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*Corresponding author: E-mail: tria@isi.it.

Associate editor: Alexei Drummond

Abstract

In many interestingcases, the reconstruction of a correct phylogeny is blurred by highmutation rates and/or horizontal trans-
fer events. As a consequence, a divergence arises between the true evolutionary distances and the differences between pairs
of taxa as inferred from available data, making the phylogenetic reconstruction a challenging problem. Mathematically, this
divergence translates in a loss of additivity of the actual distances between taxa. In distance-based reconstruction methods,
two properties of additive distances have been extensively exploited as antagonist criteria to drive phylogeny reconstruction:
On the one hand, a local property of quartets, that is, sets of four taxa in a tree, the four-points condition; on the other hand, a
recently proposed formula that allows to write the tree length as a function of the distances between taxa, Pauplin’s formula.
Here, we introduce a new reconstruction scheme that exploits in a unified framework both the four-points condition and
the Pauplin’s formula. We propose, in particular, a new general class of distance-based Stochastic Local Search algorithms,
which reduces in a limit case to the minimization of Pauplin’s length. When tested on artificially generated phylogenies, our
Stochastic Big-Quartet Swapping algorithmic scheme significantlyoutperforms state-of-art distance-basedalgorithms in cases
of deviation from additivity due to high rate of back mutations. A significant improvement is also observed with respect to
the state-of-art algorithms in the case of high rate of horizontal transfer.
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Introduction
Phylogenetic methods have recently been rediscovered in
several interesting areas among which immunodynamics,
epidemiology, and many branches of evolutionary dynam-
ics. The reconstruction of phylogenetic trees belongs to a
general class of inverse problems whose relevance is now
well established in many different disciplines ranging from
biology to linguistics and social sciences (Gray and Atkinson
2003; Lazer et al. 2009; Liu et al. 2009; Pybus and Rambaut
2009). In a generic inverse problem, one is given a set of data
and has to infer the most likely dynamical evolution pro-
cess that presumably produced the given data set. The rel-
evance of inverse problems has been certainly triggered by
the fast progress in data-revealing technologies. In molec-
ular biology, for instance, a great amount of genomes data
are available thanks to the new high-throughput methods
for genome analysis (Ragoussis 2009). In historical linguistics
(Renfrew et al. 2000), a remarkable effort has been recently
done for the compilation of corpora of homologous features
(lexical, phonological, syntactic) or characters for many dif-
ferent languages.

Although phylogenetic reconstruction is not a novel
topic, dealingwith not purely tree-like processes and identi-
fying the possible sources of nonadditivity and their effects
in a given data set is still an open and challenging problem
(Felsenstein 2004; Gascuel 2007).

Here, we focus on distance-based methods (Cavalli-
Sforza and Edwards 1967; Fitch and Margoliash 1967) and

investigate how deviations from additivity affect their
performances. In distance-based methods, only distances
between leaves are considered, and all the information pos-
sibly encoded in the combinatorial structure of the char-
acter states is lost. Despite their simplicity, distance-based
methods are still widely used thanks to their computa-
tional efficiency, but a solid theoretical understanding on
the limitationof their applicability is still lacking.One of the
most popular distance-based reconstruction algorithms,
Neighbor-Joining (NJ; Saitou andNei 1987), was proposed in
the late 1980s, but it is only recently that its theoretical back-
groundwasput on amore solidbasis (Atteson 1997; Gascuel
and Steel 2006; Mihaescu et al. 2007). Another step toward
a better understanding of distance-based methods was ob-
tained thanks to an interesting property of additive dis-
tances, Pauplin’s formula (Pauplin 2000). This property has
been used in the formulation of a novel algorithmic strategy
with improved performances (FastME; Desper and Gascuel
2002). In parallel, another fundamental property of addi-
tive trees, the “four-points” condition (Buneman 1971, 1974;
Gusfield 1997), has been extensively exploited in distance-
based phylogenetic reconstruction methods (Erdös et al.
1998; Bruno et al. 2000; Snir et al. 2008). Both the Pauplin’s
formula and the four-points condition will be discussed in
details below.

