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Invariant theory is concerned with functions that do not change under the ac-

tion of a given group. Here we communicate an approach based on tensor networks

to represent polynomial local unitary invariants of quantum states. This graphical

approach provides an alternative to the polynomial equations that describe invari-

ants, which often contain a large number of terms with coefficients raised to high

powers. This approach also enables one to use known methods from tensor network

theory (such as the matrix product state factorization) when studying polynomial

invariants. As our main example, we consider invariants of matrix product states.

We generate a family of tensor contractions resulting in a complete set of local uni-

tary invariants that can be used to express the Rényi entropies. We find that the

graphical approach to representing invariants can provide structural insight into the

invariants being contracted, as well as an alternative, and sometimes much simpler,

means to study polynomial invariants of quantum states. In addition, many tensor

network methods, such as matrix product states, contain excellent tools that can be

applied in the study of invariants.
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In quantum physics, polynomial invariants typically arise in the study of various entanglement-
related properties of quantum states [1–6] and gates [7, 8]. In this paper we present a variant
of the graphical tensor calculus of Penrose [9] for the purpose of representing and computing
polynomial invariants of arbitrary quantum states.

The graphical approach of tensor network diagrams1 provides an alternative to the poly-
nomial equations that describe invariants, which often contain a large number of terms
with coefficients raised to high powers. It also enables one to use established methods from
tensor network theory (such as matrix product state factorizations) to study polynomial in-
variants. We find in our examples that the underlying mathematical structure of the physics
described by the invariants is reflected in the structure of the resulting tensor networks. By
using specific graphical rewrite rules, our methods enable one to contract and simplify the
tensor network representing any given polynomial invariant of a bipartite pure state to
the point where the network is succinctly expressed in terms of Schmidt coefficients. This
serves as a graphical proof of the invariance of the quantity represented by the network, as
well as a conceptual aid geared towards understanding the meaning behind the invariants.
The graphical method introduced to factor matrix product states is slightly different than
known approaches in the literature—see for example, the matrix product states review [13]
and [14, 15]. These differences are important for our purposes.

The area of tensor network states and tensor network algorithms is a rapidly growing
area of physics which studies (in part) the most efficient way to represent quantum states
and to discover key properties of quantum systems. One of the main methods inside this
framework is the matrix product state (MPS) representation [13–17]. This method is not
well known outside of physics. We find it to be well suited to study invariants and think that
others working in the area of invariant theory (even outside of physics) will find the matrix
product state factorization useful. We therefore hope that the present paper can help bridge
this gap between these communities and foster further cross-pollination between invariant
theory and tensor network states. For related work published after the preprint version of
our study, see [18, 19].

At the heart of MPS is the tensor network description of repeated bipartitions of a
quantum state. By capturing the singular value decomposition in a tensor network where
all internal components have clearly defined algebraic properties, we present some small
improvements in the graphical tensor calculus used to describe matrix product states, as
well as invariants in general. In this regard, our results on matrix product states take
an important first step in uniting invariant theory with tensor network states. The key
example we consider here is showing the utility of tensor network methods for matrix product
factorizations of quantum states into bipartitions.

Apart from the intuition found in representing states as MPSs, one might also employ
tensor network algorithms [14, 15, 17, 20, 21] to design and contract invariants of interest
to physics. Tensor network methods also offer a valuable conceptual aid to understanding
how the numerical value of an invariant relates to properties of the state.

We begin by recalling the fundamental notions of the tensor calculus in Sections 1, 2 and 3.
This leads to the diagrammatic SVD, which is used in Section 4 to factor a given quantum
state into a matrix product state. We then connect the tensor calculus to polynomial
invariants in Section 5. Before concluding, we also consider the application of invariants to
calculate entropies and entanglement measures.

1 We assume readers are familiar with the basics of tensor networks, although we will review them in

Section 1. Readers seeking the basics of tensor networks could consult [10–12] and those interested in

tensor network algorithms and applications to physics could consult [13–15].
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1 PENROSE GRAPHICAL NOTATION

1. PENROSE GRAPHICAL NOTATION FOR TENSOR NETWORKS

Penrose graphical notation [9] is a diagrammatic notation for tensor networks. This
notation is becoming well known inside the tensor network algorithms community (see for
example [22] for an early use of the graphical notation to describe matrix product states). It
can make the manipulation of complicated tensor networks much easier and more intuitive.
Contributions on the topic we found influential can be found in [23–27]. In our previous work,
we have adapted the graphical notation and surrounding methods to describe generalized
quantum circuits [11], tensor network states [10–12], open quantum systems [28, 29] as well
as decidability in algorithms based on tensor contractions [30].

