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Social networks are the prime channel for the spreading of computer viruses. Yet the study of their propagation
neglects the temporal nature of social interactions and the heterogeneity of users’ susceptibility. Here, we
introduce a theoretical framework that captures both properties. We study two realistic types of viruses
propagating on temporal networks featuring Q categories of susceptibility and derive analytically the invasion
threshold. We found that the temporal coupling of categories might increase the fragility of the system to cyber
threats. Our results show that networks’ dynamics and their interplay with users’ features are crucial for the

spreading of computer viruses.
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Alongside clear societal and economic benefits, modern
technology exposes us to serious challenges. In particular,
the spreading of malicious content online, often based on
ingenious deception strategies, is one of the most pressing
because it poses serious threats to our privacy, finances, and
safety [1]. Victims of a typical social engineering attack [2]
may receive a message containing a malicious link or file,
appearing to originate from a friend or other trusted entity.
If opened, it may compromise the computer, access personal
information, and spread the virus further unbeknownst to the
victim. Recent research has shown how the susceptibility of
individuals to such attacks is not homogeneous and depends
on several features such as age, prior training, computer
proficiency, familiarity with social network platforms, among
others [3-5]. Furthermore, the properties of real networks
are known to facilitate the propagation of such processes
[6-15]. In particular, the heterogeneity in contact patterns
makes sociotechnical systems quite fragile to biological and
digital threats.

The study of these phenomena has largely neglected the
complex temporal nature of online contact patterns in favor
of static and time-aggregated approaches [16,17]. These ap-
proximations might be fitting. Indeed, in the past, computer
viruses would spread mainly via email networks, targeting
the address books of victims, which contain contact lists
[18]. However, not many people create such lists anymore
and access to them is restricted [7]. In the context of social
or biological contagions, neglecting the temporal nature of
the networks where the processes unfold has been shown to
induce misrepresentations of their spreading potential. In fact,
the order and concurrency of connections is key [19-42]. To
the best of our knowledge, besides some early work on the
spreading of viruses via Bluetooth among mobile phones [43],
the study of the propagation of cyber threats considering
the temporal nature of social interactions is still missing.
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Furthermore, with few exceptions [44], the literature devoted
to the study of computer viruses unfolding on networks
typically neglects that the susceptibility of online users is
not homogeneous. Conversely, the literature that studies the
susceptibility of users to cyber threats traditionally focuses on
single users neglecting their connections.

To tackle these limitations, here we introduce a theoretical
framework to study the spreading of computer viruses, based
on social engineering deception strategies, on time-varying
networks. We model users’ interactions using a time-varying
network model and consider two types of viruses. The first
mimics threats that can propagate only via connections acti-
vated at each time step. The second, on the contrary, considers
viruses able to access also information about past connections.
We investigate the impact of different classes of susceptibility
considering that they might also influence the link formation
process. In all cases, we analytically derive the conditions
regulating the spreading of the virus. Interestingly, these are
defined by the interplay between the features of the cyber
threats, the categories of susceptibility, and their time-varying
connectivity. Furthermore, in some scenarios, the temporal
coupling between categories creates a complex phenomenol-
ogy that favors the spreading of the virus. These results have
the potential to initiate future efforts aimed at describing more
realistically the spreading of computer viruses on online social
networks.

We consider a population of N online users which ex-
changes messages in a time-varying network. Nodes are as-
signed to one of Q categories describing their susceptibility to
cyber threats measured in terms of their gullibility and time
needed to recover from successful attacks. Since susceptibil-
ity is linked to demographic features, we consider that the
membership to a category might influence the link creation
process. In fact, homophily is a strong social mechanism
known to affect the structure and organization of ties [45]. We
model the contact patterns between users with a generalization
of the activity-driven framework [21,46-48]. Here, nodes
feature an activity a describing their propensity to initiate
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communications. Activities are extracted from a distribution
F(a) which, as observations in real systems have shown, is
typically heterogeneous [21,22,47,49]. We select power-law
distributions F (a) ~ a~* with a € [e, 1] to avoid divergences.
At each time step nodes are active with probability aAf.
Active nodes select m others and create directed (outgoing)
links which mimic messages.