Here, we propose a new approach that combines the
four-points condition and Pauplin’s formula in a Stochas-
tic Local Search (SLS) scheme that we name Stochastic
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Big-Quartet Swapping (SBiX) algorithm. SLS (Hoos and
Stützle 2005) algorithms transverse the search space of a
given problem in a systematic way, allowing for a sampling
of low-cost configurations. SLS algorithms start from a ran-
domly chosen initial configuration. Subsequently, the el-
ementary step connects neighboring configurations. Each
move is determined by a decision based on local knowl-
edge only. Typically, the decision is taken combining, with
a given a priori probability, a greedy step (i.e., a step that re-
duces the local cost contribution)witha randomone,where
the local cost is not taken into account. SLS algorithms
have been widely used in solving complex combinatorial op-
timization problems such as Satisfiability, Coloring, MAX-
SAT, and Traveling Salesman Problem (Hoos and Stützle
2005).

At the heart of our new algorithmic scheme (named
SBiX), there is the notion of “quartet frustration,” a quan-
titativemeasure of how good a given configuration is, in the
space of trees. Following a concept already introduced in
Snir et al. (2008), we weigh the different quartets according
to their length in order to reduce the effect of those, which
are more likely to undergo double mutations. The strength
of our approach comes from a combination of this strategy
with a Pauplin’s-like one, weighing each quartet according
to a purely topological property.

We tested the performances of the proposed reconstruc-
tion algorithm, that is, the ability to reconstruct the true
topology, in the presence of high levels of deviation fromad-
ditivity due to both horizontal transfer and back-mutation
processes. We use both a very simple model to generate ar-
tificial phylogenies of binary sequences, and the more real-
istic Kimura two-parameters model, considering sequences
with q-state sites, where q = 4. We have evidence that the
performance of our algorithm rely neither on the particu-
lar evolutionary process giving rise to the phylogeny nor on
the particular representationof the taxa.We find that when
the lack of additivity arises from high mutation rates (and
consequently high probability of back mutations), our al-
gorithm significantlyoutperforms the state-of-art distance-
based algorithms. When the lack of additivity arises from
high rate of horizontal transfer events, our algorithm
performs better than the algorithms we considered as
competing ones.

We show results both for a greedy and for a simulated
annealing–like strategies of our algorithm, the former being
significantly faster than the latter and with comparable per-
formances. DefiningN as the number of taxa, the SBiX algo-
rithm has a complexity of O (N 4), which is higher that the
one of the distance-based algorithms used as competitors
for comparing the performances. Nevertheless, the prefac-
tor of the greedy version is so low that our algorithm is fast
enough to reconstruct large phylogenies, for example, of a
few thousands taxa, in a time remarkably slower with re-
spect to any character-based reconstruction algorithm. A
comparison of the running time and the performances of
our algorithmwith a popular character-based one,MrBayes
(Huelsenbeck and Ronquist 2001), is reported, respectively,
in the Supplementary Material online and in the Results

FIG. 1. Quartet definition. The quartet a ,b , c , d induces an internal
edge x that divides the tree in two parts. All paths joining any pair of
sites sitting on opposite parts of the tree pass through x .

section. We show that although MrBayes slightly outper-
forms SBiX, the running times of MrBayes greatly exceed
ours, becoming comparable when the reconstruction be-
comes in practice unfeasible, that is, for running times of
the order of some thousand of years, and number of taxa of
the order of 100,000. A C implementation of the algorithm
is available upon request.

Methods

Additivity and the Four-Points Condition
An N × N distance matrix D is said to be additive if it
can be constructed as the sum of a tree’s branches lengths.
Two fundamental and widely used properties of additive
distances are Pauplin’s formula (Pauplin 2000) and the four-
points condition (Buneman 1971, 1974; Gusfield 1997), sat-
isfied by each possible group of four within N taxa. For the
sake of clarity, we recall them here.

Given any quadruplet of taxa a , b , c , d , let D1 =
D(a , b ) + D(c , d ), D2 = D(a , c) + D(b , d ), and D3 =
D(a , d ) +D(b , c) be the three possible pairs of distances
between the four taxa. A matrix D is additive if and only if
D1 < D2 = D3 or D2 < D1 = D3 or D3 < D1 = D2 (It
is important to remark here that the four-points condition
is an equivalent definition of additivity. That is, a distance
matrix is additive if and only if the four-points condition is
satisfied.). When considering experimental data, additivity is
almost always violated. In order to set up a robust method
for phylogeny reconstruction based on the notion of ad-
ditivity, we need to relax the four-points condition and to
quantify violations in a suitable way. We define at this aim
a “weak four-points” condition: For any four taxa a , b , c , d
such that a , b are on one side of the tree and c , d on the
other (as in fig. 1), the quartet (ab :cd ) is said to satisfy the
weak four-points condition ifD1 = min(D1,D2,D3) (where
D1,D2, and D3 are defined as above). It is easy to prove that
if the distance matrix D is additive, a unique tree exists in
which all quartets satisfy the weak four-points condition
and this tree is the correct one. Many algorithms have been
proposed that exploit this weak four-points condition, one
of the most promising being, for instance, the short-quartet
method (Erdös et al. 1998; Snir et al. 2008).
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Pauplin’s Distance
Another remarkable property of an additive tree is the pos-
sibility to compute its total length L , defined as the sum of
all its branches lengths, through a formula, due to Pauplin
(Pauplin 2000), that only uses distances between taxa:

