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Italy and Institut fiir Mathematische Physik, Technische Universitit Braunschweig,
Mendelssohnstrafie 3, 38106 Braunschweig, Germany

(Received 4 September 2009; accepted 10 December 2009;
published online 8 February 2010)

We present an approach to a noncommutativelike phase space which allows to
analyze quasifree states on the algebra of canonical anti-commutation relations
(CAR) in analogy to quasifree states on the algebra of canonical commutation
relations (CCR). The used mathematical tools are based on a new algebraic struc-
ture the “Grassmann algebra of canonical anticommutation relations” (GAR alge-
bra) which is given by the twisted tensor product of a Grassmann and a CAR
algebra. As a new application, the corresponding theory provides an elegant tool for
calculating the fidelity of two quasifree fermionic states which is needed for the
study of entanglement distillation within fermionic systems. © 2010 American In-
stitute of Physics. [doi:10.1063/1.3282845]

I. INTRODUCTION

Using anticommuting Grassmann variables for calculating physical quantities for fermionic
systems is a well established technique. This concerns, in particular, the calculation of expectation
values of quasifree (Gaussian) fermion states. The idea is to replace the linear combinations of
canonically anticommuting Fermi field operators with complex coefficients by linear combinations
with coefficients that are anticommuting Grassmann numbers. As a consequence, these linear
combinations fulfill “canonical commutation relations.” By interpreting tuples of Grassmann num-
bers as “phase space vectors,” a similar analysis can be carried out as it is known for the bosonic
case. In their article, Cahill and Glauber® used this technique to analyze density operators for
fermionic states. These calculations are presented on a symbolic level by starting from a set of
computational rules with less focus on the underlying mathematical structure.

On the other hand, there are several mathematically rigorous applications of the Grasmann
calculus to fermion systems within the present literature. Examples are the treatment of perturba-
tion theory for many fermion systems, as the Hubbard model for fermions," as well as the
analysis of fermion correlation functions within constructive quantum field theory and construc-
tive renormalization (see Refs. 8, 17, and 19 and references given therein).

The aim of this paper is to provide the appropriate mathematical framework for a “quantum
harmonic analysis on phase space” for fermion systems by using the Grasmann calculus. This can
be seen as a noncommutative analog of the quantum harmonic analysis for bosons that is treated
by Werner in Ref. 23. We show here a collection of basic propositions and theorems which help to
simplify calculations and which also allows to confirm the results of Ref. 4 in a mathematically
rigorous manner. In addition to that, our approach allows, up to certain extend, to consider also
infinite dimensional systems.
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The idea to consider fermionic phase space methods has been developed in the context of
supersymmetric quantum theories and has been studied by many authors (see, e.g., Refs. 5 and
9-12 and references given therein). Roughly speaking, the discussion of fermionic phase space in
the present literature is used to build a “classical analog” of bosonic phase space and to perform
its (second) quantization. Furthermore, most of the tools developed so far are used to study the
aspects of supersymmetric theories. In contrast to these issues, we are focusing here mainly on
methods to calculate properties of particular (quasifree) fermion states. For this purpose, we need
to consider the appropriate algebraic structure in a representation independent manner. As it turns
out, the Grassmann algebra of canonical anticommutation relations (GAR) algebra is the right
concept to be used here. A direct way of explaining the GAR algebra for the finite dimensional
case is given in terms of standard creation and annihilation operators of fermionic modes: We
consider 2n+k fermionic modes and take all the creation Operators ¢}, ¢y, ... CaysCopys -+ >Conik
and the last £ annihilation operators c,,,1, ... ,C,4 Then we build the subalgebra generated by
these operators, being represented on the antisymmetic Fock space over C2"**. Obviously, this
algebra is not closed under the usual adjoint since we only take the creation operators for the first
2n modes. In fact, the first 2n annihilation operators generate the exterior algebra or Grassmann
algebra over C?". The last k modes are identified with the usual Fermion algebra. In order to
implement a complex conjugation for Grassmann variables, we introduce a “new” adjoint x on the
GAR algebra. For a generator c; that belongs to the first 2z modes, it is defined by ¢] = ¢,,_;,,. For
a generator that belongs to the last kK modes we just take c;:: c;f the usual adjoint. It follows
directly from this construction that the defining representation on antisymmetric Fock space is not
a “-representation, i.e., it does not preserve the adjoint.

The GAR algebra consists of a fermionic part, that is, generated by Fermi field operators that
are linear combinations of creation and annihilation operators,

2n+k
B(f)= X fici+fc, (1)
i=2n+1
that fulfill the anticommutation relations
2n+k
{B(.B(W}y= 2 (fihl+fh)L. (2)
i=2n+1

The fermionic part of the GAR algebra always corresponds to the underlying fermion system one
wishes to investigate.

The Grassmann part of the GAR algebra is generated by the first 2n modes cj, ...,c5,.
Obviously, the GAR algebra possesses a natural 7Z,-grading by looking at the subspaces of even
and odd operators. Here, we call a GAR operator to be even (odd) if it is a complex linear
combination of even (0dd) products of OPerators ¢,c5, ..., CaysCappis ++ - >Conat> Consls - - Conse

One of the main ideas behind introducing the GAR algebra is to build up an appropriate
extension of the fermion algebra in which the anticommutation relations can be written in terms of
commutation relations by “substituting” the complex linear combinations of creation and annihi-
lation operators by linear combinations with “anticommuting” variables as coefficients. These
anticommuting variables, called Grassmann variables, are linear combinations of odd products of
the creation operators c},c5, ...,C5,. Suppose that E=(&, .. & &, .. &) is a vector of 2k odd
operators from the Grassmann part. Then the linear combination,

k
D(&) = D Echinn + ECioons 3)
i=1

is a well-defined operator inside the GAR algebra. These operators are the Grassmann—Bose fields.
A straightforward calculation shows that the commutation relation
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k
[®(O).D(]=-2 &7l - 7.E =0l n) (4)
i=1

is fulfilled. The bilinear form o can be interpreted a symplectic form with values in the Grassmann
algebra. Therefore, the Grassmann—Bose field operators ®(¢) fulfill a kind of “canonical commu-
tation relations.” Here, one has to be aware of the fact that the right hand side is not a complex
multiple of the identity but an operator that belongs to the center of the GAR algebra. The
Grassmann-Weyl operators are given by the exponential w(&)=exp(®(£)) and they fulfill the
Weyl relations,

w(E+ ) =e"P 7w w(n). (5)

Our fermionic analog of a “‘quantum harmonic analysis on phase space” (see Ref. 23) is based
on these structures.

Our paper is outlined into tree main sections, where Sec. II is for presenting basic definitions
and main results as precise as possible on one hand, and as less technical as possible on the other
hand. The two following sections are more technical in order to explain the mathematics we are
using. We also introduce here all mathematical concepts that are needed for our analysis. To make
this part more readable, we postpone here the discussion of technical details. We also present here
the main results concerning a harmonic analysis on fermionic phase space and we present its
application to calculate the fidelity between quasifree fermion states. Section III is dedicated to a
detailed discussion on the mathematical structure of the GAR algebra. Statements which have
been claimed in the previous section are proven here. Finally, Sec. IV, we review the concept of
Grassmann integration adopted to our analysis.

Il. BASIC DEFINITIONS AND MAIN RESULTS
A. Preliminaries
There are two basic notions that will play an essential role within this paper. First, the concept

of a Banach *-algebra and the concept of a C*-algebra. We briefly recall these concepts here in
order to give a precise formulation of the mathematical structure we are going to use.

* A Banach algebra is a associative algebra and a Banach space with a norm |||, such that the
relation ||AB||=<||A[||B]| is fulfilled.

 An adjoint is a continuous antilinear involution * which fulfills (cA)*=cA* for an operator A
and a complex number ¢ and the order in a product is reversed (AB)*=B*A*.

e A Banach *-algebra is a Banach algebra with an adjoint.

» A C*-algebra is a Banach *-algebra, where the adjoint * fulfills the C*-condition [|A*A||
=||A|]*. Vice versa, an adjoint * on a Banach algebra is called a C* -adjoint if the C*-condition
holds.

In view of treating superspaces and supersymmetry Banach *-algebras has been used, for
instance, in Ref. 13.

Later on it will be an important issue to distinguish the adjoint of a C*-algebra with the adjoint
of a generic “-algebra. The convention we will use here is to denote the C*-adjoint of an operator
A by A* and the adjoint in a generic *-algebra by A*.

In order to introduce the GAR algebra in a most general manner, we briefly recall here Araki’s
self-dual CAR algebm.1 Let H be a separable Hilbert space with a complex conjugation J. Note
that H may be infinite dimensional. Then there exists a unique C*-algebra F(H,J), the so-called
algebra of canonical anti-commutation relations (CAR), that is, generated by operators B(f) with
feH, such that fr—=B(f) is a complex linear map, the C*-adjoint of B(f) is given by B(f)*
=B(Jf), and the anticommutator fulfills the relation {B(f),B(h)}={Jf,h)1.

Remark 1: The main advantage of using Araki’s self-dual description of the CAR algebra is
that it is independent of the chosen representation. To obtain a representation in terms of creation
and annihilation operators, Eq. (1) is an example for the finite dimensional Hilbert space H=C,



023522-4 M. Keyl and D.-M. Schlingemann J. Math. Phys. 51, 023522 (2010)

where the complex conjugation is given by J(f',....f . L, .. f)=(F, . f ).