In the simplest version of activity-driven networks the
selection is random and memoryless [21]. Here, we propose
a variation: With probability p each target is selected, at
random, among the group of nodes in the same category,
and with probability 1 — p among the nodes in any other
category. In other words, p tunes the homophily level in the
network with respect to susceptibility to cyber threats. At time
t 4+ At all edges are deleted and the process starts from the
beginning. Unless specified otherwise, links have a duration
At. Without loss of generality we set At = 1. The model is
clearly a simplification of real interactions. However, it offers
simple, yet nontrivial, settings to study the effects of temporal
connectivity patterns on contagion processes unfolding at a
comparable timescale with respect to the evolution of connec-
tions [20,21,23,46].

We describe the propagation of a computer virus adopting
the prototypical susceptible-infected-susceptible (SIS) model
[13,50]. At each time step ¢ the virus, unbeknownst to the
victims, sends a message, with malicious content, to all the
nodes genuinely contacted at ¢ (virus type 1) or withinr — 7
time steps (virus type 2). The focus is not defining the optimal
set of nodes to maximize or minimize the damage. Thus,
we select randomly a small percentage (0.5%) of nodes as
initial seeds. In these settings, susceptible nodes of class
x €[l,...,Q], that receive a malicious message, become
infectious with probability A, which defines their gullibility.
They recover and become susceptible again with rate u,. In
the literature of epidemic spreading on static networks we find
few studies that consider different classes of infectiousness
and/or recovery rates [51-53]. Interestingly, this body of
research highlights how heterogeneities in such quantities,
especially in the case of correlations with topological features
such as the degree or in the presence of large values of
clustering, induce no trivial phenomena that might speed up or
slow down the spreading. As shown below, our results confirm
this picture. We assume that nodes with the same value of
activity and in the same category are statistically equivalent,
and we group them according to the two features. At each time
step, we call S and /7 the number of nodes susceptible and
infected in activity class a and category x. Clearly, [ daS: =
§%, [dal¥ =1*,%" 8§ =S,and ) I* = I. Furthermore, N
describes the number of nodes of activity a in category x,
thus f daN) = N* and Zx N* = N. In these settings, we can
represent the variation of the number of infected nodes of
activity a in category x as
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The first term on the right-hand side accounts for the recov-
ery process. The second and third terms capture susceptible
nodes that receive messages from active and infected vertices
in the same (second) or different (third) category, and get
infected as a result. With respect to the typical biological
contagion process, here transmission is asymmetric. Only
nodes receiving a message from an infected person might be
exposed to the virus. Thus, not only the order of connections,
but also their direction is a crucial ingredient for the spreading.
Since the links are created randomly, each node is selected
with a probability pm/N* by nodes in the same category or
(1 — p)ym/(N — N”) by nodes in other categories. The total
number of nodes is constant, thus S} = N7 — I and at the
early stages of the spreading we can assume that the number
of infected nodes is very small, S} ~ N;;. By integrating across
all activities in Eq. (1), we get

dI* = —peI* + dym| po* + (1 — pN* > _0"/(N = N*) |,
y#x

where we define 6* = [ daal’. By multiplying both sides of
Eq. (1) for a and integrating across all the activities, we obtain
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The virus is able to spread, if and only if the largest eigenvalue
of the Jacobian matrix of the system of differential equations
in I* and 6* is larger than zero [21]. As shown in detail in the
Supplemental Material (SM) [54], this implies

:prﬂx+E
D M

where R is the basic reproductive number defined as the aver-
age number of infected nodes generated, in a fully susceptible
population, by an infected individual [50], 8, = mA,{(a),, and
E is a function of the interplay between the average activation,
infection, and recovery rate of each category as well as of the
mixing between categories.