LP =
∑
a<b

2−t(a ,b )D(a , b ), (1)

where t(a , b ) is the number of nodes on the path connect-
ing a and b , that is, their “topological distance.” For addi-
tive trees, L ≡ LP. Even when the four-points condition
is no longer satisfied, LP is a particularly good approxima-
tion for the tree length (Desper and Gascuel 2002) and it is
recognized that for distance matrices sufficiently “close” to
additivity (Atteson 1997), the correct phylogeny minimizes
LP (Mihaescu et al. 2007; Bordewich et al. 2009). This prin-
ciple is used in an implicit way in NJ (Saitou and Nei 1987)
andmore explicitly in a newgeneration distance-basedalgo-
rithm, FastME (Desper and Gascuel 2002). When departure
from additivity is too strong, LP is no longer a good func-
tional to minimize in order to recover the correct tree.

Violations of Additivity
Violations of additivity can arise both from experimental
noise and from properties of the evolutionary process the
data come from. We here consider two of the main sources
of violations of the latter type, which can either occur to-
gether or singularly. 1) “Back mutation”: in particularly long
phylogenies, here the timescale being set by the mutation
rate, a single character may experience multiple mutations;
in this case, the distances between taxa are no longer pro-
portional to their evolutionary distances. In the following,
we will use the expression back mutation as synonymous
of multiple mutation on the same site and 2) “Horizontal
transfer”: the reconstruction of a phylogenetic tree lies on
the the assumption that information flows “vertically” from
ancestors to offsprings. However, in many processes, infor-
mation flows also horizontally. Horizontal (or lateral) gene
transfers (Simonson et al. 2005) are well-known confound-
ing factors for a correct phylogenetic inference.

The SBiX Algorithm
Here, we describe the structure of our SBiX algorithm. As
already mentioned, this algorithm crucially exploits both
the weak four-points condition and the Pauplin’s distance.
It features a larger robustness with respect to violations of
additivity if compared with algorithms based separately on
the weak four-points condition or on the minimization of
Pauplin’s length.

The general structure of the SBiX algorithm is as follows:

1. start with a tree topology for the given set of taxa,
2. update the tree topology by local elementary rearrange-

ments through Nearest Neighbor Interchange (or Big-
Quartet Swapping, see fig. 2), and

3. repeat point 2 till convergence is reached.

We analyze the three points in details in the following,
where we consider both a simulated annealing–like and a
greedy strategies:

FIG. 2. Nearest Neighbor Interchange. Any internal edge defines the
four subtrees A , B , C ,D rooted, respectively, on α, β ,γ , δ. Here, the
initial reference configuration ((A , B ), (C ,D )) displayed on the left
leads to two possible rewiring: 1) swap the pair B ↔ D (right-upper
panel) and 2) swap the pair B ↔ C (right-lower panel).

1. In the simulated annealing–likeversion of the algorithm,
we start with a random topology. In the greedy version,
we search for a local minimum (which can eventually be
the global one), so it is important to startwithameaning-
ful topology. We tested the algorithm starting both with
the FastME and with the NJ reconstructed topologies.

2. We sequentially consider all the internal edges of the
present topology. Each internal edge defines four sub-
trees (see fig. 2), say A , B ,C , D , rooted, respectively, on
the four internal nodes α, β, γ , δ. Referring to figure 2,
let ((A ,B ), (C ,D )) being the initial configuration. We
randomly choose one of the two possible local rewirings:
1) swap the pair B ↔ D getting the configuration
((A ,D ), (B , C )) and 2) swap the pair B ↔ C get-
ting the configuration ((A ,C ), (B ,D )). In the simulated-
annealing version, the new configuration is accepted
with probability 1 ifΔE < 0 and a probability propor-
tional to the statistical weight e−βsign(ΔE ) if ΔE > 0,
where β is an inverse temperature-like parameter that
is set by a simulated annealing–like (Kirkpatrick et al.
1983) strategy (see point 3) andΔE is the difference of
the two configurations local costs: For case (1), ΔE =
E((A ,D ),(B ,C)) − E((A ,B),(C ,D )) , whereas for case (2),ΔE =
E((A ,C),(B ,D )) − E((A ,B),(C ,D )) . In the greedy (or zero tem-
perature) version, the new configuration is accepted if
and only ifΔE < 0.