B. The GAR algebra

The basic ingredients for construction the GAR algebra are a separable Hilbert space H, a
complex conjugation J, and a projection Q that commutes with J. We consider the Hilbert space
Hy:=H® Q" H with the complex conjugation Jy:=Ry(J® Q*J), where Q' =1-0 is the projec-
tion onto the orthogonal complement of QH and the reflection R, is defined according to Ry (f
®h)=(Qf+h)® Q*f for fe H, h € Q+H. We associate with the triple (H,Q,J) the CAR algebra
E(H,Q;J):=F(Hgy,Jp) in view of the following definition.

Definition 2:

(1) The GAR algebra G(H,Q;J) associated with the triple (H,Q,J) is the norm-closed subalge-
bra of the CAR algebra E(H,Q;J), that is, generated by the Grassmann—Fermi field opera-
tors G(f):=B(f®0), fe H.

(2) The open core C;(H ,0:J) of the GAR algebra is the subalgebra that consists of finite sums of
finite products of Grassmann—Fermi field operators.

(3) The CAR algebra E(H,Q;J) is called the enveloping CAR algebra of G(H,Q;J).

(4) The fermionic part of the GAR algebra is the norm-closed subalgebra of £(H,Q;J), that is,
generated by the Grassmann-Fermi fields G(Qf), f € OH.

(5) The Grassmann part of the GAR algebra is the norm-closed subalgebra of £(H,Q;J), that is,
generated by the Grassmann—Fermi fields G(Q*f), fe Q*H.

As a consequence of this definition, the GAR algebra G(H,Q;J) is a Banach algebra and the
Grassmann—Fermi field operators fulfill the anticommutation relations

{G(N.G(n)}=Jf.0m)] (6)

for f,heH. This can be verified by calculating the anticommutator {G(f),G(h)}
={B(f©0),B(h®0)}=Jo(f®0),h®0)1=(Ry(Jf©0),h®0)l=(JOf ,m)1=(Jf,Qh)]. From this
calculation, it also follows that the fermionic part of G(H,Q;J) coincides with the CAR subalge-
bra F(QH,QJ) CEH,Q3J).

As already mentioned, inside the GAR algebra we can build linear combinations of fermion
operators with coefficients in the Grassmann algebra which yields the possibility of building fields
with “canonical commutation relations” inside the GAR algebra. For this purpose, it is also
important to have the concept of an adjoint. The problem is here, that the C*-adjoint in the
enveloping CAR algebra cannot be used, since the GAR algebra is not closed under this operation.
Namely, for a generator G(Q'f) the C*adjoint is given by G(Q1f)*=B(Q*f®0)*
=B(0®JQO*f) ¢« G(H,Q;J). Only the fermionic part is stable under the C*-adjoint. We shall see
(Proposition 13) that there exists an adjoint *:G(H,Q;J) — G(H,Q;J), such that the GAR algebra
becomes a Banach *-algebra and that the adjoint * coincides with the C*-adjoint on the fermionic
part. Moreover, the adjoint * is uniquely determined by the relation G(f)*=G(Jf) for f e H.

Remark 3: The Grassmann algebra can be regarded as a special case of the GAR algebra,
where the projection Q is chosen to be zero. To be more precise, the Grassmann algebra A(H,J)
over the pair H,J is defined as the GAR algebra A(H,J):=G(H,0;J). On the other hand, the
Grassmann algebra can be constructed from the antisymmetric tensor algebra /c\(H )=
@, . nAKH over the Hilbert space H. As a linear space, the antisymmetric tensor algebra &H ,J) is
a dense subspace of the antisymmetric Fock space F_(H) over H. Thus, we can equip &H ,J) with
a scalar product (,). This gives rise to a further norm on A(H,J), that is, given by [|\[|
:=/(\,\). As we will see later, this norm is not a Banach algebra norm, but it is continuous with
respect to the Banach algebra norm |||, i.e., [||A[||=|/A].

Remark 4: By construction, the GAR algebra is isomorphic to the twisted (graded) tensor
product (see Refs. 6 and 7, for this notion) of the fermionic part and the Grassmann part. Follow-
ing the analysis of Ref. 14 the Grassmann algebra can be regarded as the classical limit of a field




023522-5 The GAR algebra and its applications to fermions J. Math. Phys. 51, 023522 (2010)

of CAR algebras. Analogously, the GAR algebra can be viewed as a partial classical limit of a
field of CAR algebras. The basic idea behind their work is to introduce for a Hilbert space H, a
complex conjugation J, and a positive number % >0 the modified CAR algebra F(H},J), where
Hj, is the Hilbert space with the scaled scalar product (f,h);=#-(f,h). Roughly, in the classical
limit of the field of CAR algebras (F(Hy,J),h>0) becomes the Grassmann algebra A(H,J)
which is based on the behavior anticommutator relations limy_ o{By(f),By(h)}=lim,_, A{f,h)1
=0.

To view the GAR algebra as a partial classical limit we consider the Hilbert space Hj o with
the partially scaled scalar product (f,h);:=(f,(Q+#Q")h). The CAR algebra F(H; ,,J) is now
isomorphic to the twisted tensor product of F(QH,QJ) and F((Q+H);,0"J). Keeping in mind
that the classical limit of the field of CAR algebras (F((Q+H);,0"J),h>0) is the Grassmann
algebra A(Q*H,Q'J), the GAR algebra is the partial classical limit of the CAR algebra
F(Hy )~ G(H.Q:)).

Remark 5: For the case that the projection Q is a projection of even and finite dimension 2n,
there is a further simple characterization of the GAR algebra. Namely, the GAR algebra can also
be seen as a matrix algebra with Grassmann valued entries. To verify this, we use the fact (as in
the previous remark) that the GAR algebra G(H,Q;J) is the twisted tensor product of the CAR
algebra F(QH,QJ) and the Grassmann algebra A(Q1H,Q"J). Recall that the isomorphism is
given by G(f)—G(Qf)®1+O®G(Qf), where ® is the reflection fulfilling OG(Qf)=
-G(Qf)®. Moreover, the fermionic part is isomorphic to the algebra M,2:(C) of complex 22"
X 2%" matrices. By choosing a matrix basis Ej i,j=1,... ,2%", each operator in the GAR algebra
can uniquely be expanded as A=X;E;;A;;, where the operators A;; belong to the Grassmann part.
Thus, the desired isomorphism identifies the operator A with the matrix (A;;) belonging to the
algebra My2.(A(Q+H,Q"J)) of 22" X 2%" matrices with entries in the Grassmann part.

C. States

The GAR algebra possesses a natural convex cone of positive elements. First, the set of
positive linear functionals consists of all linear functionals w:G(H,Q;J)—C with w(A*A)=0.
Second, the positive cone G(H,Q;J), consists of all operators that have positive expectation
values for all positive functionals.

In order to analyze the positivity of operators, we introduce the norm-closed two-sided ideal
I(H,Q;J), that is, generated by the self-adjoint nilpotent operators in the Grassmann part
A(Q*H,Q"J). Recall that an operator Z is nilpotent if there exists n € N with Z"=0. It can be
shown (see Proposition 15) that to each positive functional w on the GAR algebra G(H,Q;J),
there exists a unique positive functional w’ on the fermionic part F(QH,QJ), such that

wA+Z)=w'(A), (7)

where A is an operator in the fermionic part F(QH,QJ) and Z belongs to the ideal Z(H,Q;J). We
refer the reader to Sec. III C for a more detailed discussion. This shows that the positive functional
on the GAR algebra is in one-to-one correspondence with the positive functionals on the fermionic
part.

Instead of considering complex valued functionals, the appropriate concept is as it turns out
later, to consider functionals from the GAR algebra into its Grassmann part. The GAR algebra is
equipped with a natural right module structure over the Grassmann part via multiplication from the
right. For our purpose, the appropriate method is to extend a state on the fermionic part as a right
module homomorphism. For a linear functional @ on the CAR algebra F(QH,(QJ), we are seeking
for a linear map w:G(H,Q;J) — A(Q+H,Q"J) which fulfills the condition

w(AN) = w(A)N. (8)

We call @ the G-extension of w to the GAR algebra. To obtain the G-extension of a state on the
fermionic part, we use the fact that the developing CAR algebra £(H,Q;J) can be identified with
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the twisted (graded) tensor product of the fermionic part and the enveloping CAR algebra of the
Grassmann part,

E(H,0:J) = F(QH,QN)®E, 9)

where £ denotes the enveloping CAR algebra of the Grassman part. For a vector f®&he H
@® Q1 H, the corresponding Fermi field operator is identified with the tensor product by

B(feh)=B(Qf) @1+ 0, @ B(Q*f& h), (10)

where 0 is the reflection that implements the parity automorphism 0 ,B(Qf)0,=-B(Qf). As a
Banach space, the enveloping CAR algebra is identified with a tensor product of two C*-algebras.
With respect to the positivity structure of this tensor product, the linear map w ® id¢ is completely
positive. Therefore, it is bounded as a map between Banach spaces. The G-extension is now given
by the restriction to the GAR algebra,

wW:=we® id5|g(H,Q;J)’ (] 1)

which becomes a bounded map from the GAR algebra into its Grassmann part. By construction,
the condition (8) is fulfilled.

Remark 6: For our further analysis, the essential property of the G-extension is to be a right
module homomorphism (8), whereas positivity with respect to the adjoint of the GAR is not
essential. Anyway, from the above construction, we cannot conclude directly that the G-extension
is positive since the GAR algebra has a different positivity structure than the tensor product

F(QH,QJ)®E.

D. Anticommutative phase space

We have introduced the GAR algebra in terms of the Grassmann—Fermi field operators G(f).
In this section we introduce a different family of field operators, called Grassmann—Bose fields,
that also generate, together with the unit operator, the GAR algebra. It turns out that these fields
fulfill a graded version of the canonical commutation relations.