To understand the dynamics, let us consider a particu-
lar case in which the system is characterized by only two
categories. Furthermore, let us consider, as a first scenario,
that all nodes have the same recovery rate. In these settings
we have B2 = p?(B; + B2)> + 481 82(1 — 2p). The condition
for the spreading, even with only two classes, is a nonlinear
function of the average activity of each category, the infection
probabilities per contact, and the homophily. In the limit
p = 0, nodes in a category connect only with vertices in the

Ry > 1, ()

other and the expression reduces to Ry = @ In the limit
p = 1 instead, interactions are only between nodes in the same
category. The system is effectively split in two disconnected
networks and there are two independent conditions Ry =
B./ . For a general p we found that these two values confine
Ro: min, Ry < Ro(p) < max, Rj. In fact, any value of p < 1
will reduce the spreading power of the category characterized
with the largest R as some connections will be established
with nodes where the virus finds it harder to spread (see SM
for the proof).
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FIG. 1. Lifetime of the SIS process (a)—(c) and contour plot
of Ry(A1, X2) (d)—(D). In (a), (b), (d), and (e) nodes are randomly
assigned to two categories, in (c) and (f) instead in decreasing order
of activity. We set (a), (d) p =0.9, and (b), (c), (e), (f) p=0.4.
In (a)—(c) we fix N=2x10°, m=4, a =2.1, 4] = u» = 1072,
A =0.2,Y =0.3, and 0.5% of random initial seeds. We plot the
median and 50% confidence intervals in 10? simulations per point.
The solid lines come from Eq. (2), and the dashed lines are the
analytical threshold in case of a single category.

In Figs. 1(a)-1(c), we compare analytical predictions with
numerical simulations. We set A, = 0.2 and use Eq. (2) to
estimate the critical value of A; for which Ry = 1. On the y
axis we plot the lifetime of the process defined as the time
that the virus needs either to die out or to reach a fraction Y of
the population [55]. The lifetime acts as the susceptibility of a
second-order phase transition and allows a precise numerical
estimation of the threshold of SIS processes [55]. In Figs. 1(a)
and 1(b) we consider a scenario in which nodes are assigned
randomly to one of the two categories. Thus the average
activity in the two is the same and we set p = 0.9 and p = 0.4,
respectively. The analytical value of the threshold (vertical
solid line) perfectly matches the numerical estimation. For
p = 0.9 the threshold is smaller than for p = 0.4 and closer
to the threshold of a system with a single category (dashed
lines). For smaller values of homophily, instead, the critical
conditions are driven by the interplay between the activa-
tion rates and gullibility of the two categories. Figures 1(d)
and 1(e) show the analytical value of R as a function of | and
Ay for the two values of p. The gray regions are subcritical,
i.e., the virus is not able to spread. Since the average activity
in the two categories is the same, the two plots are symmetric.
Interestingly, the region where the virus is able to spread is
larger for large values of p. This is due to the fact that in these
settings the virus will spread if it is above the threshold in at
least one category independently of the other. In the opposite
limit, on the contrary, the two categories get intertwined and a
small value of the infection probability in one category should
be associated to a progressively large value in the other.

(b) 10°

00 02 04 06 08 10 10°
p

FIG. 2. In (a) we plot the analytical value of R, as function of
p. The shaded area describes the region where min, 8./, < Ry <
max, B,/u,. The dashed vertical line describes the analytical value
of p above which Ry > max, B,//,. We set u; = 1072 and pu, =
5 x 1073, In (b) we plot p* as a function of ; and ;. In both plots,
wesetm =4, 1 = 0.9, A, = 0.2, and randomly assign nodes to two
categories.