3. In the simulated-annealing version, we iterate point 2
starting with β = 0 and increasing it at a constant rate
at each sweep (where we call “sweep” an update of all
the internal edges selected in a random permutation, so
that each internal edge is selected once and only once,
with a different order, for each sweep) until convergence
is reached, that is, until the algorithmgets stuck in a fixed
topology. In the greedy version, we iterate point 2 until
the algorithm gets stuck in a fixed topology.

Let us stress that we use the term “simulated annealing” in
a loose sense, because, as we shall discuss in the Remarks on
the Cost Definition section, we are not going to minimize a
global cost functional.

In order to define the configurational local cost, say
E((A ,B),(C ,D )) , we consider all the quartets (ab :cd ) such that
a ∈ A (a is a taxa of the subtree A ), b ∈ B , c ∈ C , and
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d ∈ D . For each quartet, we define the “quartet frustration”
as follows:

f(ab :cd ) = max

(
0,

D1 −min(D2,D3)

(D1 +min(D2,D3))k

)
, (2)

where D1, D2, and D3 are the sums of distances already de-
fined (D1 = D(a , b )+D(c , d ),D2 = D(a , c)+D(b , d ),
and D3 = D(a , d ) + D(b , c)). The normalization factor
in the right-hand side of equation (2), as already pointed
out in the Introduction section, gives a smaller weight to
longer distances, typically affected by noise and recombina-
tion. The parameter fixing strategy for the exponent k will
be discussed in the Remarks on the Cost Definition section.

The cost E((A ,B),(C ,D )) of the configuration ((A ,B ),
(C ,D )) is thus defined as the sum of the costs (“frustra-
tions”) of all the considered quartets, each weighted with
a factor borrowed from the Pauplin’s formula:

E((A ,B),(C ,D )) =
∑
(ab :cd )

f(ab :cd )2
−t(a ,α)−t(b ,β)−t(c ,γ)−t(d ,δ) ,

(3)
where t(a ,α) is the topological distance between the taxaa
and the internal node α and analogously for the other taxa.
We define the topological distance between a leaf and an in-
ternal node as the number of nodes in the path connecting
them, “including the considered internalnode”: This is set in
order to satisfy

∑
a 2
−t(a ,α) = 1 in each subtree.

Remarks on the Cost Definition
When k = 0 in equation (2), our procedure is equiva-
lent to the minimization of Pauplin’s length (the proof of
this statement will be discussed in the Appendix A). On the
other hand, if Pauplin’s weights 2−t(a ,α), 2−t(b ,β) , 2−t(c ,γ) ,
and 2−t(d ,δ) were absent, the difference in local costs be-
tween two configurations would be equal to the variation of
a global cost, defined as E =

∑
(abcd ) f(ab :cd ). Here, the sum

defining the cost,
∑
(abcd ), is running over all the quartets of

the tree and not only on the quartets compatible with the
subtrees A , B , C ,D . We will refer to our algorithm with this
form of the cost configuration as the “normalized quartets”
(NQ) method.

Conversely, when one takes the complete form of the lo-
cal cost as defined in equation (3), with k > 0 in equa-
tion (2), the local cost differences do not correspond to any
global cost difference (the proof of this statement will be
discussed in Appendix B). It is, however, an open question
whether a global functional can be defined whose variation
between each pair of configurations is compatible with the
sign of our local cost difference.

The complexity of a sweep of our algorithm (i.e., N con-
figurations updates, where N is the number of leaves in the
tree has a leading term O (N 4) (The number of quartets to
be consideredwhen updating all the edges of the tree in case
of a perfectly balanced tree reads

N =
85

5376
N 4 − N 2

3
+

4

7
N . (4)

Note that the above formula for N is an upper bound for
more general topologies.).We show the results of numerical
simulations for the running time of the greedy version of our

algorithm in the Supplementary Material online. Despite
theO (N 4) complexityof the SBiX algorithm, the greedyver-
sion has an extremely low prefactor, making the algorithm
suitable for trees with a large number of taxa (see Supple-
mentaryMaterial online for details).

