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SUMMARY

In this manuscript, a recent approach to quantum computation promoted by the authors, based on the theory of
recoupling of quantum angular momenta instead of the conventional notion of q-bit (that simply mimicks the
Booleam structure of the classical approach to computation), is reviewed and analyzed in its basic elements.
In particular, the reach of the new scheme in terms of algorithmic complexity is discussed, focusing the
attention on the quantum algorithm for generalized Jones polynomials of knots, J (L; q; j1, j2,… , jM), because
the problem of approximating J (L; q; {ji}) has been recognized to be a universal problem, namely the hardest
problem that a quantum computer can efficiently handle. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The traditional dynamical evolution process associated with generic quantum information manipulation
is grounded in the notion of qu-bit, out of which gates and circuits are described, essentially mimicking
the classical Boolean representation. Qu-bits are nothing but spin- 1

2
variables in 

( 1
2
), Hilbert space

isomorphic to C
2, whose elements can be expressed as |𝜓⟩ = a |0⟩ + b |1⟩, a, b ∈ C, |a|2+ |b|2 = 1. In

this standard scheme, the computational gates are realized in terms of 2 × 2 complex unitary matrices
(Pauli matrices) that belong to the fundamental irreducible representations ( 1

2
) of SU(2).

The conceptual scheme proposed in this paper can be thought of as the non-Boolean generalization
of the standard quantum circuit model, in which unitary gates are of two types: j-gates expressed in
terms of 3nj coefficients connecting inequivalent binary coupling schemes of n+1 angular momentum
variables, in which the qu-bit space is replaced by C

2J+1, and M-gates that are Wigner rotations in the
eigenspace of the total angular momentum 𝐉. The non-Boolean character is twofold: computational
states are labeled both by a discrete, finite number 2J+1 of variables and by a set of continuous variables
(see App. A). This representation implies that computational gates are mathematically realized in terms
of more complex operators, just the 3nj symbols, belonging to the (re)coupling theory of SU(2) for
generic, arbitrary angular momenta.

Such scheme – that we refer to as Spin Network Quantum Automaton (SNQA) – automatically incor-
porates all the essential features that make quantum information encoding so much more efficient than
the classical one: it is fully discrete; it deals with inherently entangled states; it is naturally endowed
with a tensor product structure; and it allows for generic encoding patterns. Elementary j-gates are par-
ticularly important, as they are represented by 6j symbols, which satisfy algebraic identities that make
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the structure of the model similar to the state sum models employed in discretized Topological Quan-
tum Field Theories and Quantum Gravity. The SNQA can thus be viewed as well as a Combinatorial
Quantum Field Theoretical model of computation. Most interesting is the application to the algorith-
mic question related to the topology of knots. Knots can be classified by knot invariants; the farthest
reaching of which is the Jones polynomial, especially interesting as it is associated with the observables
in topological quantum field theory. The problem of computing the Jones polynomial is intractable in
the framework of classical complexity theory, yet a quantum algorithm based on the SNQA scheme is
capable – as we briefly show here – to approximate it at any arbitrary precision in polynomial time.
Because computing Jones’ polynomial for any knot is a universal problem, namely the hardest prob-
lem that a quantum computer can efficiently handle, this application gives a measure of the reach of
the SNQA scheme.

We may summarize the content and perspectives of our discussion in the following diagram, where
the SNQA is shown both as a generalized quantum circuit (Section 2) or even a quantum simulator,
and as a Combinatorial Quantum Field Theoretical model for computation (Section 3). The standard
Boolean quantum circuit is a particular case of this general scheme for computation. The fact that
the combinatorial approach can be mapped into the purely topological one completes the picture.
Quantum automata are quite promising to address issues such as quantum languages and grammars,
quantum encoding, and quantum complexity classes of algorithms, naturally related here to enumerative
combinatorics of graphs.