In the string diagram notation, a tensor is a graphical shape with a number of input
legs (or “arms”) pointing up, and output legs pointing down.2 Individual arms as well as
individual legs each independently correspond to an index. For example,

(a) (b)

(1)

diagram (a) represents the tensor ψi and (b) the tensor T i
jk. A tensor with n indices up and

m down is called a valence-(n,m) tensor and sometimes a valence-k tensor for k = n+m.
In quantum physics parlance one introduces a computational basis and expands the ten-

sors in it; in which case T i
jk is understood not as abstract index notation but as the actual

components of the tensor:

T =
∑

ijk

T i
jk|jk〉〈i|. (2)

In practice there is little room for confusion however.
There are three special “wire tensors” that play the role of the metric tensor.3 They are

given diagrammatically as

(a) (b) (c)

(3)

The identity tensor (a) is used for index contraction by connecting the corresponding legs,
and the cup (b) and cap (c) are metric tensors used for raising and lowering indices. Ex-
panding them in the computational basis we obtain

11 =
∑

ij

δij |j〉〈i| =
∑

k

|k〉〈k|, (4)

〈∪| =
∑

ij

δij〈ij| =
∑

k

〈kk|, and (5)

|∩〉 =
∑

ij

δij |ij〉 =
∑

k

|kk〉. (6)

2 Often, to conserve space, the diagrams are rotated 90 degrees counterclockwise. In practice this should

be obvious from the context.
3 We will always work in a flat Euclidean space, which renders the metric tensors trivial.
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2 PENROSE WIRE BENDING DUALITY

(a) (b)

FIG. 1. Illustration of the graphical notation. (a) Contraction of tensor T with tensors A and B

amounts to joining indices: T i
jkA

j
lB

k
m. (b) Permutation of indices by crossing wires: Ab

degB
ac
f .

(i) One can raise and subsequently lower an index or vice versa, which amounts essentially
to doing nothing at all. This scenario is captured diagrammatically by the so called
snake or zig-zag equation

=
(7)

together with its mirror image [9]. In tensor index notation, it is expressed succinctly
as δijδjk = δik.

(ii) Crossing two wires (as in diagram (a) below) is equivalent to swapping the relative
order of the corresponding vector spaces.

=

(a) (b)

(8)

(b) illustrates that the swap operation is self inverse. It may be written as SWAP
ij
kl =

δilδ
j
k.

(iii) The trace in the graphical calculus is given by appropriately joining wires to close
loops.

Together the cups and caps give rise to a correspondence between different types of maps
and states. We call the duality induced by bending and exchanging wires Penrose duality.

2. PENROSE WIRE BENDING DUALITY

Now we will consider the set of operations formed from bending tensor wires forwards or
backwards using cups and caps, as well as exchanging wires using SWAP. We can conceptu-
alize this set of transforms acting on a tensor as amounting essentially to matrix reshapes.
From the snake equation, action with a cup or a cap is invertible and SWAP is self in-
verse. This implies that all possible configurations of a tensor’s wires obtained using these
operations can be considered equivalent. We will start with an example.

Example 1. Given a tensor T i
j with fixed labels i, j one uses cups and caps to rearrange

index elevations, arriving at

T i
j, T

ij , Tij , T
j

i (9)
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3 DIAGRAMMATIC SVD

Using the SWAP operation one reorders the horizontal position of i and j. Then applying
cups and caps yields

T
j
i, T

ji, Tji, T
i

j (10)

for a total of eight possible reshapes.

For an n index tensor, each index can be either up or down, yielding 2n possibilities. The
symmetry group formed by SWAP is of order n! and acts to arrange the horizontal position
of the n legs of a tensor, yielding (provided we distinguish forms of the type T j

i and T j
i in

Example 1) n! · 2n different ways to reorder the n indices of a tensor.

Remark 2 (Ordering operators by numbers of inputs and outputs). In the previous example,
we considered T j

i (b) and T j
i (a) as distinct. This is illustrated in (a) and (b) as follows.

(a) (b)

(11)

This provides an example of an awkward property of the inherently one-dimensional Dirac
notation. Both (a) and (b) represent the same map, but when we write them in a basis,
consistency dictates that one will expand in the basis 〈i| ⊗ |j〉.

With the equivalence explained in Remark 2 in mind, we note that the tensor T i
j from

Example 1 actually has six unique reshapes, as two pairs of reshapes are diagrammatically
equivalent. In other words, in (b) below we have that T i

j = T i
j = T i

j and for (e) we have

the equality T j
i = T

j
i = T

j
i .

(a) (b) (c)

(�� (�)(�)

(12)

Together, we call these reshapes the natural tensor symmetry class. More generally one
finds the number of diagrammatically unique reshapes of a tensor by (i) counting the number
of possible ways it can have its wires bent, either forward or backwards using the cups and
caps, and (ii) the number of ways a tensor can have its arms and/or legs reordered. We
arrive at the following result:

Theorem 3 (Natural tensor symmetry class). The arms and legs of a tensor Γij···k
qr···s with n

input and output legs in total can be rearranged in (n+ 1)! different ways.

3. DIAGRAMMATIC SVD

In this section, we introduce the diagrammatic representation of the singular value de-
composition (SVD). Later it will be used to simplify invariants obtained through network
contraction, and iterated to obtain a matrix product state (MPS) description for a pure
state.

5



3 DIAGRAMMATIC SVD

The SVD factors tensors into well defined building blocks with simplistic interaction
properties: (i) a valence-one tensor storing singular values, (ii) a valence-three-COPY tensor
used to create a diagonal map, and (iii) a pair of valence-two unitary gates. COPY-tensors
have been studied in the setting of the Penrose tensor calculus, in work dating back at least
to Lafont [23, 24] — see also [10, 11, 25].