Results

Artificial Phylogenies
To test the performances of our algorithm, we consider
artificially generated phylogenies, following one of the sim-
plest evolutionary model that takes into account both
mutational events andhorizontal transfer. Each taxon is rep-
resented by a binary sequence of length l . We start with
one sequence, for instance, the sequence with all the bits
equal to 0. At each time step, we perform the following
operations: 1) we randomly extract one of the already ex-
isting leaf sequences, say s̄ , 2) with probability τ , a ran-
domly extracted portion of length l/4 of s̄ is replaced with
the corresponding portion of another randomly chosen se-
quence (The choice of l/4 is arbitrary but does not bring
loss of generality. Choosing randomly in the interval [0, l/4],
the length of the part of the sequence horizontally trans-
ferred does not alter the qualitative behavior of the recon-
structing algorithms (results reported in the Supplementary
Material online). This last procedure is adopted in the four-
state two-parameters Kimura model (see below).), 3) s̄ gen-
erates two clones as descendants, and 4) each site of the
two new sequences is independently flipped with probabil-
ity m/l , where m is extracted from an exponential distri-
bution with average μ (average number of mutations per
sequence per time step). To ensure that at least on site mu-
tates at each branching event, we randomly choose a site to
mutate if no site mutated. We iterate this procedure until
the desired number of taxa is obtained.

We here consider as distance between two taxa the
“correct hamming distance” (Felsenstein 2004), defined as:

Dcorr = −1

2
ln(1− 2h ), (5)

where h is the “hamming distance,” defined as the frac-
tion of sites in which the sequences differ (In all the re-
sults reported in this paper, we let the algorithm infer the
correct phylogeny by using the correct hamming distance
Dcorr. Even though the defined correction has its theoreti-
cal justification only in absence of horizontal gene transfer,
we checked (data not shown) that using the hamming dis-
tance h , all the considered algorithms show the same rel-
ative behavior as in the reported results, but the absolute
performances are remarkably poorer.).

Although the evolutionary model described above is a
toy model for describing evolution, it allows to control and
to tune noise as well as horizontal transfer events. We also
test our algorithm on phylogenies constructed following
more realisticmodel of evolution, such us the standard four-
states two-parameters Kimuramodel (Kimura 1980). In par-
ticular, we follow the same steps described above for the
two-state model, but we now consider sequences of nu-
cleotides, with an alphabet of four letters, and different rates
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of transitions (α) and transversions (2β).We consider in this
case as distance between two taxa the correct hamming dis-
tance for the Jukes–Cantormodel (Felsenstein 2004), which
is the limit of the Kimura model when α = β:

d JC
corr = −

3

4
ln

(
1 − 4

3
h

)
. (6)

Robinson–Foulds Measure
In order to assess the performances of the different al-
gorithms to reconstruct the true phylogeny, we consider
the standard Robinson–Foulds (RF)measure (Robinson and
Foulds 1981), which counts the number of bipartitions on
which the inferred tree differs from the true one. A biparti-
tion is a split of the leaves in two sets realized through a cut
of a tree edge. We recall that it exists a one-to-one corre-
spondence between the bipartitions of the tree and the set
of its edges, so that each tree is uniquely characterized by
the set of bipartitions it induces.

Competing Algorithms
In order to assess the performances of our algorithm, both
in its simulated annealing–like and in its greedy versions,
we compare it with the NJ (Saitou and Nei 1987) and the
FastME (Desper and Gascuel 2002) algorithms. In the fol-
lowing, we will refer to the simulated annealing–like ver-
sion of SBiX, unless we will explicitly state the opposite.
In addition, we implemented Pauplin’s length minimiza-
tion (from now onward referred as PAUPLIN) by making
use of our SBiX algorithm in its form with k = 0 (see
the above section about the algorithm’s description) in or-
der to directly investigate the effectiveness of a nongreedy
minimization of Pauplin’s length in reconstructing trees. Fi-
nally, we implemented the version of our algorithm with-
out the Pauplin’s weights (NQ; as discussed above). We also
show a comparison with the performances of a state-of-the-
art character-based algorithm, MrBayes (Huelsenbeck and
Ronquist 2001).

Performances of the Different Algorithms
In this section,we compare the performances of all the con-
sidered algorithms as a function of the mutation rate and
the horizontal transfer rate in the underlying evolutionary
processes described in the CompetingAlgorithms section.