2. GENERALIZED QUANTUM CIRCUITS OUT OF THE ANGULAR MOMENTUM ALGEBRA

We discuss here first some aspects of a novel setting for quantum computation proposed by the authors
a few years ago [1–3] and based on the (re)coupling theory of SU(2) angular momenta [4, 5], that we
refer to as the spin network simulator. This can be thought of as a non-Boolean generalization of the
standard quantum circuit model [6], with unitary gates expressed in terms of
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(i) recoupling coefficients (3nj symbols) between inequivalent binary coupling schemes of N ≡

(n + 1) SU(2)-angular momenta (j-gates);
(ii) Wigner rotations in the eigenspace of the total angular momentum (M-gates).

The picture contains the Boolean case as the particular case when all N angular momenta are spin
1
2
, namely qu-bits. The combinatorial structure of the model closely resembles SU(2) state sum mod-

els employed in discretized approaches to 2 and 3-dimensional Topological Quantum Field Theories
[7] and Quantum Gravity [8, 9]. An explicit mapping relating the spin network with the topological
approach to quantum computation based on modular functors, proposed originally in [10], can be estab-
lished as done in Ref. 2, section 6 (see also [11] for an overview). Significant developments of the
quantum spin network simulator scheme, referred to as spin network quantum automata, able to sustain
algorithms for computing topological invariants, are then addressed in Section 3.

The basic ingredients of the kinematics of the simulator are computational Hilbert spaces, to be
defined in the succeeding text, equipped with all unitary gates of types (i) and (ii) that we may consis-
tently apply to transform vectors belonging to such spaces. As in a customary circuit – be it classical
o quantum – a specific computation is implemented by picking up an input state to generate the cor-
responding output by acting with a particular (finite) sequence of elementary gates, each performed in
one unit of the intrinsic discrete-time of the simulator.

The architecture of the spin network scheme is modeled as a fiber-bundle  .  consists of a base
space, each point of which represents an accessible (computational) state of the system; at each point
of such space is attached another space, a fiber, to describe (‘represent’) the system internal degrees of
freedom. Fiber bundles are necessary to properly describe the global (as opposed to local) topological
properties of the space state. In present case, the fiber is determined by the physics of the system: N
angular momenta with fixed (and conserved) sum 𝐉. In other words, has an SU(2) fiber space structure
over a discrete base space V

 ∼ (V , C2J+1, SU(2)J)n , (1)

which encodes all possible computational Hilbert spaces as well as gates for any fixed number N = n+1
of incoming angular momenta.

2.1. Computational spaces

The base space V
.
= {v(𝔟)} can be identified with the vertex set of a regular 2(n − 1)-valent graph

𝔊n(V ,E), which has 2(n− 1) edge ends converging at each vertex, and cardinality |V| of the vertex set
V given by |V| = (2n − 1)!! (the double factorial), 𝔟 denoting a specific possible recoupling scheme.
There exists a one-to-one correspondence:

{v(𝔟)} ←→
{
J

n (𝔟)
}

(2)

between the vertices of 𝔊n(V ,E) and the computational Hilbert spaces of the simulator. For a fixed n,
J

n (𝔟) is the simultaneous eigenspace of the squares of 2n+1 Hermitean, mutually commuting angular
momentum operators, namely

𝐉1, 𝐉2, 𝐉3,… , 𝐉n+1 ≡ {𝐉i}; 𝐉1 + 𝐉2 + 𝐉3 +…+ 𝐉n+1
.
= 𝐉 ;

𝐊1, 𝐊2, 𝐊3, … , 𝐊n−1 ≡ {𝐊h} (3)

and of the operator Jz (the projection of the total angular momentum 𝐉 along the quantization axis).
The operators 𝐊h’s represent intermediate angular momenta. The associated quantum numbers are
j1, j2,… , jn+1 ; J; k1, k2,… , kn−1 and M, where −J ≤ M ≤ in integer steps. If  j1⊗ j2 ⊗ · · ·⊗ jn ⊗

 jn+1 denotes the factorized Hilbert space, namely the (n + 1)-fold tensor product of the individual
irreducible eigenspaces of the (𝐉i)2 ’s, the intermediate angular momenta 𝐊h are generated through
Clebsch–Gordan series, whenever a pair of 𝐉i’s are (binarily) coupled. As an example, by coupling