We introduce the anticommutative phase space as the tensor product R(H,Q;J):=QH
® A(Q+H,Q*J). We are considering here a tensor product of a Hilbert space and a Grassmann
algebra closed with respect to the projective cross norm [|-||, (see, for instance, Ref. 20). Since the
projective cross norm is the largest among all cross norms, it follows that the anticommutative
phase space R(H,Q;J) can be identified with a linear subspace of the Grassmann algebra A(H,J)
by the continuous embedding which identifies the tensor product f® N\ with the operator A(f)A. In
order to express the (anti)commutation relations for the Grassmann-Bose fields, we equip the
anticommutative phase space R(H,Q;J) with a continuous Grassmann valued inner product. This
rigging map {-,-)o is determined on pure tensor products by (f®N,h® w)q:=(f,A)N* .

Remark 7: If Q is a projection of finite and even rank 2n, then the anticommutative phase
space is simply isomorphic to the 2n-fold Cartesian product of the Grassmann algebra. This can be
seen by choosing a real orthonormal basis (e"),-zl,._',z,l of QH. Each phase space vector & can be
uniquely expanded as é=3.e'® &, where & is an operator from the Grassmann part. Thus, an
isomorphism between R(H,Q;J) and A(Q-H,Q+J)*" is given by &— (&, ...,&,).

The Grassmann—-Bose field @ is a right module homomorphism that associates with each
phase space vector ¢ an operator ®(£) in the GAR algebra. This map is determined on pure tensor
products £=f® N according to

D(f ® \) := G\ (12)

where f e QH and \ belonging to the Grassmann part. Note that the inequality [|®(£)[|=]|4, holds
which implies that the map P is continuous and can uniquely be extended to the full anticommu-
tative phase space.
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The 7,-grading of the Grassmann part induces a direct sum decomposition of the Banach
space R(H,Q:J)=R(H,Q:J)y® R(H,Q:J), with R(H,Q:J),:=QH®A(Q"H,0"J),,. More-
over, we introduce a complex conjugation according to (f®\)*:=(=1)7"Jf@\* with \
e A(Q*H, QLJ)q. The grading and the complex conjugation are compatible with the identification
of R(H,Q;J) as a closed linear subspace of the Grassmann algebra A(H,J). Here the tensor
product f® \ is just identified with the operator A(f)\. The complex conjugation and the grading
in R(H,Q;J) are nothing else but the adjoint and the grading within the ambient Grassmann
algebra. The GAR relations can be expressed in terms of graded commutators. Recall that the
graded commutator of [A,B], is given by the commutator [A,B] if A or B are even and by the
anticommutator {A, B} if both A and B are odd.

It follows from the construction of the Grassmann—Bose fields that for a pair of phase space
vectors &, pe R(H,Q;J), the graded commutator fulfills

[D(8).D(n)]y=(&", mo- (13)

Moreover, the adjoint fulfills the identity ®(&)*=®(&*). For the particular case that &, 7 are even
elements in R(H,Q;J) the Grassmann—-Bose field fulfills the canonical commutation relations,

[D(8),D(n)]=(&. - (14)

Note that the restriction of the rigging map to the even subspace is antisymmetric, i.e., (£*, 7)o
=—( 77*,§)Q for &, n even. As for the usual formulation of the canonical commutation relation, the
commutator belongs to the center of the GAR algebra. The main difference is here that the
Grassmann-Bose field operators are bounded in norm. This is no contradiction, since we are
dealing here with Banach “-algebras (rather than C*-algebras).

For an even ¢ e R(H,Q;J), the exponential w(¢):=exp(P(£)) of the Grassmann—Bose field
operator is well defined. We call w(§) the Grassmann—Weyl operator for &. Since field operators
D(§),D(7) are even, the Grassmann—Weyl operators fulfill the relations

w(E+ ) =eE Dow(Ew(7). (15)

As for ordinary Weyl operators, the map &é—w(£) is a projective representation of the additive
group R(H,Q;J)y, where the factor system belongs to the center of the GAR algebra.

Obviously the Grassmann—Weyl operator w(§) is unitary only if =& is self-adjoint. If we
restrict the Grassmann—Weyl system to self-adjoint phase space vectors, then the value of the
rigging map (&*, 7)o=(&, Mo=—(&, )y, is anti-self-adjoint and the exponential in the Grassmann—
Weyl relation is also unitary. Note that R(H,Q;J), should be seen as a “complexified” anticom-
mutative phase space and the Grassmann—Weyl operators are directly constructed as a kind of
analytic continuation from the real part.

E. Toward a harmonic analysis on anticommutative phase space

The concept of anticommutative phase space can be used to perform a kind of “harmonic
analysis” that is analogous to the analysis of the bosonic case.” As for the case of ordinary
symplectic vector spaces,23 we introduce here the analogous concept of convolution and Fourier
transform. This requires to “integrate” over antisymmetric phase space. Here the Brezin—
Grassmann integration (see, for instance, Refs. 7, 21, and 22) turns out to be the appropriate notion
which we recall here. Before we continue our discussion, we mention the following.

In order to perform integration with respect to Grassmann variables, we have to consider the
algebra of functions that can be integrated. These functions are appropriate polynomials of Grass-
mann variables & e R(H,Q;J), with values in a right module over the ring A(Q*H,Q"J). If the
underlying ring structure is clear from the context we just briefly say “right module.” We assume
here that the projection Q has finite even rank dim(Q)=2n, which corresponds to an integration
over a finite dimensional space.

We need to integrate functions with values in a right module £ that admit a polynomial
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representation in terms of Grassmann variables. However, this representation has some ambigu-
ities which causes some problems in defining the Grassmann integral. A polynomial representation
is obtained from a real orthonormal basis (¢');.y of QH, that is, indexed by the ordered set N
={1,...,dim(Q)}. Any vector £ € R(H,Q;J), can be expanded in this basis as £é=3;A’¢; with &
e A(Q*H,0"J), and A’:= A(e’). With respect to this basis, the polynomial representation of a
G-holomorphic function F is given by

F(§) =2 Fg. (16)
IcN
Here the coefficients F! are contained in the right module £. The monomial & which is associated
with an ordered subset I={i; <i,<---<i,}CN is given by &:= gil---gik.
For a given polynomial representation, the Brezin—Grassmann integral of F' over a form of
highest degree (2n-form) v=vye' A+ Ae®* in A(QH,QJ) is defined according to

f v(§)F(§) =vyF". (17)
Q
The problem with this definition is that, in general, the relation
2 Flg=0 (18)
ICN

is nontrivial in the sense that (18) holds for nonzero coefficients F/. This means that the polyno-
mial representation for a given basis is not unique and the integral may not be well defined.
However, for some right modules £ the highest coefficient FV is unique. This is the case if £
fulfills the following condition: If X\ ;---\,,=0 for all odd Grassmann operators A, ...,\,,, then
X=0. This property holds for £&=G(H,Q:;J) and E=A(Q+H,Q"J), if the complementary projec-
tion Q' is infinite dimensional. A more detailed analysis of this issue is postponed to Sec. IV A.
In what follows, we assume that Q is a projection of finite dimension 2n and its complement Q*
is infinite dimensional.

We introduce the Banach space Hom(H,Q,J) of bounded right module homomorphisms from
the GAR algebra into its Grassmann part. As already mentioned, the space R(H,Q;J), can be
regarded as anticommutative phase space with a complex structure that is given by the adjoint x
where the rigging map (,), induces a Grassmann valued symplectic form on R(H,Q;J),. The
phase space translations act by automorphisms on the GAR algebra by the adjoint action of the
Grassmann—Weyl operators,

ag(A) = (- HAW(D). (19)

Note that a; is a “-automorphism if and only if the operator £ is self-adjoint, i.e., it belongs to the
real part of R(H,Q;J),.

By fixing a self-adjoint and normalized form v of highest degree with respect to O, we are
now prepared to define the following convolutions.

(1) The convolution of two G-holomorphic functions is a G-holomorphic function that is given
by

O(H’Qs‘]) X O(HaQs‘,) E] (fl9f2) _>fl *fz € O(H,Q,J),

(f1 * f2)(8) = f v(n)fi(n)f(é- 7). (20)
(9]

(2) The convolution of an operator in the GAR algebra with a G-holomorphic function is the
operator in the GAR algebra that is given by
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G(H,0:J) X O(H,0.J) > (A.f) = Axf e G(H,0:J),

A*f==f v(na_,(A)f(n). 21
0

(3) The convolution of a right module homomorphism with an operator in the GAR algebra is a
G-holomorphic function that is given by

Hom(H,0.J) X G(H,Q:J) > (¢,A) = ¢*A € O(H,Q.J]),

(@*A)(&) = plafA)). (22)
As for the convolution, we also have three different cases for applying the Fourier transform.

(1) The Fourier transform maps an operator of the reduced GAR algebra to a G-holomorphic
function according to

F:G(H,Q;J) — O(H,0,)),

(FA)(&) = w(- §)f v(n)a_,(A)e e, (23)
0

Up to now, the function FA can have values in the GAR algebra, but we will show that the
range of the function is indeed fully contained in the Grassmann part.

(2) The Fourier transform maps a G-holomorphic function to a G-holomorphic function accord-
ing to

F:O(H,0,J) — O(H,Q,]),

(FNE) = J v(n)f(me 7o, (24)
0

(3) Finally, the Fourier transform of a right module homomorphism is the G-holomorphic func-
tion which is given by its expectation values of the Grassmann—Weyl operators in the GAR
algebra,

F:Hom(H,0,J) — O(H,0,J),

(Fe)(é) = e(w(8)). (25)

F. Main results

A useful fact is that all operators of the GAR algebra G(H,Q;J) can be represented in terms
of Grassmann integrals as stated by the following theorem.