In figure 3, we show the RF curves for different algo-
rithms (left) as a function of the mutation rate for a fixed
tree size (N = 60) and k = 5. In the whole range of
values of the mutation rate, all the versions of our algo-
rithm (PAUPLIN, NQ, and SBiX) outperforms both NJ and
FastME. In particular, SBiX outperforms all the other al-
gorithms. Differences between the global minimization of
Pauplin’s length (PAUPLIN) and FastME arise for very high
mutation rates, where the global Pauplin’s lengthminimiza-
tion outperforms FastME. This is probably due to the fact
that FastME is time optimized and therefore less able of our
SLS scheme to find the global minimumof the functional for
veryhighmutation rates (for a discussion on the consistency
of greedy localmoves based on the balancedminimum evo-
lution principle, see Bordewich et al. 2009). In figure 3, we

report the dependence of the SBiX performances (right) on
the value of the parameter k . It is evident the existence of a
range of values between k = 5 and k = 10 where the algo-
rithm features the best results in a stable way. In the follow-
ing, unless otherwise stated, wewill consider the k = 5 case.

Up to this point, we have characterized the performance
of the different algorithms for fixed value of the number of
leaves, that is, for a given system size. We are now inter-
ested in the robustness of our results at different number
N of leaves of the tree. Definingλ(N ) as the mean topolog-
ical distance between any couple of leaves, we empirically
found that each algorithm can be characterized by a refer-
ence curve obtained by plotting the normalized RF distance
as a function of μ2λ(N ). This scaling can be understood by
considering that the relevant quantity for the tree recon-
struction is not the bare mutation rate but the amount of
back mutation events that can be estimated as μ2λ(N ).

The scaling of the normalized RF distance when recon-
structing trees of different sizes is shown in figure 4, where
for the sake of clarity, we only report the curves for FastME
and SBiX algorithms. Each of the two algorithms is charac-
terized by a different reference curve, and the interesting
point here is that the SBiX algorithm is systematically bet-
ter than FastME at allmutation rates and sizes.We use both
the measured value of λ(N ) in the simulated phylogenies
(fig. 4a), and the value analytically calculated in the case of
perfectly balanced rooted trees (fig. 4b ), which reads

λtheo(N ) =
2N (log2 N + 1)− 4N + 2

N − 1
. (7)

We now consider the ability of the different algorithms in
recovering the correct tree in presence of horizontal trans-
fer events. The RF curves at a fixed tree size are shown as
a function of the probability τ for each sequence to re-
ceive a borrowing (with the mechanism defined above). In
figure 5a, results at low mutation rate are reported, when
deviation from additivity is almost exclusively due to the
horizontal transfer events. In figure 5b, instead, results are
reported at high mutation rate, when both back mutations
and the horizontal transfer events are responsible for de-
viations from additivity. For horizontal transfer events co-
occurring with a low mutation rate, our algorithm is the
most suitable to recover the correct tree, at each rate τ . The
NQ method, conversely, shows a performance lower than
that of NJ. When a high mutation rate is considered jointly
with horizontal transfer events, our SBiX algorithm signif-
icantly outperforms the others when the probability τ of
horizontal transfer is not too high, whereas in the high τ re-
gion, the performance of our algorithm becomes compara-
ble to the minimization of Pauplin’s length (PAUPLIN).

It is interesting to compare the performance of the dif-
ferent algorithms in the case of a more realistic data genera-
tor. In figure 6, we show the analogous of figure 3 for the
two-parameter Kimura model: We present the RF curves
obtained for different algorithms (NJ, FastMe, SBiX greedy
starting from FastME, SBiX greedy starting from NJ, SBiX
simulated annealing–like, and MrBayes) for N = 60 as a
function of different per-sitemutation ratesμ/l . The details
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FIG. 3. Performances comparison as a function of themutation rate. Left: RF distance between the reconstructed and the true trees as a function of
the mutation rate per site of the generative evolutionary model. The horizontal transfer rate τ is here kept τ = 0. We compare the performances
of the SBiX algorithmwith k = 5 with: NJ, FastME, the Pauplin lengthminimization (PAUPLIN), and NQ. Right: dependence of the SBiX algorithm
on the parameter k . The best performances are very stable in the range of k between 5 and 10. In both figures, results are averaged over 100
independent realizations for each reported mutation rate. The error bars are standard errors. All the trees generated have N = 60 leaves and the
sequences have fixed length l = 1, 000.

of the simulation for MrBayes are presented in the Supple-
mentary Materials online together with a comment on its
computational complexity.