Definition 4 (COPY tensor). The m-to-n COPY tensor is defined in the computational
basis as

COPYm→n :=
d−1∑

k=0

| k · · ·k
︸ ︷︷ ︸

n

〉〈k · · · k
︸ ︷︷ ︸

m

|. (13)

It is named accordingly because connecting a basis state |k〉 to any of its input or output
wires collapses the sum and breaks the tensor up into unconnected copies of |k〉 and 〈k|. As
with classical circuits, in the diagrammatic tensor notation COPYm→n is represented by a
simple black dot • with m input and n output legs. Since all the legs of a COPY tensor
are identical, and the inputs can be converted to outputs and vice versa simply by using
cups and caps, keeping track of the direction of the legs is not important as long as they are
connected to other tensors. This is reflected in the notation. For a brief enumeration of the
algebraic properties of the COPY tensor, see [11].

Theorem 5 (Diagrammatic SVD). Any valence-two tensor f : A → B can be factored
into a non-negative, unique valence-one tensor Σ, a valence-three COPY tensor, unitary
valence-two tensors U and V , and a diagonal valence-two dimension changer tensor Q when
necessary:

UVf =

σ

QV=Σ
A B A BBA

U
A B BA A

A
(14)

The dimension changing tensor Q : A → B has 1’s on the diagonal and zero entries other-
wise.

Proof. The SVD of f is
f = UΣV, (15)

where U : B → B and V : A → A are unitary operators and Σ : A → B is diagonal in the
computational basis, with the (necessarily non-negative) singular values σi of f along the
diagonal. Σ can be written as

Σ =

d−1∑

j=0

σj |j〉B〈j|A =

d−1∑

i=0

|i〉B〈i|A
︸ ︷︷ ︸

QAB

∑

j

|j〉A〈jj|A
︸ ︷︷ ︸

COPY2→1

∑

k

σk|k〉A
︸ ︷︷ ︸

σ

(σk ≥ 0), (16)

where d = min(dimA, dimB). We have expressed Σ as a contraction of an valence-one
tensor σ with a COPY tensor. The non-square tensor QAB is only necessary if A and B
have different dimensions.
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4 DIAGRAMMATIC MATRIX PRODUCT STATES

Corollary 6 (Diagrammatic Schmidt decomposition). Given a bipartite state |ψ〉 ∈ A⊗B,
we use the snake equation to convert it into a linear map f : A → B (inside the dashed
region below):4

= σ=
U

V
T

ψ

A

B
f

A

B
Q

A

B

A

BA

ψ

A

B=
A

(17)

Now we apply the SVD as in Theorem 5. Diagram reorganization leads to the diagrammatic
Schmidt decomposition of |ψ〉. The singular values in σ now correspond to the Schmidt
coefficients.

The network topology of the diagrammatic Schmidt decomposition can be used to study
the entanglement properties of the bipartite state |ψ〉.
Example 7 (Entanglement topology). The topology of a bipartite state |ψ〉 =

∑

i σi|ϕi〉|φi〉
depends on the singular values in the triangular tensor |σ〉 = σ0|0〉+σ1|1〉+ . . .+σd−1|d− 1〉.

(a) (b) (c)

(18)

The general diagram state (a) takes the form (b) iff the Schmidt coefficients all have the same
value. Now |σ〉 is proportional to a unit for the COPY-tensor, and the tensor structure is
converted to a smooth wire, yielding the maximally entangled case. The most significant
topology change (c) occurs when the input state to the COPY tensor is a single basis state
|σ〉 = |0〉. As this is a copy-point for the COPY-tensor, it breaks into two copies of |σ〉 and
separates the diagram into two halves, illustrating the fact that the state is factorizable.

4. DIAGRAMMATIC MATRIX PRODUCT STATES

We will now consider matrix product states (MPS), an iterative method to factor quantum
states into a linear chain of tensors (see [14, 15, 31] for a recent review and [11] for work
considering the category theory behind MPS). The reason this factorization is called a 1D
method is because it is known to describe a class of 1D systems efficiently, and because the
factorization results in a 1D chain (for a discussion of other factorizations and the connection
to geometry see for instance [31]). Without loss of generality, we will apply the MPS method
to a four-party state, and explain the procedure in terms of three distinct steps.

Remark 8 (Method summary). MPS correspond to an iterative factorization method for
quantum states. The key idea is a recursive application of the singular value decomposition

4 This has also been understood as a diagrammatic form of map-state duality underlying bipartite entan-

glement evolution [29].
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4 DIAGRAMMATIC MATRIX PRODUCT STATES

(SVD). It begins by first selecting a bipartition and then applying the SVD. If either of the
initial bipartitions can themselves be bipartitioned, the SVD is applied again. This results
in a 1D tensor network representation of the state, as described in further detail below.