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:951–969
DOI: 10.1002/cta



954 A. MARZUOLI AND M. RASETTI

Figure 1. The computational Hilbert spaces are in one-to-one correspondence with rooted binary trees on
(n + 1) leaves.

sequentially the 𝐉i’s according to the scheme (· · · ((𝐉1 + 𝐉2) + 𝐉3) + · · · + 𝐉n+1) = 𝐉 – which generates
(𝐉1 + 𝐉2) = 𝐊1, (𝐊1 + 𝐉3) = 𝐊2, and so on as depicted in Figure 1 – we should get a binary bracketing
structure of the type (· · · ((( j1 ⊗ j2)k1

⊗ j3)k2
⊗ · · ·⊗ jn+1)kn−1

)J , where we add an overall bracket
labeled by the quantum number of the total angular momentum J. Note that, as far as ji’s quantum
numbers are involved, any value belonging to {0, 1∕2, 1, 3∕2,…} is allowed, while the ranges of the
kh’s are suitably constrained by Clebsch–Gordan decompositions (e.g. if (𝐉1 + 𝐉2) = 𝐊1 ⇒ |j1 − j2| ≤
k1 ≤ j1 + j2).

We denote a binary coupled basis of (n + 1) angular momenta in the JM-representation and the
corresponding Hilbert space appearing in (2) as

{ | [ j1, j2, j3,… , jn+1]𝔟 ; k𝔟1 , k𝔟2 ,… , k𝔟n−1 ; JM ⟩, −J ≤ M ≤ J}

= J
n (𝔟)

.
= span { | 𝔟 ; JM ⟩n } , (4)

where the string inside [ j1, j2, j3,… , j+1]𝔟 is not necessarily an ordered one, 𝔟 indicates the current
binary bracketing structure and the kh’s are uniquely associated with the chain of pairwise couplings
selected by 𝔟, cf. Figure 1. (Note the Dirac (bra-)ket notation introduced here for quantum states. Such
convention is suitable and flexible also with respect to the use of either shorthand or more specific
labelings which characterize the states.)

For a given value of J, each J
n (𝔟) has dimension (2J + 1) over C and thus there exists one

isomorphism

J
n (𝔟) ≅ 𝔟 C

2J+1 (5)

for each admissible binary coupling scheme 𝔟 of (n + 1) incoming spins. The vector space C2J+1 is
interpreted as the typical fiber attached to each vertex v(𝔟) ∈ V of the fiber space structure (1) through
the isomorphism (5). The fiber is of course given by the moduli space of the total angular momentum
group SU(2)J .

2.2. Unitary gates

For what concerns unitary operations acting on the computational Hilbert spaces (4), we examine first,
as anticipated in (i), the j-gates associated with recoupling coefficients (3nj symbols) of SU(2). It can be
shown [4] that any such coefficient can be split into elementary j-gates, the Racah transforms, possibly
apart from phases and weight factors. A Racah transform applied to a basis vector is defined formally,
in the bracketing formalism introduced earlier, as
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Figure 2. Rotation operations on binary trees can be applied to a general tree (top) made of subtrees A,B,C
and R (containing the root), and in particular to the simplest three-leave tree labeled here in such a way as to

reproduce the 6j symbol in (7).

 ∶ |…( (a b)d c)f …; JM⟩ → |…(a (b c)e )f …; JM⟩, (6)

where Latin letters a, b, c,… denote here both incoming (ji ’s in the previous notation) and intermediate
(kh ’s) spin quantum numbers. The explicit expression of (6), graphically represented in Figure 2, reads
(skipping dots for a compactified notation)

|(a (b c)e )f ;M⟩ = ∑
d

(−1)a+b+c+f [(2d + 1)(2e + 1)]1∕2

{
a b d
c f e

} |( (a b)d c)f ;M⟩, (7)

where there appears the Racah–Wigner 6j symbol of SU(2) (here f plays the role of the total angular
momentum quantum number previoulsy denoted J).