Theorem 8: The Fourier transform JF maps each operator A € G(H,Q;J) of the GAR algebra
to a G-holomorphic function in O(H,Q,J) , such that the identity

A=f v(Ow(E)(FA) (&) (26)
0

holds.

The Fourier transform maps the convolution of objects into their product of Fourier trans-
forms as stated by the following theorem.

Theorem 9: Let f,f' be G-holomorphic functions, let A an operator of the GAR algebra, and
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let @ be a right module homomorphism. Then the identities
F(f=f)=TFfFf",
FloxA)=TFoFA,

F(A * f) = FAFf (27)

are valid.

The integral representation for operators in the GAR algebra can be used to calculate the
expectation values of a right module homomorphism on the GAR algebra in terms of the expec-
tation values of Grassmann—Weyl operators. According to the discussion above, the identities

w(A)zf v]—'w]-'A:f vF(w*A) (28)
o 9]

are valid.
Corollary 10: Let w,¢ bounded right module homomorphisms. If Fo is a divisor of Fw
within the ring of G-homomorphic functions, then the Radon—Nikodym-type relation,

Fw
w(A) =f v]__—f(<P*A), (29)
0 ¢

is valid for all operators A of the GAR algebra.

For the presentation of our next results, we need to recall the definition of the quasifree
Sfermion states as well as the definition of the Pfaffian of a real antisymmetric matrix, as well as
how to calculate Gaussian Grassmann integrals.

Quasifree states. Each quasifree state on the fermionic part F(QH,QJ) is in one-to-one
correspondence with its covariance matrix. This is a linear operator S on QH with 0<S=1 and it
has to fulfill the constraint S+JSJ=1. The expectation values of the state wg are related to its
covariance matrix S by the following condition on the two-point correlation function:

ws(B(f)B(h)) = (Jf,Sh) (30)

with f,h € QH. All higher correlation functions can be expressed in terms of sums of products of
two-point functions according to Wick theorem, where only the expectation values of an even
product of Fermi field operators are nonvanishing. It is well known that a quasifree state is pure if
and only if its covariance matrix S=P is a projection, called basis projection.

Pfaffian. 1t is well known that Gaussian Grassmann integrals can be expressed in terms of the
Pfaffian of the corresponding covariance matrix. The nth power of a two-form a € A(QH,QJ) is
a 2n-form in A(QH,QJ) and therefore proportional to any other 2n-form. By fixing a selfadjoint
normalized 2n-form v, i.e., v=v* and (v,v)=1, there exists a complex number Pf},;(a), called the
Pfaffian of a that is uniquely determined by

(n)7'a"= ) Yv,a"w =Pf,(a)v. (31)

Now, let A be a linear operator on QH, then there exists a unique two-form a, such that
(a*,fAhy=(Jf,Ah), where the two-form a only depends on the J -antisymmetric part (A
—JA*J)/2 of the operator A. Note that the J-antisymmetry is related to the transpose A—>JA*J.
The Pfaffian of a J-antisymmetric operator A is now defined as

Pfp, 1(A) = Pf,)(a), (32)

where a is the two-form fulfilling the identity (a*,fAh)=(Jf,Ah). If we restrict to the real sub-
space in QH that is given by Jf=f, we obtain therefore the standard definition of the Pfaffian for
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a real antisymmetric operator. In particular, the determinant of an antisymmetric operator with
respect to the 2n-form v is given by det(A)v=I"(A)v, where I'(A) denotes the second quantized
operator of A on the antisymmetric Fock space over QH that is given by ['(A)(fiA--*Afy)
=AfiA- - AAf,. We recall here the well known identity

det(A) =Pfj, ;)(A)*. (33)

Note that due to the condition A=—JA*J the left hand side implicitly also depends on the complex
conjugation J. However, whereas the determinant can be defined for any linear operator on QH,
the Pfaffian is only defined on the real linear subspace of J-antisymmetic operators.

Theorem 11: For each covariance operator S on QH the Fourier transform of the
G-extension wg of the quasifree state wg is given by

Farg(§) =e 121500, (34)

Moreover, let P be a basis projection and let Ep be the support projection of the pure quasifree
state wp . Then for a normalized self-adjoint form v of highest degree with respect to Q the identity

Flwp* Ep)() = e, pe ¢ P00 (35)

is valid, where the sign €, pj=Pf, j(1-2P)= * 1 depends on the orientation of the form v and the
reflection 1-2P .

This theorem states that in analogy to the bosonic expectation values of Weyl operators, the
expectation values for the displacement operators for G-extended quasifree states are also of
Gaussian type. In particular, the relation (35) is derived by calculating a Gaussian Grassmann
integral with respect to the covariance A=1-2P. Note that this notion of covariance is related to
the Gaussian character of the Grassmann integral and should not be confused with the covariance
operator that determines a quasifree fermion state. Recall that for a J-antisymmetric operator A on
QH and a v normalized self-adjoint 2n-form the corresponding Gaussian integral can be calculated
according to

f v(g)e(1/2)<§*vA§>Q+<W*«§>Q = Pf}, J](A)e(m)(ﬂ',A'l Ly (36)
Q
Inserting A=1-2P=P—JPJ into the above identity (36) yields the identity (35).

G. Applications: Calculating the fidelity of quasifree states

In this section, we give an explicit formula to calculate the fidelity between a pure quasifree
state and another arbitrary quasifree state. Let us recall the fidelity between two states w; and w,
on a general finite dimensional C*-algebra 2. Let L,(2() be the Hilbert space of Hilbert—-Schmidt
operators with respect to a faithful trace tr on 2. A Hilbert—Schmidt operator V e L,(2l) imple-
ments a state w if w(A)=(V,AV)=tr(V*AV)=tr(VV*A) holds for all A € 2l. In this case we write
v € S(w). Clearly, for Ve S(w) the operator VV* is the density operator that corresponds to the
state w.

As long as we consider finite dimensions, all states can be implemented that way. For two
states w, ¢, the fidelity is given by

Flo.@)=  sup  [V.W)]. 37)
VeS(w),WeS(p)

As it has been shown by Bures® (compare also Ref. 16), the fidelity is related to the norm distance
of states, independent of the dimension of the underlying algebra, by the inequality

Yo - ¢? =2(1 - F(w,)) = |o-¢. (38)
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The fidelity can simply be calculated if we choose one of the states w to be pure. In this case,
for each implementing Hilbert—Schmidt operator V € S(w) there exists a unitary U e 2, such that
V=EU, where E € 2 is the unique rank-one projection (density operator) that corresponds to w,
ie., w(A)=tr(EA). Thus we observe for each We S(¢) that (EU,W)*=tr(W*EU)tr(U*EW)
=tr(UWE)tr(EWU")=tr(W'EW)=¢(E) and we get for the fidelity

F(w,¢)* = ¢(E). (39)

As we have seen above, the GAR framework allows to calculate expectation values of opera-
tors in terms of Grassmann integrals. In the case of quasifree states, we see from Theorem 11 that
we are faced here with calculating Gaussian Grassmann integrals only. This leads to the following
theorem.

Theorem 12: Let S be two covariance operator and let P be a basis projection on QH and let
wg,wp be the corresponding quasifree states. Then the relation

F(wp, wg)* =|det(1 — P - S)|'"? (40)

is valid.

Proof: Since wp is a pure state, the square fidelity F(wp, ws)*=wg(Ep) is given by the expec-
tation value of the support projection Ep in the state wg. To calculate the fidelity, we take advan-
tage of Theorem 9 and Theorem 11 which can be used to express the expectation value of the
support projection Ep in the state wg as a Gaussian Grassmann integral,

v(g)e(1/2)<§*,(P =58 p~(¢"Pg — € P]J v(g)e(l/zxg*,(u ~P=9)dg. (41)

ws(EP)ﬂ = e[U’P]J
0

Q

where v is a normalized self-adjoint form of highest degree. We evaluate the integral with help of
(36) which leads to

wS(EP) = e[v,P] Pf[v’”(l -P- S) (42)

Since the left hand side is positive (expectation value of a positive operator) and by the identity
Pfj, j(1-P-5)*=det(1-P-S), we obtain the desired result. [ |

H. Finite versus infinite dimensions

To what extend can our formalism be used for infinite dimensional fermion systems? Recall
that the dimension of the fermion system is given here by the dimension of the projection Q. The
GAR algebra G(H,Q;J) is well defined for all separable Hilbert spaces and for all projections Q
commuting with J. The anticommutative phase space for fermions as well as the Weyl-Grassmann
operators can also be constructed in this case. The main difficulty to extend our kind of “harmonic
analysis” to infinite dimensional systems is due to the problem of defining an appropriate infinite
dimensional Grassmann integral. Of course, one can try to approximate (in some appropriate
sense) an infinite Grassmann integral by a sequence of finite dimensional integrations. For in-
stance, one can choose an increasing sequence of projections (E,), lim E,=1, that commute with
Q and J and suppose further that dim(E,Q)=2n. Now each of the anticommutative phase spaces
R(E,H,E,Q;E,J) can be identified with a subspace of R(H,Q;J). For infinite rank projections
Q we propose to call a function f on R(H,Q;J) with values in a right module £ to be G-holo-
morphic if for any finite rank projection E that commutes with Q and J the function
[fleo: R(EH ,EQ:EJ) 5 é— f(£) is G-holomorphic. A proposal for an infinite Grassmann integral
is now to choose an appropriate sequence of forms v=(v,), where v, is of highest degree with
respect to E,Q, and define
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J v(§f(§) = limf va(f(8) (43)
0 E,Q

n

for an appropriate limit. The problem is here to find a reasonable form of convergence.