Consider a quantum state, expressed as a triangle in the Penrose graphical notation with
a label 1 inside and open legs labeled i, j, k,m.

i j k m

1

(19)

(Step I). We will create a bipartition comprising a first collection, containing only leg
i and a second, containing legs j, k,m. We will then apply the diagrammatic SVD across
this partition. The partition is illustrated with the dashed cut below in (a). Diagram (b)
results from applying the diagrammatic SVD across this partition, factoring the original
state labeled 1 into a valence-two unitary box labeled 2, a valence-one triangle containing
the singular values labeled 3, and a valence-four triangle labeled 4, all contracted with a
COPY-tensor, as illustrated. A new internal label (d) for the wire connecting the COPY-
tensor to the valence-four triangle (4) was introduced for clarity. See also Fig. 2(a,b).

=

(a) (b)

i j k m i j k m

1
2

33
4

cut

d

(20)

Remark 9 (Isometric internal tensors). The valence-four triangle tensor labeled 4 above
arises from contracting a unitary map with a dimension changing tensor Q (see (a) below).
The input leg shown is labeled d. The other legs are contracted with a fixed basis state |0〉,
from the SVD in (a) above. From the unitarity property, the isometry property follows, as
illustrated graphically in (c) and (d) below.

=

(a)

j k m

4

d

j k m

d

U
(b)

=

(c)Q

Q
...

A

B B B

Q
...

A

B B B

Q

A

=

A

A
(d)

(21)

(Step II). To illustrate the next step in the factorization, we will remove the tensor
labeled 4 by breaking the wire connecting it to the COPY-tensor (a). We will then partition
this separate tensor into two halves, one containing wires d, j the other half wires k,m. This

8



4 DIAGRAMMATIC MATRIX PRODUCT STATES

= =
=

(a) (b) (c) (d)

i j k m i j k m i j k m i j k m

1
2

33
4

2

3

2

3

5 5
6 7 6

8
9

10

cut cut
cut

d
d de e

FIG. 2. MPS factorization steps (diagrammatic description of steps I, II and III). The quantum

state (a) is iteratively factored into the 1D matrix product state (d). This procedure readily extends

to n-body states.

partition is illustrated by placing a dashed line (labeled cut) in (a). We arrive at the structure
in (b), which we have explained in the first step. See also Fig. 2(b,c).

=

(a) (b)

j k m j k m

4
5

6 7

cut
d

d e

(22)

Remark 10 (An elementary property of tensor network manipulation). It is a fundamental
property of tensor network theory that one can remove a portion of a network, alter this
removed portion of the network without changing its function, and replace it back into the
original network, leaving the function of the original network intact.

(Step III). In the third and final step of the MPS factorization applied to this four-party
example, following remark 10 we first place the tensor we have factored in the second step,
back into the original network from the first step, see (a) below. We then repeat the second
step, applied to the triangular isometry tensor, labeled internally with a 7. This results in
the factorization appearing in (b). See also Fig. 2(c,d).

=

(a) (b)

i j k m i j k m

2

3

2

3

5 5
6 7 6

8
9

10

cut

d de e

(23)

The iterative method continues in the same fashion as the first three steps, resulting in a
factorization of an n-party state. A summary of the MPS factorization applied to a four-
party state is shown in Figure 2.

(Summary). We will now consider Figure 3, which summarizes the factorization scheme.
In the steps we have outlined, we have factored Figure 3(a) into the MPS in Figure 3(d), in
terms of the components listed below.

(i) States (labeled 3, 6 and 9; denoted φ3, φ6 and φ9, respectively): φ3 = (λ0, λ1), φ6 =
(λ2, λ3, λ4, λ5) and φ9 = (λ6, λ7). The λi’s are the singular values across each partition.
The number of non-zero singular values (χ) is given by the minimum dimension of the
two halves from the cut. For the case of qubits, the first outside partition has at most
two non-zero entries, and the next inside partition has at most four. One might also

9



4 DIAGRAMMATIC MATRIX PRODUCT STATES

=

(b)

i j k m

2

3

5
6

8
9

10

i j k m

(a)

FIG. 3. Conversion from our notation (a), to conventional MPS notation (b). The factorization

methods we have presented here and elsewhere [10, 11] allow one to “zoom in” and expose in-

ternal degree of freedom (a) or “zoom out” and expose high-level structure (b). The equational

representation of the MPS in (b) is given in (24).

consider the singular values as the square roots of the eigenvalues of either member of
the pair of reduced density matrices found from tracing out either half of a partition.

(ii) Unitary gates (labeled 2 and 10; denoted U2 and U10, respectively).

(iii) Isometries (labeled 5 and 8; denoted I5 and I8, respectively). The isometry condition

describes the tensor relation Idjq I
jq

r = δdr. It is a consequence of the fact that tensors
I5 and I8 arise from unitary gates, as explained in Remark 9. The isometry condition
plays a more relevant role in structures other than 1D tensor chains.

We note that by appropriately combining neighboring tensors as in Figure 3(a), one
recovers the familiar matrix product representation of quantum states 3(b). Matrix product
states are written in equational form as

|ψ〉 =
∑

ijkm

A
[1]
i A

[2]
j A

[3]
k A

[4]
m |ijkm〉. (24)

Here A[1] becomes a new tensor formed from the contraction of tensors labeled 2, 3, and
A[2] is a contraction of tensors labeled 5 and 6, etc.