Recall that the square of the 6j symbol in (7) gives the probability that a system prepared in the state|( (a b)d c)f ;M⟩ will be measured in the state |(a (b c)e )f ;M⟩. Moreover, Racah transforms  are the
key ingredients to complete the construction of the Rotation graph 𝔊n(V ,E) introduced earlier (note
that in this case, rotation refers to a topological operation on binary tree structures and not to the Wigner
rotation operators referred to in (ii), defined in the succeeding text in Equation (11) and analyzed in
details in Appendix A. The edge set E = {e} of 𝔊n(V ,E) is a subset of the Cartesian product (V × V)
selected by the action of elementary j-gates. More precisely, an (undirected) arc between two vertices
v(𝔟) and v(𝔟′)

e (𝔟, 𝔟′)
.
= (v(𝔟), v(𝔟′)) ∈ (V × V) , (8)

exists if, and only if, the underlying Hilbert spaces are related to each other by an elementary unitary
operation of the type (6). Note also that elements in E can be considered as mappings

(V × C
2J+1)n −→ (V × C

2J+1)n ,(
v(𝔟), J

n (𝔟)
)
→

(
v(𝔟′), J

n (𝔟
′)
)
,

(9)

connecting each given decorated vertex to one of its nearest 2(n − 1) vertices and thus they define a
transport prescription in the horizontal sections belonging to the total space (V × C2J+1)n of the fiber
bundle (1).

The fundamental feature that characterizes the graph 𝔊n(V ,E) arises from compatibility conditions
satisfied by 6j symbols appearing in (7). The Racah (triangular) identity, the Biedenharn–Elliott (pen-
tagon) identity and the orthogonality conditions for 6j symbols [5] ensure that any simple path in
𝔊n(V ,E) with fixed endpoints can be freely deformed into any other, providing identical quantum
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transition amplitudes (and of course probabilities) at the kinematical level (cf. Ref. 2, section 3.1 for
more details).

To complete the description of the structure (V , C2J+1, SU(2)J)n we need to call into play M-gates
which act on the angular dependence of vectors in J

n (𝔟). By expliciting such dependence as

J
n (𝔟)

.
= span { |𝔟; 𝜃, 𝜙; JM⟩n }, (10)

we write the action of a rotation on a basis vector in the standard form:

|𝔟; 𝜃′, 𝜙′; M′J ⟩n =
J∑

M=−J

DJ
MM′ (𝛼𝛽𝛾) |𝔟; 𝜃, 𝜙; JM ⟩n , (11)

where (𝜃, 𝜙) and (𝜃′, 𝜙′) are polar angles in the original and rotated coordinate systems, respectively.
DJ

MM′ (𝛼𝛽𝛾) are Wigner rotation matrices in the JM representation expressed in terms of Euler angles
(𝛼𝛽𝛾) which form a group under composition [5] (see also Ref. 2, section 3.2 and Appendix B1; and
Appendix A in the succeeding text). The shorthand notation SU(2)J employed in (1) actually refers
to the group of W-rotations, which in turn can be interpreted as the automorphism group of the fiber
C2J+1. Because rotations in the JM representation do not alter the binary bracketing structure of vectors
in computational Hilbert spaces, we can identify the actions of W-matrices as transport prescriptions
along the fiber.