In Figs. 1(c) and 1(f) we consider that the first category
contains a fraction g of nodes selected in decreasing order
of activity. Thus, this category contains the gN most active
nodes, while the other the (1 — g)N least active (see SM). To
compare with Fig. 1(b), we set g = 0.5 and p = 0.4. First, the
analytical threshold nicely matches the numerical simulations.
Second, although the other parameters are the same used in
Fig. 1(b), the critical value of the gullibility of the first class
is smaller. Thus, correlations between activity and gullibil-
ity facilitate the spreading. This is confirmed in Fig. 1(f)
where the active phase space features a region in which the
spreading is completely dominated by the category of most
active nodes. Overall, all the plots show the importance of
distinguishing nodes according to their gullibility. Indeed,
neglecting the presence of different classes of users might
induce a strong misrepresentation of the virus propagation
(dashed lines).

Let us next consider a second scenario where cate-
gories differentiate also for the time needed to recover
from a successful attack. For two categories, we can
write E% = (11 — 2)* 4+ p*(B1 + B2)* + 2p(pa — w1)(Br —
B2) +4B1B82(1 — 2p). Interestingly, we have the same terms
that appeared in the first scenario, plus two that feature the
difference between the recovery rates and B’s of the two
categories. Thus Ry is a function of the interplay between
the activities, gullibilities, and recovery rates. In the limit
p = 0, each category only connects with nodes in the other,
the two groups are coupled, and the threshold reads Ry =

=107 +4B1 B> .. . .
M. In the limit p = 1 instead, the two categories

are clé)ll;pzletely decoupled and the threshold becomes, as
before, Ry = B/1x. As shown in Figs. 2(a) and 2(b), for a
general value of p the reproductive number is not bounded,
as before, by the values of Rj computed in the two classes
separately (see SM). In Fig. 2(a), we assign nodes randomly to
each category, fix §, and u,, and compute Ry as a function of
p. In the shaded area, min, R < Ro(p) < max, Rj. Interest-
ingly, after a p* (vertical dashed line), which as shown in the
SM can be computed analytically, we enter in a regime where
Ro(p) > max, Rj. Thus, only specific values of the coupling
between categories might induce the virus to spread faster in
the combined system than in each single category in isolation.
However, this nonlinear effect is found only in a small fraction
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FIG. 3. Lifetime of the process (a)—(c), Ro(u1, it2) (d)—(f). In
(a), (b), (d), and (e) nodes are randomly assigned to two categories,
in (c) and (f) instead in decreasing order of activity. We set (a),
(d) p=10.9, and (b), (c), (e), (f) p =0.4. In (a)—(c) we set N = 2 x
100, m=4,a=21,u; =102, 4y =5x 103,14, =0.2,Y =0.3,
and 0.5% randomly selected seeds. We plot the median and 50%
confidence intervals in 10% simulations per point. The solid lines
come from Eq. (2). The dashed lines are the analytical threshold in
case of a single category of recovery rate characterized by the average
value of the recovery rates. In the contour plot we set 1; = 0.485 and
A =0.2.

of the phase space [see Fig. 2(b)]. The necessary, but not
sufficient, condition is that two categories differentiate both
for gullibility and recovery rates in such a way that one is more
gullible and recovers faster than the other. In this regime, the
right mixing between the two might create a feedback loop
that makes the system more fragile.

Figures 3(a)-3(c) show a good match between the analyt-
ical (solid vertical lines) and numerical thresholds in case of
nodes are assigned at random [Figs. 3(a) and 3(b)] or in de-
creasing order of activity [Fig. 3(c)] to the two categories. We
fix two different recovery rates, A,, and use A; as order param-
eter. Figures 3(a)-3(c) differ in the value of the homophily p.
We set p=10.9 in Fig. 3(a), while p = 0.4 in Figs. 3(b)
and 3(c). The presence of a category of nodes characterized
by a smaller value of recovery rate pushes the threshold to
smaller values with respect to the first scenarios (Fig. 1). As
before, the value of the threshold estimated considering only
a single category, characterized by the average recovery rate
of the two (dashed lines), leads to a misrepresentation of the
spreading power of the virus, especially for smaller values of
homophily [see Fig. 3(b)].