Remark 11 (Freedom in the representation). Readers would have noticed that we made
a choice to perform the factorization starting from the left of the tensor and applying the
SVD successively on tensors as we moved to the right. This apparent ambiguity has been
characterized in detail [17]. It corresponds to a gauge freedom (on internal wires) given by
action of the special linear group where the dimension of the representation is given by the
dimension of the wires (e.g. the internal bond dimension). For open boundary conditions as
has been considered here, there is a “canonical gauge” given first by Vidal. It is unique up
to degeneracies in the spectrum of local reduced density operators [17].

A utility of our approach summarized in Figure 3(a) is that the COPY-tensor is well
defined in terms of purely graphical rewrite identities (as seen in Definition 4). These
graphical relations allow one to gain insights (into e.g. polynomial invariants as will be
seen). The factorization we present however, allows one to preform many diagrammatic
manipulations with ease, and exposes more structure inherent in a MPS.

Remark 12 (Data compression). The compact representation of a MPS is recovered by
picking a cutoff value for the singular values across each partition, or a maximum number of
allowed singular values. This allows one to compress data by truncating the Hilbert space
and is at the heart of MPS computer algorithms in current use.

The singular values found from the MPS factorization can be used to form a complete
polynomial basis to express invariant quantities related to an MPS.

10



5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

5. PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

Here we will consider the variant of the graphical tensor calculus of Penrose [9] we have
tailored to represent and contract polynomial invariants. We must first recall the notions
surrounding polynomial invariants.

Polynomial invariants

Assume we are given a group G, a vector space V , and a group representation D : G →
Aut(V ).5 Given a set Q, a function f : V → Q is an invariant function or simply an
invariant under D iff it is constant on the orbits of D.6

In the context of quantum mechanics, the vector space V is typically either the state
spaceH, or End(H), the space of linear operatorsH → H. Any representationD : G → Aut(H)
on H induces a representation R : G → Aut(End(H)) on End(H):

R(g)(ρ) = D(g)ρD−1(g). (25)

An important class of invariants are the polynomial invariants f : V → C, which are
polynomial functions of the coefficients of ρ or |ψ〉 in the standard basis. The study of such
polynomials is known as invariant theory [32]. David Hilbert made notable progress on this
topic, which he pursued throughout his life. There has been past work considering these
invariants in the context of quantum information science. Some that was influential to us
includes [1–5]. See also the complementary recent study [18].

Remark 13 (Basis independence). To form a polynomial out of the coefficients of a state,
one first chooses a basis to express the state in. The value of the polynomial generally
depends on the basis chosen. However, a polynomial that is invariant under any group that
contains the local unitary group as a subgroup is inherently basis independent as long as
our basis is a tensor product of orthonormal local bases.

Invariance under the local unitary group

Definition 14 (Local unitary (LU) equivalence of states). Two quantum states (pure or
mixed) in the Hilbert space H = H1 ⊗H2 ⊗ . . .⊗Hn are LU equivalent iff they are related
by a local unitary transformation, that is, a member of the natural representation of the
group

GLU := U(1)× SU(d1)× SU(d2)× . . .× SU(dn), (26)

where di = dimHi is the dimension of the ith subsystem. LU equivalence yields a par-
titioning of the state space into LU orbits. Entanglement measures are by definition LU
invariants, i.e., constant on the aforementioned equivalence classes.

We now present a diagrammatic method for systematically generating polynomial LU
invariants for state vectors and operators by casting the method of Grassl et al. [1, 33] into a
form based on the Penrose tensor calculus. The method generates homogeneous polynomials

5 Aut(V ) denotes the group of automorphisms of V , i.e. the invertible linear maps from V to itself.
6 Or equivalently iff f itself is a fixed point under the induced representation D′ : G → Aut(F (V,Q)),

D′(g)(f) = f ◦D(g−1).

11



5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

in the state coefficients that are necessarily invariants of the local unitary group.7 A utility
of generating this set stems from the fact that the tensor networks considered can be used
to calculate quantities that are invariant under the action of the local unitary group.

Given a density operator ρ : H → H, consider the network

ρ F

(27)

equivalent to the expression Tr(Fρ) = F i
jρ

j
i. By choosing a suitable F , we can represent

any first-degree homogeneous polynomial in the coefficients of ρ in this way. Likewise, the
tensor network

ρ

F
ρ

(28)

translates to Tr(Fρ⊗2) = F il
jk ρ

j
iρ

k
l, giving all the second-degree homogeneous polynomials.

The procedure carries on in this fashion. A diagram with k copies of ρ gives us all the
homogeneous polynomials of degree k:

Tr(Fρ⊗k) = F
ij···m

pq···t ρ
p
iρ

q
j · · ·ρtm. (29)

Having thus generated a complete basis for the polynomials in the coefficients of ρ, we next
wish to find out which of these homogeneous polynomials are invariant under the natural
representation of GLU:

Tr(F (UρU−1)⊗k) = Tr((U−1)⊗kFU⊗kρ⊗k) = Tr(Fρ⊗k) ∀U ∈ GLU, ∀ρ. (30)

This is fulfilled iff

[F, U⊗k] = 0 ∀U ∈ GLU. (31)

We are then faced with finding matrices F that commute with U⊗k for each U ∈ GLU. The
solution is roughly stated in the following theorem.