The framework outlined shows clearly that we can switch independently j and M-gates without mix-
ing spin and magnetic quantum numbers. This feature, which relies on the discreteness of the base space
V and on the triviality of the total space (V × C2J+1)n , makes it easy with kinematics, although the
simulator will exhibit highly non trivial behaviors at the dynamical level, as discussed shortly. A pic-
torial representation of the computational fiber space  (V , C2J+1, SU(2)J)n for (n + 1) = 4 incoming
spins is sketched in Figure 3. Each vertex is associated, through the mapping (2), with a binary coupled
Hilbert space J

n (𝔟), associated in turn with a binary tree as in Figure 1, and depicted as a space with a
few axes. Edges of the graph represent Racah transforms (6) which actually move each space viewed
as a whole into one of its nearest 2(n − 1) = 4 ones. Inside each J

n (𝔟) ≅ C2J+1 (Equation (5)), we can
pick up some particular vector and rotate its components by means of the Hermitean conjugate of the
matrix DJ

MM′ (𝛼𝛽𝛾) introduced in (11) for some choice of (𝛼𝛽𝛾).
Note that the kinematical structure of the spin network complies with all the requisites of an universal

quantum simulator as defined by Feynman [12], namely

• locality, reflected in the binary bracketing structure of the computational Hilbert spaces, which –
together with the action of W-rotations – bears on the existence of local interactions;

• discreteness of the computational space, reflected in the combinatorial structure of 𝔊n;

• universality, guaranteed by the properties of the gates described earlier: any unitary transforma-
tion operating on computational Hilbert spaces can be reconstructed by taking a finite sequence
of Racah transforms (and possibly phases) interlaced with applications of a finite number of
W-rotations;

• discreteness of time, as assumed in any circuit implementation by simply identifying the time
unit 𝜏 as the time elapsed between to go from one o the other of any two states connected by an
elementary transform.

2.3. Dynamical spin networks

The dynamical behavior of the spin network as a quantum circuit is addressed in terms of directed
paths in the fiber space structure (V , C2J+1, SU(2)J)n. By a directed path  , we mean a (time)
ordered sequence:

|𝔳in ⟩n ≡ |𝔳0 ⟩n → |𝔳1 ⟩n → · · · → |𝔳s ⟩n → · · · → |𝔳L ⟩n ≡ |𝔳out ⟩n , (12)

where we use the shorthand notation |𝔳s⟩n for computational states and s = 0, 1, 2,… ,L is the lexico-
graphic labeling of the states along the given path  with fixed endpoints. L is the length of  , which
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Figure 3. The fiber space structure of the spin network 𝔊3(V ,E), that is, for (n + 1) = 4 incoming spins.
The one-to-one correspondence between vertices and binary parenthesization on four letters, say [a, b, c, d],
reads: 1 ↔ (d(b(ac))); 2 ↔ (b(d(ca))); 3 ↔ ((ac)(bd)); 4 ↔ (d(a(bc))); 5 ↔ (d(c(ab))); 6 ↔ (c(d(ab)));
7 ↔ ((ab)(cd)); 8 ↔ (a(d(bc))); 9 ↔ ((ad)(bc)); 10 ↔ (a(b(cd))); 11 ↔ (a(c(bd))); 12 ↔ (c(a(bd)));
13 ↔ (c(b(ad))); 14 ↔ (b(c(da))); 15 ↔ (b(a(cd))). Vertices and edges on the perimeter of the graph have

to be identified through the antipodal map.

with our convention is proportional to the time duration T of the computation process L ⋅ 𝜏
.
= T in

terms of the discrete time unit 𝜏. The integer L characterizing the particular directed path in (12) equals
the number of time-ordered elementary operations (computational steps) needed to obtain |𝔳out ⟩n from|𝔳in ⟩n following the path  . An elementary computational step, represented by an arrow in (12), is
either a Racah transform or a W-rotation: |𝔳s+1⟩n = s|𝔳s⟩n, with s either  as in Equation (6) or a
Wigner rotation matrix as in Equation (11).

A circuit-type computation consists in evaluating the quantum expectation value of the unitary oper-
ator 𝔘 associated with the path  , whereby one obtains the transition probability amplitude (whose
square modulus represents the quantum probability of the process)

()
n

.
=n ⟨𝔳out |𝔘 | 𝔳in ⟩n ; |||()

n
|||2 = Prob

{|𝔳out ⟩n = 𝔘 |𝔳in ⟩n

}
, (13)

where n⟨ ∙ | denotes a bra-vector and the ealier shorthand expression means simply that, on applying
𝔘 to the input and projecting onto the output, one obtains a measure of which fraction of the output
state is generated.