Concerning applications, one can directly ask whether a statement such as Theorem 12 can
expected to be true for infinite dimensional fermion systems. Let P be a basis projection and S be
a covariance operator on an infinite dimensional Hilbert space K=QH. Then the fidelity is only
nonvanishing if the Gelfand-Naimark-Segal (GNS) representations of wg and wp are mutually
quasiequivalent. To explain this, let 7 denote the GNS representation of wp, let H denote the GNS
Hilbert space, and let ) be the GNS (Fock vacuum) vector in H, i.e., wp(A)=(Q, m(A)Q) holds
for all operators A in the fermion algebra. The quasiequivalence implies that there exists a density
operator p on H, such that wg(A)=tr(pm(A)) holds. A necessary and sufficient criterion for
qgasiequivalence has been shown by Araki (Ref. 2, Theorem 1) which states that the operator
VS§— P has to be a Hilbert—Schmidt operator. A first natural question that arises here is whether the
determinant det(1—P-S) exists under these circumstances. Indeed the determinant of an operator
1+A exists in infinite dimensions, provided A is a trace class operator (see, for instance, Ref. 18
Chap. XIII). Unfortunately, the operator P+S is, in general, nor trace class and the formula for the
fidelity in Theorem 12 cannot hold in infinite dimensions. One possible way out of this dilemma
is to “renormalize” the determinant with respect to the basis projection P. For instance, we
multiply the operator 1-P—S by the unitary 1-2P from the right which yields 1-P—-S+2SP. In
finite dimensions the modulus of the determinant |det(1-P-S)|=|det(1-P-S+2SP)| does not
change and the determinant det(1—P—S+2SP) is normalized in the sense that for S=P we get
det(1-P-S+2S5P)=det(1)=1. Now, if \r’E—P is Hilbert-Schmidt, then it follows that P+S
—{P,S} is trace class. Thus for the simplified case that [P,S]=0 the “renormalized” determinant
det(1-P—-S+2SP) exists in infinite dimensions. This shows that there might be an analogous
determinant formula for the fidelity between a pure quasifree and an arbitrary quasifree state for
the infinite dimensional case.

lll. ON THE STRUCTURE OF THE GAR ALGEBRA

In this section, we discuss mathematical issues on the GAR algebra which are needed to
prepare and derive the results which we have discussed in Sec. II F. Hereby we mainly focus on
the algebraic and functional analytic properties. All the results that we derive here are also valid
for the infinite dimensional (but separable) case.

A. Existence of the adjoint

As we have introduced in Sec. II B, the GAR algebra for a Hilbert space H, a complex
conjugation J, and a projection Q that commutes with J is defined as the norm-closed subalgebra
of the enveloping CAR algebra £(H,Q;J), that is, generated by the operators G(f):=B(f®0).
Therefore, by construction, the GAR algebra is a Banach algebra. As we have promised in Sec.
II B, we show here that the GAR algebra admits a continuous adjoint that coincides with the
C*-adjoint on the fermionic part.

Proposition 13:

(1) There exists an adjoint *:G(H,Q;J)— G(H,Q;J) , such that the GAR algebra becomes a
Banach * -algebra.

(2) The adjoint * coincides with the C* -adjoint on the fermionic part: A*=A" for A
e F(QH,0J) .

(3) The adjoint * is uniquely determined by the relation G(f)*=G(Jf) for fe H .

Proof: We consider the dense subalgebra C;(H ,0:J) in G(H,Q;J) that consists of finite sums
of finite products of operators G(f) with fe H. On this dense subalgebra, we define an anti-
linear involution according to G(f)*=G(Jf) for fe H. To prove the proposition, we just have
to show that this involution is continuous. For this purpose, we consider a finite rank projec-
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tion E that commutes with Q and J. We obtain a closed finite dimensional subalgebra
G(EH ,EQ;EJ)CQD(H ,0;J) which is closed under the adjoint *. Therefore, * is bounded on
G(EH,EQ;EJ) which implies ||A*|=|A|| for all A € G(EH,EQ;EJ). Note that any bounded invo-
lution on a Banach space is isometric. Since each operator A in the GAR algebra is a norm
convergent limit of a sequence of operators (A,), where A, € G(E,H,E,Q;E,J) and (E,) is an
increasing sequence of projections that commute with J and Q, we conclude that the adjoint * is
isometric on a norm dense subalgebra. Hence it is norm continuous and can uniquely be extended
to the full GAR algebra. Since we have G(Qf)*=B(J,(Qf ®0))=G(JQf)=G(Qf)*, we conclude

that * coincides with the C*-adjoint on the fermionic part. |

B. Natural norms on the Grassmann algebra

As a Banach "-algebra, the natural norm on the Grassmann algebra is the operator norm that
is induced by the enveloping CAR algebra. In this norm the product is continuous which is the
defining property of a Banach algebra norm.

As we have discussed in Sec. II B, the antisymmetric tensor algebra &H ,J) over the Hilbert
space H with complex conjugation J can be identified with a norm dense *-subalgebra in A(H,J).

In particular, /O\(H ,J) can also be identified with a dense subspace of the antisymmetric Fock space

F_(H). Thus, N(H,J) possesses a scalar product (X, ) — (N, ). The norm |[]||=+{\,\), which is
induced by the scalar product, will be called the Fock space norm. The first observation is that the
Fock space norm, and hence the scalar product, is continuous with respect to the Banach algebra
norm as stated by the following proposition.

Proposition 14: The norm |||-|| is continuous with respect to the underlying Banach algebra
norm ||-|| . In particular; the scalar product is continuous and can uniquely be extended to the full
Grassmann algebra.

Proof: By the identity A(H,J)=G(H,0:J) the enveloping CAR algebra is given by F(H
®H,J,), where J, is the complex conjugation J,(h @ f)=Jf ® Jh. We introduce the basis projection
E on H® H according to E(f@® h):=f®0. The corresponding Fock representation of the envelop-
ing C*-algebra 7 on F_(H) is faithful. The Grassmann field operators are represented in terms of
the creation operators by 7(A(f))=m(B(f & 0))=c*(f). Clearly, the vectors ¢*(f;)---¢*(f,){) span a
dense subspace in F_(H), where () is the corresponding Fock vacuum vector. Therefore, we have

for an operator \ € &H )

[N = ) < [IN]]. (44)

Hence the norm |||-||| is continuous with respect to ||-||. [ |

It is worth to mention that both norms are different from each other. In particular, the norm
I-ll is not a Banach algebra norm. This can be verified by the following counterexample: Take
mutually orthogonal vectors ey, ...,eq in H and consider the operator A=e;Ae,+e3Ae,+e5A¢€6.
Then we find for the Fock space norm )\|||=\E, whereas a straightforward computation for the
Fock space norm of \? yields [|[N||=2v3>3=||[\]||*.

C. Nilpotent ideals, positive operators, and positive functionals

As a *-algebra, G(H,Q;J) possesses a natural convex cone of positive elements: The set of
positive linear functionals consists of all linear functionals w:G(H,Q;J) —C with w(A*A)=0.
The positive cone G(H, Q;J), consists of all operators that have positive expectation values for all
positive functionals.

In order to analyze the positivity of operators, we introduce the norm-closed two-sided ideal
I(H,Q;J), that is, generated by the self-adjoint nilpotent operators that belong to the Grassmann
part A(Q*H,Q"J). Recall that an operator Z is nilpotent if there exists n e N with Z"=0. The
operators that are given by finite sums
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A= AZ (45)

with self-adjoint nilpotent operators Z; € A(Q~H,Q"%J) and A; € G(H,Q;J) form a norm dense
subset in Z(H,Q;J). It s not difficult to see that A,A* as well as A+A* are nilpotent operators in
the GAR algebra. Here one takes advantage of the fact that the graded commutator of any operator
with an operator from the Grassmann part vanishes.

Proposition 15:

(1) There exists a surjective * -homomorphism €y:G(H,Q:J)— F(QH,QJ) , such that the iden-
tities €9(Z2)=0 and €y(A)=A are valid for all Z < I(H,Q;J) and for all A € F(QH,QJ) .

(2) To each positive functionals w on the GAR algebra G(H,Q;J) there exists a unique positive
functional o' on the fermionic part F(QH,QJ) , such that

w=0'"°¢. (46)
Proof:

(1) In order to prove the existence of €, we show that the quotient algebra
G(H,Q:J)/Z(H,Q;J) is canonically isomorphic to F(QH,QJ). Let 7, be the canonical
“-homomorphism that projects G(H,Q;J) onto G(H,Q;J)/Z(H,Q;J). The intersection
F(QOH,QJ)NI(H,Q;J)={0} only contains the zero element. Namely, let Z be self-adjoint
and nilpotent, then Z e F(QH,QJ) implies Z=0 since the only self-adjoint and nilpotent
element inside a C*-algebra is the zero operator. For each generator G(f) of the GAR
algebra, we have the decomposition G(f)=G(Qf)+G(Q*f) with G(Q+f) e Z(H,Q;J).
Thus we conclude wy(G(f)=G(QN+Z(H,Q:J) and y:G(Qf)+I(H,Q;J)— B(Qf)
€ F(QH,QJ) is the desired isomorphism. Thus €,:=ty° 7, is a “-homomorphism that an-
nihilates the ideal Z(H,(Q;J) and acts as the identity on the fermionic part.

