jz� ,
�8�

with the equal signs signaling the lines of quantum criticality.
The region outside these inequalities is gapped and con-

tains Abelian anyons, while the region inside is gapless and
gives rise to non-Abelian anyons in the presence of a mag-
netic field. To diagonalize this model, we replace the
spin-1 /2 at every site i by four Majorana fermions, by writ-
ing each Pauli operator as � j

a= ibj
acj, with ba and c Majorana

fermions, and a=x ,y ,z. These Majorana operators act on a
four-dimensional Fock space. This enlarged space has redun-
dant degrees of freedom which can be projected onto a
physical two-dimensional Hilbert space L suitable for a
spin-1 /2 by imposing the condition �	��L⇔D�	�= �	�,
where D is a projector given by D=bxbybzc. Within this sub-
space, the Hamiltonian �7� can be written as

H =
i

2�
j,k

Jajk
ûjkcjck, �9�

where the index ajk is x, y, or z depending on the direction of
the link connecting sites j and k, and the operators ûjk

= ibj
ajkbk

ajk are such that �ûjk ,H�=0, �ûjk , ûpq�=0, and ûjk
2 =1.

The entire Hilbert space can be decomposed into eigenspaces
of the operators ûjk, indexed by the eigenvalues ujk= 
1. It
can be proven that the configuration of the ujk that minimizes
the ground-state energy is given by the vortex-free configu-
ration, that is, ujk=1 for all links �j ,k�. Given the transla-
tional symmetry of this configuration, one can perform a
Fourier transform, obtaining the Hamiltonian in momentum
space within a unit cell

H =
1

2 �
p,�,�

iA���p�c�
†�p�c��p� , �10�

where p= �px , py�, c��p�= 1

N

�re
−ip·rc��r� and A�p� is a 2

�2 matrix given by

iA�p� = 	 0 if�p�
− if�p�* 0


 , �11�

with f�p�=��p�+ i
�p�, ��p�=2�Jx cos px+Jy cos py +Jz� and

�p�=2�Jx sin px+Jy sin py�.

In these equations r is the position of the unit cell, while
�, � are the indices for the sites inside each cell. N is the
number of sites in the lattice, and we choose N=2L2, with L
odd. The momenta take the values px�y�=

2n�
L ,

n=− L−1
2 , . . . , L−1

2 .
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We can further set the Hamiltonian �10� in a quasifree
fermion form by introducing the fermionic operators �41�

b�p� =
1

2

�c1�p� + iei�c2�p�� , �12�

b†�p� =
1

2

�c1
†�p� − ie−i�c2

†�p�� , �13�

with �=arg�f�p��. Then the Hamiltonian takes the following
diagonal form:

H = �
p

��p�	b†�p�b�p� −
1

2

 , �14�

where ��p�= �f�p��=
��p�2+
�p�2 represents the quasiparti-
cle excitation energies.

The ground state is given by �gs�=�p�c1
†�p�

+ ie−i�c2
†�p���0�, with �0� the vacuum state of the Majorana

operators c��p�. The excited states are created by applying
b†�p� onto the vacuum state.

B. Bures metric over thermal states

We are interested in characterizing the effects of finite
temperature on the quantum phase transitions of this model.
We consider then the Kitaev model in thermal equilibrium
with a heat bath at temperature T, and obtain the expression
for the Bures metric �4� induced onto the four-dimensional
parameter space of the Kitaev model �� ,Ja�, with a=x ,y ,z
and �=1 /T �we take Boltzmann constant k=1�. In this situ-
ation, its states will be described by ��T , �Ja��=Z−1e−�H

=Z−1�ie
�Ei�i��i�, with Z=Tr e−�H, Ei and �i� the eigenvalues

and eigenvectors of the Hamiltonian. Using the equations
�4�, the expression for the fermionic operators �13�, together
with the general results in �14�, we obtain the following clas-
sical metric elements in the thermodynamic limit:

g��
c =

1

32�2�
−�

�

dpxdpy
1

cosh���� + 1
�2,

g�Ja

c =
�

32�2�
−�

�

dpxdpy
1

cosh���� + 1
�a,

g�Jz

c =
�

32�2�
−�

�

dpxdpy
1

cosh���� + 1
2� ,

gJaJa

c =
�2

32�2�
−�

�

dpxdpy
1

cosh���� + 1

�a
2

�2 ,

gJzJz

c =
�2

32�2�
−�

�

dpxdpy
1

cosh���� + 1
	2�

�

2

,

gJxJy

c =
�2

32�2�
−�

�

dpxdpy
1

cosh���� + 1

�x�y

�2 ,

gJaJz

c =
�2

32�2�
−�

�

dpxdpy
1

cosh���� + 1
�a

2�

�2 , �15�

where a� �x ,y�, �x=2�cos�px���p�+sin�px�
�p�� and �y
=2�cos�py���p�+sin�py�
�p��.