By taking advantage of the possibility of decomposing 𝔘 uniquely into an ordered sequence of
elementary gates, (13) becomes

n⟨𝔳out |𝔘 | 𝔳in ⟩n = ⌊ L−1∏
s=0

n⟨𝔳s+1 |s,s+1 | 𝔳s ⟩n ⌋ (14)
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with L ≡ L() for short. The symbol ⌊ ⌋ indicates that the ordered product along path  and each
elementary operation is now denoted by s,s+1 (s = 0, 1, 2,… ,L()−1) to stress its one-step character
with respect to computation. Consequently, each elementary transfer matrix in (14) turns out to be
associated with a local Hamiltonian operator 𝐇n arising from

n⟨𝔳s+1 |s,s+1 | 𝔳s ⟩n = exp {i𝐇n (s, s + 1) ⋅ 𝜏} (15)

and representing the unitary evolution of the simulator in one unit of its intrinsic time variable 𝜏. We
indicate with the shorthand notation (s, s + 1) the dependence of 𝐇n on its variables to make clear the
local nature of this operator with respect to the computational space (V , C2J+1, SU(2)J)n. When (15) is
inserted in (14), such effective Hamiltonians generally do not commute with each other but nonetheless
the whole computational process may be mapped to well-defined unitary evolution of the quantum
circuit, driven by a poly-local, 2-body-type Hamiltonian, in the internal time interval T = L() ⋅ 𝜏.

Different types of evolutions can be grouped into computing classes based on the choice of the gates
that a particular program (i.e., a collection of directed paths) has to employ. A computing class that
alternates j and M-gates would be the most general one (as explained in Ref. 2, section 4.2). However,
two particular classes to be illustrated below turn out to be most interesting in view of the possibility
of relating them to other models for quantum computation.

The M-computing class contains programs which employ only (finite sequences of) M-gates in a
suitably chosen computational Hilbert space J

n (𝔟) and it is not difficult to realize that such kind of
computation, when applied to N qu-bits ( 1

2
-spins), reproduces the usual Boolean quantum circuit. In

Appendix A a detailed analysis of this family is provided.
The j-computing class includes programs which employ only j-gates at each computational step. This

class is particularly interesting because, as already mentioned, it shares many features with suitable
types of discretized TQFTs, the so-called state sum models [8, 9, 11]. Here, the combinatorial structure
of Rotation graphs becomes prominent owing to the existence of a one-to-one correspondence between
allowed elementary operations and the edge set E of the graph 𝔊n(V ,E), for any n. We denote the
unitary operator associated with a program  in this class by


()

3nj ∶ |𝔳in⟩n −→ |𝔳out⟩n , (16)

where, in a circuit-type setting, input |𝔳in⟩n is fixed and |𝔳out⟩n is an accepted state. However, in the
j-computing class one may address other types of problems. For instance, once selected two states,
say |𝔳in⟩n and |𝔳out⟩n, we may consider all possible paths  that compute |𝔳out⟩n as the result of the
application of some 

()
3nj to |𝔟in⟩n. The functional that takes care of such multiple choices is a path

sum (a discretized form of Feynman’s path integral) which may be written formally as

𝐙
[
𝔳in, 𝔳out

]
=

∑


W n⟨𝔳out | ()
3nj | 𝔳in ⟩n , (17)

where the summation is over all paths with fixed endpoints and W is a weight to be assigned to each
particular path. The explicit form of such functional would contain sums over intermediate spin vari-
ables kh ’s of products of 6j symbols with suitable weights (dimensions of SU(2) irreps labeled by kh ’s)
and phase factors. Note that if we give the same weight, say W = 1, to each path, then the results on
equi-probable amplitudes derived from the algebraic identities for 6j symbols ensure that the functional
(17) is a combinatorial invariant, namely it is actually independent of the particular path connecting|𝔳in⟩n and |𝔳out⟩n.