(2) Let w be a positive functional on the GAR algebra and let Z be self-adjoint and nilpotent.
Then we can choose k € N, such that Z'=0 with n=2F. By iterating the Cauchy—Schwarz
inequality, we conclude |w(Z)|= w(Z")=0. Thus  annihilates all nilpotent self-adjoint ele-
ments. Since the ideal Z(H,Q;J) possesses a dense subsubspace that is spanned by nilpotent
self-adjoint operators and since w is continuous, the ideal Z(H,Q;J) is annihilated which
implies w=w'° €y, where o’ is the restriction of  to the fermionic part. Thus each positive
functional on the GAR algebra is the pull back of a unique (note that the dual map of € is
injective) positive functional on the fermionic part via the *-homomorphism €,. By con-
struction we have w(A+2)=w'(ey(A+2))=w'(A). [ |

IV. ON GRASSMANN INTEGRALS

Toward the development of a “harmonic analysis” on antisymmetric phase space, we review
here the basic concepts of Grassmann calculus, including integration theory. In view of our
applications to fermionic systems, we need to give here a version which at some points differ from
the standard analysis that can be found within the literature. In what follows, we assume here that
the projection Q is of even finite rank=2n, and that the rank of Q* is infinite.

A. G-holomorphic functions

In order to perform integration with respect to Grassmann variables we have to consider the
algebra of functions that can be integrated. These functions are appropriate polynomials of Grass-
mann variables & e R(H,Q;J), with values in a right module over the ring A(Q+H,Q"J). If the
underlying ring structure is clear from the context we just briefly say “right module.” In the
following, the right modules £ under consideration are assumed to be Banach spaces with a
continuous right multiplication.
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Roughly, G-holomorphic functions are polynomials in the Grassmann variables. The problem
is that the polynomial representation is not unique which causes ambiguities in the definition of
the Grassmann integral. In order to overcome this problem, we define &y to be the norm-closed
subrightmodule that consists of all elements X, such that X\;---\,,=0 holds for all families
Nis...,Ny, of 21 odd operators in the Grassmann part (27 is the rank of the projection Q). As
already mentioned, the definition of the Grassmann integral is most comfortable in the case where
the submodule £,={0} is trivial. In this context, the most important example for such a right
module is the GAR algebra for which the complementary projection Q+ has infinite rank. The
Grassmann part is isomorphic to the DeWitt algebra that is build from an infinite number of
anticommuting generators.7

Proposition 16: Let Q be a projection of even and finite rank 2n and suppose that the rank of
Q* is infinite. Then the closed subspace G(H,Q3J)o=1{0} is trivial.

Proof: Let E be a finite rank projection that commutes with Q and J. Then the GAR algebra
G(EH,EQ:EJ) is a finite dimensional subalgebra of G(H,Q;J). Using the enveloping CAR
algebra, the full GAR algebra is isomorphic to the twisted tensor product G(H,Q;J)

=G(EH,EQ;EJ)®G(E“H ,E*J;E"]J), where ® denotes the twisted tensor product. Note that the
Banach algebra norm is a cross norm with respect to the twisted tensor product. Since Q% is
infinite dimensional and E is finite dimensional, we conclude that E*tQ+=Q"'E" is infinite di-
mensional. For each A € G(EH,EQ;EJ) with ||A||>0 we can choose odd Grassmann operators
Ny Ny, € A(EYQTH,E*Q*J),, such that |[\;---\y,/|=1. This implies that [JAN;---\y,)|
=|IA[lIN1- Ayl =[|A]l. Here we have used the fact that AN+ -\, =A®N\;"**\,,. For each nonzero
A eG(H,Q;J) and for each € with [|A||>€>0 we can find a finite rank projection E that com-
mutes with Q and J and an operator A, e G(EH,EQ;EJ) with ||AJ=|A], such that [A-A]|=€.
Again we can find odd Grassmann operators \i,...,\,, € A(ETQ1H,E*Q4J),, such that
[N;"**Ay,]=1. Suppose now that AN;---\,,=0 then we conclude [|AN;* "Ny, —AN;"" Ayl
=[|A\ ;- - *Ny,/|=||A|| = € which contradicts the assumption ||A|| > €. Therefore, AN, -\, # 0 which
implies that the subspace G(H,Q;J),={0} is trivial. [ |

The vector space O(H,Q,J|E) of G-holomorphic functions with values in a right module £
consists of all functions from R(H,Q;J), into £ which can be build from linear combinations of
monomial functions,

£ XE, (47)

with X € £ and u,, ... ,u, € QH. Here the “u-component” of ¢ is defined as §,:=(u®1,£),. The
algebra (ring) of “Grassmann-valued” G-holomorphic functions O(H,Q,J) is the algebra that is
generated by the functions é— &, with u € QH. The vector space, as defined above, is canonically
equipped with a right module structure. For a G-holomorphic function we define the correspond-
ing action by (F-\)(&):=F(&)N. The G-holomorphic functions O(H,Q,J|£) with values in the
right module & are also equipped with a O(H,Q,J) right module structure. Indeed, the space
O(H,Q,J|&) is the right module over O(H,Q,J), generated by £. Each G-holomorphic function
admits a polynomial representation induced by a real orthonormal basis (¢');.y of QH, that is,
indexed by the ordered set N={1,...,2n}. Any vector £ R(H,Q;J), can be expanded in this
basis as £=3,A'¢ with &e A(QYH,Q'J),. The corresponding polynomial expansion of a
G-holomorphic function F' is given by

)
n

F(o =2 Fg, (48)

with coefficients F! in the right module £. The monomial & which is associated with an ordered
subset I={i; <i,<---<i }CN is given by &= &+ &, . In particular, since Q has finite rank 2n,
each G-homomorphic function can be expressed as a finite sum of monomials, i.e., there is no
problem concerning convergence.

There is an interesting connection between G-holomorphic functions and right module homo-
morphisms. To make this point clear, we observe that the Grassmann algebra A(H,J) possesses a
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natural right module structure over A(Q*H,Q'J) by right multiplication a~>a\ with a
e A(H,J) and A\ e A(Q*H,Q"J). We denote by Hom(H,Q,J|€) the Banach space of bounded
right module homomorphisms R from A(H,J) into &, i.e., R is complex linear and fulfills the
condition R(a\)=R(a)\ for a e A(H,J) and A\ e A(Q1H,Q"J). A particular case is here the Ba-
nach space of the right module homomorphisms with values in A(Q+H,Q'J) which will be
denoted by End(H,Q,J). Clearly, the space of right module homomorphism is a right module
itself according to the following definition: An operator A € A(Q+H,Q*/J) acts on a right module
homomorphism R as (R-\)(a):=R(\a).

For a G-holomorphic function Fe O(H,Q,J|€) we consider the subset RoFC
Hom(H,Q,J|€) that consists of all right module homomorphisms R, such that F(£)=R(ef) holds.
To prepare our the definition of the Grassmann integral, we consider an operator v € A(QH, QJ) is
called a form of highest degree with respect to Q if vA(h)=0 for all h € QH. If it is clear from the
context to which projection Q we are referring, we shortly say that v is a form of highest degree.
In general, we say that an operator is a k-form with respect to Q if it is a linear combination of
operators of the form A(Qf,)---A(Qf)=0f A AQf. Let n be the rank of the projection Q,
then the subspace of k-forms has dimension (',:) and the subspace of forms of highest degree
(n-forms) is a one dimensional.

Proposition 17: Let Fe OH,Q,J|E) be a G-holomorphic function and let R,,R, e
RoF CHom(H,Q,J|) be two right module homomorphisms. Moreover, we assume that the
submodule £,={0} is trivial. Then the identity

RI(U) =R,(v) (49)

holds for all forms v of highest degree.

Proof: Let (e"),-E ~ be a real basis of QH, indexed be the ordered set N={1,2,...,n}. For each
ordered subset ICN we introduce the operator A’=A(e%)---A(e') with I={i;<i,<---<iy},
where we put A2=1. Since (A’),cy is a basis of A(QH,QJ), the operator e¢ can be expanded as
SAE with §=& -+ & . It follows from F (&)=R,(e¥)=R,(e?) that we obtain for the right module
homomorphism D=R;—-R,

> D(ADg=0 (50)
ICN

for all £ R(H,Q;J). From this we conclude that for each ICN the identity

D(AYg=0 (51)
holds for all £ R(H,Q;J). Since v is an operator of highest degree with respect to Q we have
v=vyAY which implies

D(U)gN =0 (52)
for all £ But then D(v) is contained in the submodule in £,={0} which implies (49). |

B. Definition of the Grassmann integral and some basic properties

In the following discussion, we only consider right modules £ for which the submodule &,
={0} is trivial. Let v # 0 be a nonzero form of highest degree. The Grassmann integral of F with
respect to v is defined according to

f v(§F(§) = R(v), (53)
0

with an right module homomorphism R € R,F. Note that by Proposition 17, this definition only
depends on the G-holomorphic function itself. The notation for the integral, as we use it, suggests
to interpret the form of highest degree v as a volume form that is integrated over a noncommu-
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tative space of Grassmann variables. The projection Q is interpreted as the realm of integration
whose dimension is precisely the rank of Q. The symbolic expression v(&)F(£) is then a volume
form with values in the right module &, evaluated at &.

Let (¢'); .y be a real orthonormal basis of QH. Each G-holomorphic function F with values in
£ can be expanded with respect to this basis as F(&)=X2,cyF'&. Moreover, a form of highest
degree v # 0 can be expressed in terms of this basis by v=vyAY,

This yields for the integral

J 0(F(&) = X Floy=oyF". (54)
0 ICN
This shows that our definition of the Grassmann integral is equivalent to the standard definition
that can be found in the literature, see, for instance, Refs. 21 and 22.

The following proposition lists some basic and well known properties of the Grassmann
integral. We also give here the proof, since our formalism (although equivalent) is a bit different
from the one that can be found in the literature.

Proposition 18: Let v be an nonzero form of highest degree with respect to a projection Q of
rank 2n . Then the Grassmann integral has the following properties.

(1) The Grassmann integral is translationally invariant: For each G-holomorphic function F
with values in £ the identity

fv(ﬁ)F(§)=f v(OF(&+7) (55)
0 0

holds for all ne R(H,Q;J), .
(2) For a G-holomorphic function F with values in a right module & the identity

va~)\:|:f vF:|)\ (56)
0 0
holds for all N e A(Q*H,0"J) .