The quantum or nonclassical metric elements are

gJaJb

nc =
1

32�2�
−�

�

dpxdpy
cosh���� − 1

cosh���� + 1

�a�b

�4 , �16�

where a ,b� �x ,y ,z�, �x=4�Jz sin�px�+Jy sin�px− py��,
�y =−4�Jx sin�px− py�−Jz sin�py��, and �z=−2
�p�.

In Refs. �29,30� the authors showed that a related quan-
tity, the fidelity susceptibility, could characterize the quan-
tum phase transition between these two phases at zero tem-
perature, by exhibiting a divergence at the critical lines �8�.
Indeed, similar results can be obtained by taking the limit
T→0 in �15� and �16�. Furthermore, since in this limit the
metric elements are inversely proportional to the energy gap
�6�, they exhibit a series of peaks in the gapless region, at
values of the momenta p0 for which �=0 �30�. In the case of
finite temperature the metric elements do not exhibit diver-
gences but finite peaks at the critical points, while the peaks
in the gapless region are smoothed out, since all the mo-
menta p0 are occupied with a probability given by the Bolt-
zmann distribution. Figure 1 shows a plot of the metric ele-
ment gJzJz

nc , for a finite size of N=2L2, L=101 �30�, for T=0
and T=0.01. As can be seen, as soon as the temperature is
finite, the peaks caused by finite size effects are smoothed
out.

C. Temperature analysis of the metric elements

In the first part of this section we will characterize two
different regimes in the parameter space �� ,Ja�, namely, the
quasiclassical and quantum critical, in terms of the different
scaling behavior of the metric elements with temperature.
The quasiclassical region is located away from criticality, for
the gapped phases outside the region �8�, and the range of
temperatures are such that �
�1, with 
 the fermionic gap
of the system, given by 
=2�Jz−Jx−Jy� for �Jz�� �Jx�+ �Jy�,
and similarly for the other two gapped regions. The quantum
critical region is located at the lines of criticality that sepa-
rate the gapped and the gapless phases, at finite temperature.
For this last case, we will analyze the scaling behavior of the
metric elements for 
=0, and approach the quantum critical
point by taking T→0.

Let us proceed first with the scaling of the classical metric
elements in the quasiclassical region. We will focus mainly
on the region �Jz�� �Jx�+ �Jy�, but the analysis is very similar
for the other two gapped phases. Since ���p���
�1, we

can do the following approximation: 1
cosh����+1 �2e−���p�.

The exponential e−���p� has a sharp peak centered around the
minima of ��p�, which is given by p= �
� , 
��. The
asymptotic behavior of the metric elements with temperature
can be obtained by performing a saddle point approximation,
by expanding ��p� to second order, the rest of the integrand
up to the first nonzero term around the minima points, and
extending the limits of integration in p from 0 to �. This

THERMAL STATES OF THE KITAEV HONEYCOMB MODEL: … PHYSICAL REVIEW A 79, 012321 �2009�

012321-3



results in the following scaling behavior of the classical met-
ric elements:

gab
c ��
 � 1� � T�e−
/T, �17�

with �=1 for g��
c , �=0 for a=�, b=Jx ,Jy ,Jz, and �=−1 for

a ,b=Jx ,Jy ,Jz.
A similar analysis can be performed for the nonclassical

metric elements, with the result

gnc��
 � 1� � gnc�T = 0� + f�Jx,Jy,Jz�T2e−
/T, �18�

with the same exponent, T2, for all these metric elements,
with a nonuniversal function f�Jx ,Jy ,Jz�.

We focus now on the quantum critical region. We will
perform the scaling analysis with temperature inside and
along the lines of criticality that separate the gapped from the
gapless phase, and then take the limit T→0. In this limit, all
classical metric elements vanish, so we are left to analyze the
nonclassical ones.

Inside the gapless region �8�, the scaling with temperature
is dominated by the divergence of �−4 at its zeroes, given by

px
0=�
arccos�

Jx
2+Jz

2−Jy
2

2JxJz
� and py

0=�
arccos�
Jy

2+Jz
2−Jx

2

2JyJz
�, around

which ����px− px
0�+��py − py

0�, with � and � constants.
The asymptotic behavior of the integrals can be well cap-
tured if we shift the limits of integration from �−� ,�� to
�0,2��, and focus on the region around p= �px

0 , py
0�. The fac-

tor cosh����−1
cosh����+1 presents a sharp drop at �px

0 , py
0� that gets

steeper the smaller the temperature T is, and away from this
point is equal to 1. For the purposes of obtaining the scaling
of the metric elements, it can be very well represented by the
following piecewise function:

cosh���� − 1

cosh���� + 1
� �p2/T2 for p � T ,

1 otherwise,
�

where we have taken polar coordinates �p ,��, centered
around �px

0 , py
0�. Performing a Laurent expansion of

�a�b

�4 , it
can be seen that the nonclassical metric elements diverge
logarithmically inside the gapless region

gab
nc�
 = 0,T → 0� � ln�T� . �19�

This logarithmic divergence is related to the two-
dimensional �2D� nature of the model, and is different from
power law behaviors that have been reported for the Ising
�14� and XY chains �34� at finite temperature.