In the Boolean qu-bit scheme, the realization of a specific program  essentially amounts to select-
ing an appropriate set of 𝐇n, that typically have the form of Heisenberg Hamiltonians; in the present
case such Hamiltonians describe instead multi-partite interactions of a finite number of arbitrary
angular momenta.
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3. FINITE-STATES Q-DEFORMED AUTOMATA AND PROCESSING OF
TOPOLOGICAL INFORMATION

Generally speaking, the search for new algorithmic problems and techniques which would require quan-
tum rather than classical computational resources to be solved is getting more and more challenging.
Most quantum algorithms run on the standard quantum circuit model [6], and are designed to solve
problems which are essentially number theoretic or decision making. However, other types of problems,
typically classified in the field of enumerative combinatorics and ubiquitous in many areas of math-
ematics and physics, share the feature of being intractable in the framework of classical information
theory. These are interesting not only for mathematicians and computer scientists, but are addressed by
physicists in the study of both exact solvable models in classical statistical mechanics and quantum field
theories whose observables are of geometric nature, such as topological quantum field theories [13].

As an application to such kind of intractable problems, we deal in what follows with the construction
of a quantum algorithm for the topological invariants for knots and links. This is a very hard problem
that we shall however be able to deal with in terms of spin network quantum automata – to be defined
in the succeeding text – that have the advantage of being realizable in terms only of j-gates. Knots and
braids, besides being fascinating mathematical objects, are encoded into the foundations of a number
of physical theories, either as concrete realizations of natural systems or as conceptual tools. A knot
is a knotted closed curve embedded in the three-dimensional space (links are multi-component knots),
commonly presented as a planar diagram, as depicted in Figure 4. As customary in topology, the length
of the string and the bending of the various portions of the string itself can be changed at will, provided
this is done without cutting and gluing back the endpoints.

Over the years, mathematicians have proposed a number of knot invariants aimed to classify sys-
tematically all possible knots. Most of these invariants (quantities that depend only on the topological
features of the knot) are polynomial expressions (in one or two variables) with coefficients in the rel-
ative integers, whose computation belongs to the algorithmic complexity class #𝐏. It was Vaughan
Jones, who discovered the most famous polynomial invariant, the Jones polynomial [14], which con-
nects knots with quantum field theory and plays a prominent role in the present paper. In the seminal
work by Edward Witten [15], the Jones polynomial was actually recognized to be associated with the
vacuum expectation value of a so-called Wilson loop operator in a particular type of three-dimensional
quantum field theory (the non-Abelian Chern–Simons theory with gauge group SU(2)).

Figure 4. Planar diagrams are projections of knotted curves onto planes taking into account over and under-
crossing information. Here, diagrams are shown of the trefoil knot (top) and the Borromean link (bottom).
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Braids – sets made of finite collections of strands with fixed endpoints – appear naturally in this
context too, because we can always arrange a knot or a link as the closure of a braid: this crucial property
is pictorially illustrated in Figure 5 later. Moreover, braids enrich the purely topological nature of the
theory because the set of crossings of any braid can be endowed with a group structure. The Artin braid
group on n strands (see [16] and Figure 6) encodes all topological information about ‘over’ and ‘under’
crossings into an algebraic setting, opening the possibility of describing polynomial invariants of knots
in terms of representations of this group.

The Jones polynomial can be interpreted both as the trace of a (suitably chosen) matrix representation
of the braid group [14], and as the vacuum expectation value of an observable in a unitary quantum field
theory [15]. In what follows, we restrict our attention to the purely algebraic approach to the definition
of colored Jones polynomials leaving aside the machinery of quantum field theory, see [17–19] and
references therein.

Figure 5. Two presentations of the trefoil knot as closures of open braids.