(3) Let F be a G-holomorphic function with values in a right module £ and let T:E— &' a right
module homomorphism. For each G-holomorphic function F with values in £ the function
TF:&—~T(F(&)) is G-holomorphic with values in &' and the identity

fvTF:T(f vF) (57)
0 0

Proof: Recall that we have introduced the Grassmann integral with help of the space of right
module homomorphisms R F'.

holds.

(1) For a right module homomorphism R € RyF, we obtain a right module homomorphism
7,R € Ry(7,F) by putting (7,R)(a):=R(exp(#n)a). For an operator v of highest degree the
integral of the translated function can be calculated by [,v7,F=7,R(v)=R(exp(7)v). Since
vA(h)=0 for all he QH, it follows that vy=0 for all ne R(H,Q;J). This implies
exp(n)v=v which yields the desired relation [,v7,F=R(v)=[yvF.

(2) Let F be a G-holomorphic function with values in £ Then for A e A(Q*H,Q"J) a right
module homomorphism in Ry(F-\) is simply given by (R-N)(a)=R(\a) with R € RyF.
Thus we obtain for an operator v of highest degree [,vF-A=R(Av)=R(uN)=R(v)\
=[[ouF]\.

(3) Let T:E—¢&’ be aright module homomorphism, then it is obvious that for a G-holomorphic
function F with values in &, the function TF: &—T(F(&)) is G-holomorphic with values in
&'. Since the identity (T°R)(exp(£))=TF(&) is valid for all R e RyF, we conclude that
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T°R € RoTF which implies for an operator v of highest degree: [ouTF=(T°R)(v)
=T(R(v))=T(J gvF).

|

To treat multiple Grassmann integration, we have to say what is a G-holomorphic function in

several variables: A function on R(H,Q;J)" with values in & is called G-holomorphic if for each
Jj the function

g'_)F(gl""’gj—bgsg]#l’""é:n) (58)

is G-holomorphic. For our purpose, it is sufficient to consider the case n=2. For a G-holomorphic
function on R(H,Q;J)* with values in a right module &, we obtain two ordinary G-holomorphic
functions £, and F ¢ according to

F&(n) :=F (& = F(7,9. (59)

The following proposition can be used for exchanging the order of multiple Grassmann integra-
tions.

Proposition 19: Let F be a G-holomorphic function on R(H,Q;J)* with values in £ and let
v,w be forms of highest degree with respect to the even rank projection Q . Then the functions
F”:foQva and F,:n— JwF, are G-holomorphic and the order of integration can be ex-

changed,
f vFW=f wkv. (60)
0 [

Proof: Since F is G-holomorphic in both variables, we obtain from the polynomial expansion
that there exists linear map R:A(H,J)>—&, such that R(a\,b)=R(a,f(b))\ for \
e A(Q*H,Q"J), and R(a,b\)=R(a,b)\ holds and that fulfills the identity F(7,&)=R(e”,e%).

For fixed #, the map R,:b—R(e”,b) is a right module homomorphism in RyF,. Thus, we
obtain for the partial integral F,(7)=JowF,=R(e”,w) which also shows that F, is
G-holomorphic. Since w is even, it follows that the map R,,:a—>R(a,w) is a right module homo-
morphism in R,F, which implies [,vF,=R(v,w). By a similar argument one shows that
JwF’=R(v,w) which implies the result. [ |

C. Some useful lemmas for calculating Grassmann integrals

In order to calculate particular Grassmann integrals, a further interesting fact to mention is that
the algebra of G-holomorphic functions is related to the Grassmann algebra A(H,J) itself. To
explain this, we observe that the Grassmann algebra (as a Banach space) A(H,J) is isomorphic to
the tensor product F_(QH) ® A(Q+H,Q*J). The canonical isomorphism is given by identifying

A(fD) - AFIN=fin - Af, @\ (61)

for f;,....f, € OH and A e A(Q+H,Q"J). This can be used to introduce a rigging map on A(H,J)
with values A(Q+H,Q"J). By using the induced Hilbert space structure on the Grassmann algebra
A(QH,QJ)=F_(QH) the rigging map is determined by

<A(fl) o A(fn))\’A(hl) Tt A(hn)/*L>Q = <fl At ANy A A hﬂ>)\'*/’l’ (62)

If we expand the operators in A(H,J) in a real orthonormal basis (e’);.y of QH, then the rigging
map can be simply calculated as

(a,b)o= >, ajby, (63)
ICN

where a=3,cyAla; and b=3,cyA'b, We associate with each operator ae A(H,J) a
G-holomorphic function according to
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Ega(§) = (a*,exp(§))o, (64)

and we show the following useful lemma.

Lemma 20: The map Ey:A(H,J)— O(H,Q,J) is an algebra homomorphism. Moreover, for
each a € A(H,J) , the right module homomorphism Rya:b—>{a*,b), is contained in RyEqa .

Proof: Let (e');_y be a real orthonormal basis of QH. Then we expand the operator a
e A(H,J) according to a=3,cya'A;, where the product A;=A(e’)---A(e') is ordered by increas-
ing indices I={i; <i,<---<i, (indicated by a subscript I). Moreover, the exponential exp(&) has
an expansion exp(&)=2,cyA’&, where the product A’=A(e’*)---A(e') is ordered by decreasing
indices I={i; <i,<---<i, (indicated by a superscript I). Since a*==,-yA/(a’)* we find

Ega(§) = 2 d'§. (65)

ICN

For the product Eya(§)Eyb(&) we obtain the expansion

Eqa(§Egh() = X d'éb'ey= 2 e,a'8"(0")E), (66)

LICN ICJICN
where ¢;; is the sign of the permutation (/,J\/) —J which emerges from the identity &&n,=€,,€).
On the other hand, the product ab has the following expansion with respect to the chosen basis:

ab = 2 aIA[bJAJ: 2 fljala‘J\Il(bJ\I)AJ, (67)
LICN ICJCN
which implies the homomorphism property. Finally, we directly observe that Epa(£)=Rga(e?)
which concludes the proof. |
Lemma 21: Let F be a G-holomorphic function with values in a right module £ and let v,,v,
be two operators of highest degree with respect to Q . Then the identity

fvl(f)f va()F(&e £~ 00 = (v],v)F(Z) (68)
0 0

is valid.

Proof: We take advantage of the fact that the bilinear form (a,b) > (a*,b), fulfills the identity
(a*,b)o=(b*,6p(a))p on the even subalgebra. Here 6, is the automorphism 6,(A(f))
=A((1-2Q)f). From this we calculate the following Grassmann integral: Let v a form of highest
degree with respect to a projection Q of even rank n. Then we calculate

f v<§>e<”*’§>g=<e”’,v>g=i,<v*, 7o- (69)
0 n.

Furthermore, the value of the rigging map (a,b)p=(a,b)] is a multiple of the identity for all
operators a,b that belong to the subalgebra A(QH,QJ). As a consequence we can calculate the
double integral,

Jvl(n)f vz(f)e<”*’§>0=f vi(n)(v3.eMo=(vl.u)l. (70)
0 0 0

Finally, we introduce the function 8, that is given by &,(7):=(n!)"(v*, 7)o with n=dim(Q). As
we will see, the G-holomorphic function &, plays the role of a é-function for Grassmann integrals
for the “volume form” v. To verify this, we observe that %8,(7)=0 holds and we calculate for a
G-holomorphic function F the multiple integral,
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f vl(a[ f vy () F(&)el %] = f v1(OF(8)3,,(6-0). (71)
o o 0
By taking advantage of the translation invariance of the Grassmann integral, it follows that
f v](al f 0o F (e € %} 3 J 0O TF 3, (72)
0 Qo 0
holds. Since §5v2(§)=0, we find for each R € RyF
F(9)5,,(é) = R[e*s, (§)]=R(1) = F(0). (73)
Putting all these together implies the J-function formula,
f vl(f)l J vy F (el 4" DQ] = 7F(0) f v1(8)6,,(8) = (v],L)F(). (74)
[ Q [
|

D. Calculating Gaussian integrals

Let A be a bounded operator on QH, then there exists an operator a € A(QH,QJ), such that

(£.48)0=2a"exp(&))o, (75)

where a only depends on the antisymmetric part (A—JA*J)/2 of A. In particular, a has degree of
2 with respect to Q. To verify this, we recall that the map f® h—(Jf,Ah) is a bilinear form on
QH. Since Q has finite rank, it follows that there exists a unique vector i, € QH®?2, such that
(TR hy,fRhy=(Jf,Ah) holds. Moreover, we have (Jh,Af)=(Jf,JA*Th)y=((J ) i, ,f® h),
where F is the flip operator that swaps the tensor product. The antisymmetric vector
a=(Fi,—iy,)/2 can be identified with an operator in A(H,J), and we find

(a*,f A by = 3(Jf,(JA*] = A)h). (76)

According to the definition of the rigging map, we obtain for A, u € A(Q*H,Q*J), and for f,h
e OH

(@ AN g = 5f, (A = JA IO\, (77)

which implies the identity (75). In the following, we can therefore restrict the consideration to
operators on QH that fulfill the condition A=—JA*J.

Since the operator a has degree of 2 the operator (n)~'a" with 2n=dim(Q) is of highest
degree and therefore proportional to any other operator of highest degree. We choose a self-adjoint
operator of highest degree v=v* that is normalized (v,v)=1. Then the identity

(n) "= (n) Nv,a"v (78)

holds. If a is related to an operator A on QB according to (Jf,Ah)={a*,fAh), then the scalar
product (n!)"Xv,a") is the Pfaffian of A with respect to v and J (see Sec. I F),

Pf, ;)(A) = () v,a"). (79)

This can now be applied calculate Gaussian Grassmann integrals easily as stated by the next
lemma.