Along the phase boundaries �8�, there is always a direc-
tion in momentum space along which the quasiparticle en-
ergy ��p� is no longer linear but quadratic in momentum.
For example, along the path Jx=Jy =

1−Jz

2 , ��p���p−��2 for
px=−py. This quadratic dispersion dominates the scaling of
the nonclassical metric elements with temperature, so that if
one restricts the double integrals in �16� to a single integral
along these paths in momentum space for which the disper-
sion becomes quadratic, one obtains that

gab
nc�
 = 0,T → 0� � T−1/2, �20�

at the boundaries between the phases, dominating the loga-
rithmic divergence. We have checked this argument numeri-
cally and confirmed that indeed the nonclassical metric ele-
ments diverge as T−1/2 for T→0.

We conclude that different regimes in the parameter space
�� ,Ja� can indeed be identified by the distinct scaling in
temperature of the Bures metric elements. We stress again
that the nonclassical metric elements display a logarithmic
divergence with temperature.

III. QUANTUM VERSUS CLASSICAL CONTRIBUTIONS

We now remind the reader about the interpretation of the
Bures metric elements. As we have seen, the Bures distin-
guishability metric depends on two parts, one classical and
one nonclassical. The classical metric elements characterize
the distinguishability between nearby density states due to
changes in the mixing probabilities pi of the density matrix
�, while the nonclassical metric elements characterize how
the distinguishability is enhanced by the changes in the quan-
tum states �i� themselves. We can therefore consider the ratio

0 0.1 0.2 0.3 0.4 0.5
J

x

0

0.5

1

1.5

2

gnc

J xJ x/N

FIG. 1. �Color online� Plot of
gJzJz

nc /N for a finite size of N=2L2,
L=101, as a function of Jx=2 /3
−Jy. The black and red curves cor-
respond to T=0 and T=0.01, re-
spectively. As soon as temperature
is finite, the peaks �due to finite
size effects� are suppressed
��gJzJz

nc /N�−2= �Jx�=Joules, for k
=1�.
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between the classical and corresponding nonclassical metric
elements as a figure of merit to determine the relative impact
on the overall distinguishability due to each classical and
quantum contribution. Figure 2 shows a contour plot for the
ratio gJzJz

c /gJzJz

nc in the plane �Jz ,T�, along the trajectory Jx

=Jy = 1−Jz
2 , for 0.48�Jz�0.52. In the regions away from the

quantum critical point Jz=0.5 and small temperatures and at
the quantum critical region above Jz=0.5 we have that the
nonclassical metric element has a predominant contribution
to the Bures line element, while the region in between the
classical metric element prevail.

The contour plot seems to capture the crossover behavior,
with a crossover at T��Jz−0.5�z�, with z=�=1 �29,30,35�.

Indeed, using the expressions for the classical and nonclas-
sical metric elements developed in �14�, one can prove that
near a quantum critical point gc

gnc �� 


T �2, with 
 being the
gap. Since near quantum criticality 
��g−gc�z� �27�, with g
the coupling constant driving the transition at gc, we have
that a contour plot would reveal the crossover at T��g
−gc�z�.

IV. CONCLUSIONS

In this work we have analyzed the canonical thermal
states of the Kitaev honeycomb model by using the Bures
metric tensor. We have shown that metric elements can be
used to distinguish two regions in the parameter space
�T ,Ja�, namely, the quasiclassical and quantum critical re-
gions, by different temperature scaling of the metric ele-
ments. A logarithmic divergence with vanishing temperature
has been obtained for the nonclassical part of the metric
elements.

Furthermore, the ratio between classical and quantum
parts of metric elements has been used as a figure of merit to
compare the classical and quantum contributions to the over-
all distinguishability of nearby states. It is interesting to point
out that similar behavior for such ratios between metric ele-
ments can be seen for the Ising and XY models at finite
temperature. It is tempting to compare this behavior with the
usual crossover phenomena that separate regions in which
the fluctuations of order parameters are thermal or quantum.
Nevertheless, this connection is blurred for the present
model, since there is no local order parameter for the Kitaev
honeycomb model. An interesting open question for future
investigations is to see whether information metric tech-
niques similar to those exploited in this paper can help in
studying quantum phase transitions involving different types
of topological order; see, e.g., �42�.
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