Theorem 15 (Brauer [34], Procesi [33]). The algebra of matrices that commute with every
U⊗k for U ∈ GLU is generated by the unitary representation

T : Sk × . . .× Sk
︸ ︷︷ ︸

n copies

→ AutH⊗k (32)

of the n-fold direct product of the permutation group Sk which, independently for each of
the n subsystems, permutes the relative ordering of the k copies of that subsystem’s state
space within the total space H⊗k.

7 Although we can generate a complete set of invariants in this fashion, except in rare cases, finding a

minimal complete set of polynomial invariants is computationally difficult. This alternative line of research

has been a key focus in the connection of invariant theory with quantum entanglement.
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5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

Hence, it is enough to consider matrices F which correspond to these permutation maps.
The permutation group has a well known and evident diagrammatic form. Below, we show
the elements of the permutation group (a) S1, (b) S2, and (c) S3.

(a) (b) (c)

(33)

We then carry on to evaluate all the expressions of the form

Ik; σ1,σ2,...,σn
(ρ) := Tr(T (σ1, σ2, . . . , σn)ρ

⊗k), where σi ∈ Sk (34)

to generate the homogeneous invariant polynomials of degree k.8 It is easy to see that the
diagrams we obtain are indeed invariant under GLU, as shown in Figure 4.

(a) (b)

(c)

= = =

*T

*T

FIG. 4. Proof of the invariance of I2;(12). Having acted on ρ with some unitary operation U , we

slide U and U † around the bends, taking the transpose and resulting in (b). The unitaries cancel

and the diagram reduces to (c), showing that it indeed describes an invariant. A little bit of further

manipulation shows that I2;(12) evaluates to Tr(ρ2).

Not all of these invariants are independent, or even distinct. We can eliminate some of
the redundancy using the following theorem, proven in [1]:

Theorem 16 (Invariant distinctness [1]). Since all the copies of ρ in (34) are identical,
we may permute their relative order without changing the invariant. This is equivalent to
conjugating each subsystem permutation σi with the same element τ ∈ Sk:

Ik; σ1,...,σn
= Ik; τσ1τ−1,...,τσnτ−1 ∀σi, τ ∈ Sk. (35)

This theorem enables us to arrange each invariant diagram to the following canonical
form which makes it easy to tell if two diagrams are topologically distinct.

(i) The k copies of the system are arranged such that the permutation on the first sub-
system is grouped by cycles, ordered by non-increasing cycle length.

(ii) The process is repeated on the second, then third etc. subsystem within the remaining
permutational freedom, i.e. cyclic permutation within the cycles and permuting cycles
of identical length.

If a particular diagram is not connected, the corresponding invariant is the product of the
invariants corresponding to the disjoint sub-diagrams.

8 We use the cycle notation to denote specific elements σ of the permutation groups.
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5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

Remark 17. Note that using the procedure here, two algebraically independent invariants
necessarily have topologically distinct diagrams but the converse does not necessarily hold.

Theorem 18 (Real-valuedness of the invariants). If all the permutations σi are self-inverse,
or can all be inverted by conjugating them with the same element τ as shown in Theorem 16,
the invariant Ik; σ1,...,σn

is necessarily real for all states.

Proof.

I∗k; σ1,...,σn
(ρ) = Tr((ρ⊗k)†T †(σ1, . . . , σn)) = Tr(T †(σ1, . . . , σn)ρ

⊗k)

= Tr(T (σ−1
1 , . . . , σ−1

n )ρ⊗k) = Ik; σ−1

1
,...,σ−1

n
(ρ). (36)

Theorem 19 (States with a single subsystem). All the independent invariants of a d-
dimensional state ρ with a single subsystem are given by

Ik := Tr(ρk), where k ∈ {1, 2, . . . , d}. (37)

Proof. The only degree one invariant, I1 := Tr(ρ), is presented in Figure 5.a. The two
possible degree two invariants are shown in Figure 5.b. The first one is simply I21 . The second
one, I2 := Tr(ρ2), however is independent. Likewise, the only independent invariant of
degree three, I3 := Tr(ρ3), is given in Figure 5.c. In general, at each degree k we obtain a
single new independent invariant Ik := Tr(ρk), by using a complete permutation connecting
all the k copies of the state.

(a) (b) (c)

FIG. 5. LU invariants for a single subsystem. (a) I1 := I1;e = Tr(ρ). (b) I2;e = I21 . I2 := I2;(12) =

Tr(ρ2). (c) I3 := I3;(123) = Tr(ρ3).

The Cayley-Hamilton theorem now tells us that the basis is finitely generated, as every ρ
satisfies its own characteristic polynomial, giving an dth degree polynomial equation in ρ

which enables us to express any Im with m > d in terms of the lower-degree invariants [33].