The first evidence is that SBiX, in its different versions,
clearly outperforms the other two distance-based algo-
rithms (NJ and FastME). The improvement is evenmore evi-
dent than in the binary characters case displayed in figure 3.
The three variants of SBiX perform similarly in the low mu-
tation rate regime (μ/l < 0.2), and the results show amod-
erate improvement of the simulated annealing–likeversion
only for high level of mutation rate, whereas the difference
between the two greedy versions of SBiX (the one using as
a starting point the tree reconstructed by the NJ algorithm
and the other by the FastME algorithm) seems to be statisti-
cally irrelevant in all the mutation rate interval analyzed.

Let us now discuss the comparison with MrBayes. After
a very low mutation rate regime (μ/l � 0.024), where all

algorithms show analogous accuracies, one enters a regime
where MrBayes outperforms SBiX. We should remark that
the precise estimate of theMrBayes performance, especially,
in the high mutation regime, is problematic due to the the
issue of reaching a steady state for a Monte Carlo Markov
Chain. For assessing the convergence of MrBayes, we moni-
tored (see SupplementaryMaterials online for details) both
the partition variance and the posterior likelihood time se-
ries, and, especially for the larger mutation rate, a fraction
of the samples seems indeed not to have reached conver-
gence. One has to note that in this regime, as more thor-
oughly discussed in the SupplementaryMaterials online, the
computational time for a single sample is already of roughly
7 h, whereas for both greedy versions of SBiX is of the or-
der of 10−2 s and for the simulated annealing–likeversion is
around 5 min.

FIG. 4. System-size dependence. Behavior of the normalized RF distance for the SBiX algorithm and FastME for different system sizes, that is,
different values N of the number of leaves. Here, normalized means the RF distance divided by its maximal value N − 3. In all the cases, curves
for different values of N collapse as a function of μ2λ(N ) (see text for details), where λ(N ) is the average distance between two leaves in a tree
with N leaves. In both the analysis, the horizontal transfer rate τ is kept τ = 0. We use both the true value of λ(N ) in the simulated phylogenies
(a ) and the value analytically calculated in the case of perfectly balanced trees λtheo(N ) (b ). In the inset of (b ), we report the behavior of λ and
λtheo as a function of tree size N . The experimental values λ(N ) are systematically larger than λtheo putting in evidence a slight deviation of the
generated trees from a perfectly balance condition.
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FIG. 5. Performances comparison as a function of the horizontal transfer rate. RFmeasure for the reconstructed trees as a function of the horizontal
transfer rate of the generative model. We compare the performances of our SBiX algorithm (with k = 5) with those of the following ones: NJ,
FastME, Pauplin’s length minimization algorithm (PAUPLIN), and the NQ algorithm. Results are averages over 100 independent realizations for
each reported horizontal transfer rate. The error bars are standard errors. All the trees generated have N = 60 leaves. (a ): mutation rate per site
μ/l = 0.03, whereas the sequences have fixed length l = 10, 000. (b ): mutation rate per site of μ/l = 0.14, whereas the sequences have fixed
length l = 1, 000.

Discussion and Conclusions
In this paper,we have introduced a new algorithmic scheme
for phylogeny reconstruction. Belonging to the familyof SLS
algorithms, our scheme crucially exploits two-known prop-
erties of additive distance matrices, the four-points con-
dition and the so-called Pauplin’s length. We proposed in
particular a stochastic scheme where the correct topol-
ogy is inferred through a series of swapping of the tree
topology. When tested on artificially generated phylo-
genies, our algorithmic scheme significantly outperforms
state-of-art distance-based algorithms in cases of deviation
from additivity due to high rate of back mutations. A sig-
nificant improvement is also observed with respect to the

FIG. 6. Performances comparison as a function of the per-site muta-
tions rate. The evolutionary model used to generate phylogenies is
the Kimura two-parameters model with transition rate α = 0.4 and
transversion rate 2β = 0.6. RF measure for the reconstructed trees
as a function of the mutation rate per site. We compare the perfor-
mances of the following algorithms: NJ, FastME, SBiX greedy from NJ,
SBiX greedy from FastME, SBiX simulated annealing, andMrBayes. We
set k = 5 in both the greedy and the simulated-annealing versions of
SBiX. Results are averages over 100 independent realizations for each
reported mutation rate. The error bars are standard errors. All the
trees generated have N = 60 leaves and the sequence l = 1, 000.

state-of-art algorithms in case of high rate of horizontal
transfer.