Lemma 22: Let A be an antisymmetric operator on QH , i.e., A=—JA*J , and let v be a
self-adjoint normalized form of highest degree with respect to Q . Then the Gaussian integral
identity,
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f v(§eN€ A0 = pfy, (A1, (80)
0

holds.
Proof: Let a e A(QH,QJ) be the operator of degree of 2 that fulfills the identity {a*,fAh)
=(Jf,Ah). Then we calculate the Gaussian integral with the help of Lemma 20 according to

f v(§e!PE A0 = f v(§e o= f (e e = (e, v)y. (81)
9 0 9

Since both operators e and v=v* are even and contained in A(QH,QJ), we obtain for the rigging
map <e“*,v>Q:<e"*,v>1=(v,e“)]l. By expanding the exponential e only the contribution to the
operator of highest degree contributes to the scalar product. Therefore, we obtain

(v,e)y = (n!)"v,a") = Pf,(a) = Pfy, 5(A), (82)

which proves the lemma. |
The identity (36) can now be shown by using the translation invariance of the Grassmann
integral. If A=—JA"J is invertible, we find

(=AD" A(E-AT" 9 ) =(E.AEg— (7", A7 g+ 27", &), (83)

where we have used the fact that (A~!7%)*=JA~'J#%* holds. As a result we obtain from the previous
lemma of highest degree with respect to Q. Then the Gaussian integral identity,

J (&) V& ADeHR 80 = Pf[U,J](A)e“/Z)(”*’A_I g, (84)
Y

In the case where A does not fulfill the antisymmetry condition A=-JA*J, the Gaussian
integral formula is still valid by substituting A on the right hand side by the antisymmetrized
operator (A—JA"J)/2.
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APPENDIX A: PROOF OF THEOREM 8

Proof: In the first step, we show that each operator A in the GAR algebra can be represented
by a Grassmann integral,

A=J v(OW(H (8, (A1)
0

with a G-holomorphic function f depending on v and A. Let (¢); _y be a real orthonormal basis of
OH with N={1,2,...,dim(Q)}. Then the Grassmann-Weyl operator can be expanded by

w(é) = Blg, (A2)

IcN
where we have introduced the operators B'=G(e'*)---G(e) for each ordered subset I={i; <i,
<---<i}. For each subset KCN we introduce the G-holomorphic function bX by bX(&)

= exnépy, Where €gy is determined by the condition exyéxéxy=Ey. Then we conclude from the
polynomial expansion of the reduced Grassmann—Weyl operator w(¢) that the identity
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W(f)bK(g) = E BI§1§N\I(= E €1KN6KNBI§N\(K\1) (A3)

ICN ICK

holds with &&yx= €xnémn k). Note that for IQ K we have §&ywx=0. This implies for a form v of
highest degree,

f v(OW(HD'(H = f v(® erxvexnB Enin = vB", (A4)
[¢] o

ICK

where we have used the identity exxy= €xy. The operators BX form a basis of the fermionic part of
the reduced GAR algebra. Thus a general operator can by expanded as A=3,-yB/A; with A,
belonging to the Grassmann part. Thus the G-holomorphic function,

fO=2 vy ewéwAr (A5)

ICN

solves the identity (26).
We insert now this identity into the Fourier transform and obtain

(FA) (&) =w(- f)f v(n)J v(Ow(= DW(Of(Ow(nexp(7",&)p). (A6)
0 0

By taking advantage of the fact that the Weyl operators belong to the even part of the GAR
algebra, we obtain from the Weyl relations

(FA) (&) =w(- §)f v(’r])f v(OW(Df(Dexp((n", €= Do) (A7)
0 0

Since Q is even, the order of integration can be exchanged. Therefore, we get from the d-function
formula (68)

(FA) (&) =w(- f)f U(§)W(§)f(§)f v(nexp((7",§= Do) = W™,v)f(&). (A8)
0 0

By choosing v to be normalized and self-adjoint, implies the result. |

APPENDIX B: PROOF OF THEOREM 9

Proof: We first consider the convolution of two G-holomorphic functions f,f” which is given
by

U*f’)(§)=f v(f(n)f' (§-m). (B1)
0

Taking the Fourier transform yields

F(f=f)é)= f v(0) J v(DF(f (L~ pe'€ Do, (B2)
0 0

We make use of the translation invariance of the Grassmann integral (Proposition 18) and the fact
that the order of integration can be exchanged (Proposition 19) which implies
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F(ff) (&)= f () f(me€ e J v(Of (D€ Do = FAOFF (9). (B3)
(9] 0

Let ¢ be a bounded right module homomorphism from the GAR algebra into its Grassmann part
and let A be an operator of the reduced Grassmann algebra. The convolution of ¢ and A is just
given by (¢*A)(§)=¢(aA). Therefore, the Fourier transform of this convolution is

f(w*A)(§)=f v(n)qo(a—nA)e<§"”>Q=<P<f v(??)a—nAe@*’”)Q) (B4)
0 0

By Proposition 18, the integration and the application by the right module homomorphism can be
exchanged. Keeping the definition of the Fourier transform of a GAR operator in mind, we obtain

FloxA) (&) = p(w(§FA(E)) = o(W(§)) FA(E) = Fo(§ FA(E). (B5)

In the last step, we have used the property that FA(€) is contained in the reduced Grassmann part
and that ¢ is right module homomorphism.

Finally, we consider the convolution of an operator A in the reduced GAR algebra with a
G-holomorphic function f. The Fourier transform is given by

Fa=NE= f vw)a-n( j v(é)agAf(D)e@*’wQ: f v(7) f v(Dag Af(Q)e 9.
0 [ 0 0

(B6)

By using the translation invariance as well as the exchange rule for the order of integration, the
identity F(A * f)=FAFf follows. |

APPENDIX C: PROOF OF THEOREM 11
Proof: To start with, we first look at the left hand side of Eq. (34),

Forg(§) = e—(l/2)<§*,5§>Q’ (C1)

that we have to show. For a real basis (¢);.y of QH, the Grassmann-Weyl operator can be
expanded as a polynomial in the Grassmann variable & The Fourier transform (characteristic
function) of the extended quasifree state wg can be calculated by

Foyd= 2 wgBYE, (C2)

KCN
where BX and & are defined as within the proof of Theorem 8 above. We obtain a polynomial

expansion with complex valued coefficients, given by the quasifree expectation values wg(BX).
These expectation values can be calculated by Wick’s theorem according to

wsB= 2 en]] ws(B), (€3)
[Te Py(K) Iell
where P,(K) is the set of all ordered partitions of K into two-elementary subsets and efx is the
sign of the permutation (I, ...,I;) — K with I[I=(I;,...,I;). This yields for the full polynomial
expansion,

osw(®)= > X exl] ogB)é. (C4)
KCN Ile Py(K) Iell

On the other hand, there exists an operator ag in A(QH,QJ) of degree of 2 which is determined by
the condition 2{(ay,fAh)={Jf,Sh), f,h € QH, and which satisfies the identity
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<e“§,e§>Q — e~ (12)(€".S8)o (C5)

If we expand the exponential of ag with respect to a real basis of QH, then we get, according to
the calculations we have done in the proof of Lemma 20,

e’s= E 2 GHKH agAK- (Ce6)

KCN TICP,(K) Iell

This implies by using the expansion of the (reduced) rigging map,

e 1P€S00= 3 X el aé. (C7)

KCN TIICP,(K) Iell

By construction, the identity a{SKj}:(ei ,Se/y=w4(G(e')G(e’)) holds for all two-elementary ordered
subsets I={i <j} which implies (34).

Let P be a basis projection on QH and let v be a self-adjoint normalized form of highest
degree in A(QH,QJ). Moreover, Ep denotes the support projection of the pure quasifree state wp.
We now have to show the identity

Flwp+ Ep)(§) =P, (C8)

According to the definition of the convolution and the Fourier transform, we have to calculate the
Grassmann integral,

Folewp* Ep)(§) = j v(n)@p(w(= PEpw(n))es 7. (C9)
0

Since wp is pure, the supposed projection Ep, has rank one and the identity wp(AEpB)
=wp(A)wp(B) holds for A,B in the fermionic part. This property is lifted to the G-extension, i.e.,
wp(AEpB)=wp(A)wp(B). Since the equivalence class mapping [-], is a “-algebra homomor-
phism, we obtain for the lift @p to the reduced GAR algebra that @p(AEpB) = @wp(A) @p(B) holds
for all operators A, B in the reduced GAR algebra. To verify this we choose operators of the form
AN and Bu, where A,B belong to the fermionic part and A\ A(QLH,QLJ)q, m belong to the
Grassmann part of the GAR algebra. Then we calculate

@p(ANEpBu) = op(AEp ¢ (B)\ ) = wp(AEp#(B)) A = 0p(A) 0p(B)A pt = 0p(AN) wp(Bp).
(C10)

By using the identity (34), which we just have proven above, we get

wp(W(= DEpw(7)) = wp(w(p)> =70, (C11)

By inserting this into Eq. (C9), it remains to calculate the Gaussian integral with help of Lemma
22 and the discussion thereafter in Sec. IV D,

Fo(@p Ep)(8) = f v(p)e T EDeHE Do = Pl 1 (JPT - PYeVDEWPI=PT 00 (C12)
o

Since P is a basis projection, the operator JPJ—P=]-2P is a reflection and we have
Pf;, j(1-2P)=* 1. Moreover, we conclude (§*,(JPJ—P)‘lf)Q=(§*,Jl(]—ZP)f)Q=—2<§*,P§)Q.
This yields the desired result. |
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