The effect of p on the critical value of XA; is similar to the
first scenario. In fact, even when categories differentiate by
the recovery rates, high values of homophily push the critical
point to smaller values. However, here the difference between
the two is less significant than in Fig. 1. In Figs. 3(d) and 3(e),
we show the analytical value of Ry as a function of u; and
1. Interestingly, the subcritical region, for p = 0.4, is smaller

than for p = 0.9. This is in contrast to what was observed in
the corresponding plots for the first scenario and highlights
once again the complex phenomenology introduced by the
interplay of different recovery rates. In Figs. 3(c) and 3(f) we
investigate a scenario where nodes are assigned to categories
of susceptibility in decreasing order of activity. In case the
most active nodes are able to recover quickly from the attack,
the virus is able to spread only if the gullibility of such users
is higher than in the corresponding case in which nodes are
assigned to categories randomly [Fig. 3(b)]. This is confirmed
in Fig. 3(f), where we see that partitioning nodes according to
their activities significantly change the region where the threat
is able to spread.

Finally, we turn our attention to a second type of virus
able to access also past contacts of infected users within a
time window t. As before, the virus propagates via active
infected nodes, but at each time, ¢ active users might infect
their contacts in a time window (¢ — 7, t]. Within a mean-field
approximation, we can adopt the same equations described
above and change the probability that a node in each activity
class receives a message by active and infected nodes. In
this case, the outdegree of each active node is not m, but a
function of : k°"'(a) = m[a + (t — 1)a?*] (see SM). To grasp
the derivation, consider the simplest scenario in which t = 2.
In this case, active nodes might have either m or 2m contacts in
two time steps. The first class describes nodes that are active
at time ¢ but were not active at time ¢ — 1, whereas the second,
nodes that were active in both time steps. Thus the outdegree
of these nodes, on average, is k°"'(a) = ma(l — a) + 2ma?.
As shown in the SM, the condition for the spreading has
the same structure of Eq. (2) where, however, the value of
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FIG. 4. Lifetime of the SIS process for (a)-(c) T =2, 3, and
10 for two categories to which nodes are assigned randomly. Sim-
ulations are done setting N =2 x 10°, m=4, a =2.1, Y =0.3,
w=10"2 1, =0.3, p = 0.5, and 0.5% random initial seeds. We
plot the median and 50% confidence intervals in 10% simulations per
point.
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B’s are changed with the following transformation, m —
m[{a) + (t — 1)(a®)]. Thus, the larger the visibility of past
connections, from the virus point of view, the larger Rj.
Intuitively this is due to the fact that the virus, for large
values of 7, is able to access more contacts, which results
in a larger spreading potential. This observation nicely shows
how neglecting the temporal nature of connectivity patterns
in favor of static (or time integrated) approximations might
lead to a poor description of the propagation of viruses that
do not have access to contact lists or past connections. In
Fig. 4 we show the comparison between analytical (solid
lines) and numerical values of the threshold for different
values of 7. To isolate the effect of T we considered two
categories, a single recovery rate, and set p = 0.5. The ana-
lytical value is a good approximation only for small values
of . The mean-field approximation becomes less accurate as
more connections from past time steps are kept in memory.
Thus, the analytical estimation provides only a lower bound,
which together with the solution for T = 1 (dashed lines)—
that constitutes an upper bound—marks the region containing
the epidemic threshold (red regions). In other words, for
a general value of t, the threshold will be lower than the
analytical value computed for T = 1, and larger than the
corresponding value computed at 7.

Overall, our results highlight how the spreading of com-
puter viruses based on social engineering is critically affected
by the temporal nature of our interactions and different sus-
ceptibilities to cyber threats. Our findings show that networks’
dynamics and their interplay with the characteristics of users
have to be considered in order to avoid misrepresentation of
the spreading power of computer viruses in social networks.
We have also quantified the extent to which the previous
mismatch is important for three plausible scenarios. We, how-
ever, note that we have studied a simple network model that
neglects a range of properties of real social networks such as
the presence of weak and strong ties, high-order correlations,
and community structures. The study of the impact of these
features on the unfolding of computer viruses calls for addi-
tional research.
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