Such good performances are due to the way we differ-
entially weight the different quartets contributions with a
term inverselyproportional to their length and thus to their
probability to be affected by back mutations. On the other
hand, further work is needed for a complete theoretical un-
derstanding of the algorithm. In particular, despitemany at-
tempts, we are, at present, unable to formulate the update
strategy in terms of a state functional. Beside the interest
in itself, this would open the way to analytic treatments as
well as to algorithmic optimization strategies possiblymore
efficient than the SLS one.

As for the comparison of our algorithmic scheme with
state-of-the-art algorithms, it is fair to observe that SBiX fea-
tures a definitely larger computational complexity but, in
practice, its greedy version is fast enough for reconstructing
phylogenies up to a few thousands of leaves.

Though SBiX outperforms all competitors also in pres-
ence of horizontal transfers, the method is especially suited
for dealingwith nonadditivity originated by backmutations.
The issue of horizontal transfer is, however, central in many
fields (Doolittle et al. 2008), and we believe that formulat-
ing effective strategies for dealing with it, considering both
phylogenetic trees and networks, is an open challenge for
the next generation reconstruction algorithms and will be
the aim of further studies.

It is worth mentioning how the applicability of phylo-
genetic algorithms has recently widened its scope. Many
different fields have arisen in the last few years where a
correct reconstruction of phylogenetic trees may reveal
underlying relevant dynamical processes. For instance, phy-
lodynamics is a new field at the crossroad of immuno-
dynamics, epidemiology, and evolutionary biology, which
explores the diversity of epidemiological and phylogenetic
patterns observed in RNA viruses of vertebrates (Grenfell
et al. 2004); phylogeography is the study of the historical
processes that may be responsible for the contemporary
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geographic distributions of individuals as well as of lan-
guages or viruses (Avise 2000). In all these cases, a strong
effort is being devoted to the collection of comprehensive
data sets, andefficientand reliable algorithms are neededes-
pecially when deviations from perfect phylogenies become
relevant.

Supplementary Material
Supplementary Material is available at Molecular Biol-
ogy and Evolution online (http://www.mbe.oxfordjournals
.org/).
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Appendix A: The Equivalence with Pauplin’s
Length Minimization
We show here that our SBiX algorithm minimizes Pauplin’s
length when k = 0 in the equation (2). In order to see this,
we explicitly calculate the cost difference between, say, the
configurations ((A ,B ), (C ,D )) and ((A , C ), (B ,D )). We
note that the sumon the consideredquartets can bedivided
in three parts in which one of the three distancesD1,D2, and
D3 is, respectively,minimal (where, as already defined in the
text,D1 = D(a , b ) +D(c , d ), D2 = D(a , c) +D(b , d ),
and D3 = D(a , d ) + D(b , c)). After a little algebra, one
gets

ΔE =
∑
(D2 − D1)2

−t(a ,α)−t(b ,β)−t(c ,γ)−t(d ,δ) , (8)

where the sum is again over the a ∈ A , b ∈ B , c ∈ C , d ∈
D andΔE ≡ E((A ,C),(B ,D ))−E((A ,B),(C ,D )) . Making use of the
relation ∑

i

2−t(i ,r) = 1, (9)

and of the equivalences: 2−t(a ,b ) = 2−t(a ,α)−t(b ,β)/2
in the configuration ((A ,B ), (C ,D )) and 2−t(a ,b ) =
2−t(a ,α)−t(b ,β)/4 in the configuration ((A ,C ), (B ,D )) (and
the analogous relations for the other pairs of taxa), it is easy
to prove that it holds

ΔE = 4ΔLP, (10)

where LP is Pauplin’s length and ΔLP ≡ LP,((A ,C),(B ,D )) −
LP,((A ,B),(C ,D )) is the difference of the Pauplin’s length be-
tween the two configurations.

Appendix B: Locality of the SBiX
Configuration Cost
We give here an argument to prove that differences in the
local cost of our SBiX method cannot be written as differ-
ences of a functional on the whole tree. If this was the case,

a functional could be defined as F (x) = F (x0) +
∑
ΔEi ,

where F (x0) is the value taken by the functional in a refer-
ence configuration x0, andΔEi are the cost differences along
a path from x0 to x . Moving in the space of tree’s topologies,
we should obtain the same value of F each time we visit
the same topology, that is, the difference of cost between
two states does not depend on the path. This is not the
case, as we explicitly checked, when the cost is defined as in
equation (3) and k �= 0.
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