Example 20 (Invariants for a single qubit). The only independent (fundamental) invariants
of a single qubit state are I1 and I2, defined in the previous theorem. I1 = Tr(ρ) is the norm
of the state. I2 = Tr(ρ2) turns out to be precisely the purity of the state. In terms of the
eigenvalues (λ0, λ1) of ρ we have I1 = λ0 + λ1 = 1 (for normalized states) and I2 = λ20 + λ21.
From the Cayley-Hamilton theorem we have that there is a second degree monic polynomial
in ρ that vanishes identically. In other words, constants a, b exist such that

ρ2 + aρ+ b11 = 0. (38)

14



5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

Multiplying both sides by ρm and taking the trace, we obtain the recurrence relation

Im+2 + aIm+1 + bIm = 0, (39)

and thus find that the traces of higher powers of ρ can be expressed in terms of I1 and
I2. These invariants are indeed algebraically independent and complete, meaning any other
polynomial invariant can be expressed in {R,+, ·, I1, I2}. For instance,

det(ρ) =
1

2

(
Tr(ρ)2 − Tr(ρ2)

)
=

1

2

(
I21 − I2

)
= λ0λ1. (40)

Likewise, I3 = λ30 + λ31 can be written as

I3 = I1(I2 − det(ρ)) (41)

Remark 21 (Bipartite states). For bipartite states we obtain a much more complicated set
of invariants. Figure 6 presents all the topologically distinct invariants up to k = 3.

(a)

(b)

(c)

ρ

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

1;e,eI

2;(12),eI

3;(123),(321)I

=

=

2;(12),(12)I =

=

3;(12),(23)I =

3;(123),eI =

3;(123),(12)I =

3;(123),(123)I =

FIG. 6. LU invariants of a bipartite system up to k = 3. To avoid listing essentially similar diagrams

we only show here the distinct invariants modulo swapping the order of the two subsystems. (a) The

only first degree invariant is I1;e,e = Tr(ρ), same as with a single subsystem. (b) In the second

degree we obtain a new invariant, I2;(12),e. (c) There are several new third degree invariants,

including the topologically distinct I3;(123),(123) and I3;(123),(321).

Pure states

If the state ρ is pure, the diagrammatic structure of the LU invariants simplifies consid-
erably, and many of the diagrams break up into unconnected sub-diagrams. Furthermore,
in the case of bipartite pure states, we may apply the Schmidt decomposition and introduce
graphical rewrite rules to show that these invariants reduce to polynomials of the Schmidt
coefficients.

Theorem 22 (Bipartite pure states). Applying the diagrammatic Schmidt decomposition
presented in Corollary 6 to the bipartite invariant diagrams in Figure 6, we can see that the
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5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

unitaries U , V and the dimension changers Q always cancel, and the invariant diagrams
break up into mutually disjoint loops corresponding to sums of even powers of the Schmidt
coefficients {σi}d−1

i=0 . Hence, the only independent invariants we obtain are of the form

Jk := Ik; (12···k),e =
∑

i

σ2k
i for k ∈ {1, 2, . . .}. (42)

In Figure 7 we present this process for the invariant

I3;(123),(12) =

(
∑

k

σ2
k

)(
∑

k

σ4
k

)

= I1; e,e I2; (12),e = J1 J2. (43)

= =

=ρ ρ ρ ψ ψ ψ ψ ψ ψ

= λ
U

V
T

λ
U

†

V
*

λ
U

†

V
*

λ
U

V
T

λ
U

†

V
*

λ
U

V
T

= λλ λ λ λ λ

FIG. 7. Invariant I3;(123),(12) evaluated for a pure bipartite state ρ = |ψ〉〈ψ| using the diagrammatic

Schmidt decomposition. The unitaries U and V (and possible dimension changers Q) cancel, and

one is left with two disjoint loops, on which the blank circles denote diagonal tensors with the

Schmidt coefficients {σi}d−1
i=0 on the diagonal.

Since the d Schmidt coefficients themselves (by construction) form a complete set of
bipartite LU invariants, we should be able to express them as functions of {Ji}di=1. This is
accomplished in principle by solving the following system of polynomial equations:

∑

i

σ2
i = J1,

∑

i

σ4
i = J2,

... =
...

∑

i

σ2d
i = Jd. (44)
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5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

Example 23 (Pure state of two qubits). Given a pure two-qubit state

|ψ〉 =
∑

ij

αij |ij〉, (45)

we wish to compute its LU invariants. Since it has two Schmidt coefficients, we expect to
find two independent invariants. The first one, J1, corresponds to the squared norm of the
state, and is thus trivially invariant under unitary transformations of |ψ〉:

= = =� � � � � � � �
U

†
V

U

V

†

=��J   =1

(46)

The second independent invariant, J2, doesn’t have as simple an interpretation:

== =

� �

� �

U
†

U
†

U
†

†
V

†
V

U

V

U

V

�

�

�

�

�

�

�

�

�

�

� �
J   =2

(47)

The diagrams correspond to the equations

J1 =
∑

ij

αijα∗
ij = σ2

0 + σ2
1 , (48)

J2 =
∑

ijkl

αijαklα∗
ilα

∗
kj = σ4

0 + σ4
1 , (49)

with the solution

σ2
0,1 =

1

2

(

J1 ±
√

2J2 − J2
1

)

, (50)

which yields J2 ≤ J2
1 ≤ 2J2. For a normalized state (J1 = 1), it can be shown that the

invariant J2 can be expressed as

J2 = 1− 2|α00α11 − α01α10|2, (51)

where α00α11−α01α10 is simply the determinant of the coefficient matrix α, which is non-zero
iff |ψ〉 represents an entangled state.
J1 and J2 are the only algebraically independent LU invariants of a pure two-qubit system.

Any polynomial function of such invariants is also a polynomial invariant. In this fashion,
it is a remarkable feature that functions of J1 and J2 are all that is needed to express any
local unitary invariant of two-qubit pure states. This elementary result follows from a much
more powerful and general result in classical invariant theory, a proof by Hilbert that the
ring of polynomial invariants is finitely generated [32]. This corresponds to freely generated
linear sums and products of J1, J2, e.g. the ring {J1, J2, (R,+, ·)}. Any minimal complete
set of invariants that can freely generate the full ring are called fundamental invariants.
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5 PENROSE NOTATION MEETS ENTANGLEMENT INVARIANTS

INVARIANTS, ENTROPIES AND ENTANGLEMENT

Here we focus on expressing Rényi entropies in terms of the invariants we have found
tensor contractions for in the previous sections. The Rényi entropy has many uses in con-
densed matter physics (see for example [35, 36]) and recently has been given an interesting
physical interpretation [37]. We will recall the definition as

Definition 24 (Rényi entropy [38]). The Rényi entropy of order α is defined as

Sα :=
1

1− α
ln Tr(ρα). (52)

In the limit α→ 1 we obtain
lim
α→1

Sα = −Tr(ρ ln ρ), (53)

which is the von Neumann entropy.

Here we note that terms such as Tr(ρα) are in correspondence with the tensor contractions
evaluating to invariants which we have already found. To explain how we can contract tensor
networks to evaluate Rényi entropies for counting α > 1, we will close the paper with a
specific example, though the procedure we describe is general. We will focus explicitly on
the invariants of a bipartition of a 5-party qubit state |ψ〉 ∈ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2. We
first recall that we can factor any state into a MPS; in the case of our example, this yields
the following graphical depiction.

=

(b)(a)

� =

(c)

(54)

Here (a) is the original state, (b) is our factorization in terms of COPY-tensors, and (c)
recovers the familiar MPS representation, as explained in Section 4. The method to evaluate
Rényi entropies by tensor contraction works generally by first grouping the legs of any tensor
network state into a bipartition, and to consider the correlations between the two halves. In
the present example, we group the two top legs (A) and the other three legs (B) and then
apply the graphical SVD:

�
A

B

= ψ
Q

=A

B

A

B

(55)

After tracing out system B, we are concerned with a four dimensional space C2 ⊗C2. From
the Cayley-Hamilton theorem

Tr(ρ4) + aTr(ρ3) + bTr(ρ2) + c = 0 (56)

for some values of a, b, c. We hence conclude that all information we can expect to find
can be obtained by evaluating tensor contractions for Tr(ρn) for n = 2, 3, 4 as given in the
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6 CONCLUSION

section on invariants. As an example, to evaluate Tr(ρ3):

ψψ ψψ ψψ

(57)

We can evaluate this contraction using a tensor network numerical algorithms package. By
writing it in terms of the graphical SVD and applying the rewrite rules developed in the
present work, we arrive at

QQQQ

=
QQ

(58)
This illustrates that the network reduces to an expression in terms of the singular values
of the pure state. If the singular values of the original state are given as (σ1, σ2, σ3, σ4) =:
(
√
p
1
,
√
p
2
,
√
p
3
,
√
p
4
), then the expression evaluates to

I3;(123),e = σ6
1 + σ6

2 + σ6
3 + σ6

4 = p31 + p32 + p33 + p34 (59)

where the eigenvalues pi on the right are the probabilities of measuring the reduced system
in the ith eigenstate. We then express the Rényi entropy with α = 3 as S3 = −1

2
ln(I3;(123),e).

Other quantities can be similarly calculated, resulting in the following identical relation for
the Rényi entropies

exp(−3S4) + a exp(−2S3) + b exp(−S2) + c = 0 (60)

which is an alternative expression for (56) in terms of the Sα from Definition 24.

6. CONCLUSION

We have developed a graphical method for expressing a complete polynomial basis for the
local unitary invariants of any finite-dimensional quantum system. Using the diagrammatic
SVD, we have shown that for pure bipartite systems these contractions can be expressed in
terms of manifestly invariant singular values. These methods seem to provide new conceptual
insight to understanding quantities such as entropies which are expressed as holomorphic
functions of the invariants. By connecting invariant theory with tensor network states, we
hope that this work leads to a better understanding of how entropies and entanglement
measures can be calculated for specific models, and ultimately to a better understanding of
invariants in various higher-dimensional geometries as well.
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[36] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, “Measuring Rényi entangle-
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