Figure 6. The braid group 𝐁n is finitely generated in terms of n generators – crossing operations involving
two strands – which satisfy suitable conditions. Generator si and its inverse s−1

i acting on two contiguous
strands (top) and the fundamental algebraic condition relating the action of generators on three strands,
s1s2s1 = s2s1s2, (bottom) are illustrated graphically here. The presentation of the group is: 𝐁n = ⟨si, i =

1,… , n | sisi+1si = si+1sisi+1 , i = 1,… , n − 1 ; sisj = sjsi for |i − j| ≥ 2⟩.
Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:951–969
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3.1. Finite-states spin network automata

Looking back at the spin network as the generalized quantum circuit discussed in the previous section,
we notice that we are indeed at the presence of an all-purpose machine (which can be built out of
molecular, atomic, or nuclear real systems) able to implement in principle any computation. In order
to address specific algorithmic problems, we should specify an encoding scheme, choose a particular
input state, and design a program; actually select an ordered path  in the computational space as
done in Equation (12). Note that in general such ordered path – a sequence of elementary j and M-
gates – is actually a mixed (analogical and discrete) process, and would require a careful preparation
of the physical microscopic support in order to keep under control the allowed values of all angles in
the rotation W-matrices DJ

MM′ , see Equation (11). On the other hand, within a purely j-type computing
class, both input/output and the entire path rely on discrete resources which are rotationally invariant
by definition and, thanks to algebraic constraints among 6j-symbols, there exist equivalent paths from
the input to the output states, all providing the same quantum probability amplitude.

This intriguing view of quantum parallelism, reflected into suitable sum over amplitudes of the type
introduced earlier in Equation (17), is far-reaching and is deeply embedded within the topological
quantum computation scheme [20], which deals with classes of algorithmic problems in geometry and
physics that share a global nature; typically the computation of topological invariants of knots.

Before going through some more details, note that ‘discrete means’ does not imply a finitary infor-
mation processing when the size of the input (encoded into a string in a finite alphabet) increases. In
this respect, the theory of automata and formal languages allows us to address, in particular, what has
to be meant by finite computational processes, such as those employed in the following for evaluating
topological invariants of knots.

If  is an alphabet, made of letters, digits or other symbols, and ∗ denotes the set of all finite
sequences of words over , a language  over  is a subset of ∗. In our notation, the empty word
is 𝜖, and the concatenation of two words u and v is simply denoted by uv. In the 60s, Noam Chom-
sky introduced a four level-hierarchy describing formal languages according to their internal structure,
namely regular languages, context-free languages, context-sensitive languages, and recursively enu-
merable languages (recognized by Turing machines). Here, we are interested in finite state-automata,
the machines able to accept regular languages, aiming specifically to construct quantum finite-states
automata as they can be derived from the spin network setting of Section 2.

Formally, quantum finite states-automata are obtained from their classical probabilistic counter-
parts by moving from the notion of (classical) probability associated with transitions to quantum
probability amplitudes, and computation takes place inside a suitable Hilbert space through unitary
operators (matrices). Following [21], the measure-once quantum finite-automaton is defined as a 5-tuple
M = (Q,Σ, 𝛿,𝐪0,𝐪f ), where: Q is a finite set of states; Σ is a finite input alphabet with an end-marker
symbol #; 𝛿 ∶ Q × Σ → Q is the transition function; 𝛿(𝐪, 𝜎,𝐪′) is the probability amplitude for the
transition from the state 𝐪 to the state 𝐪′ upon reading symbol 𝜎; the state 𝐪0 is the initial configuration
of the system, and 𝐪f is the accepted final state. For all states and symbols, the function 𝛿 must be uni-
tary. At the end of the computational process, the automaton measures its configuration: if it is in an
accepted state then the input is accepted, otherwise it is rejected. The configuration of the automaton is
in general a superposition of states in the Hilbert space where the automaton lives. The transition func-
tion is represented by a set of unitary matrices U𝜎(𝜎 ∈ Σ), where U𝜎 represents the unitary transition
of the automaton reading the symbol 𝜎. The probability amplitude for the automaton M to accept the
string w is finally given by

fM(w) =
⟨
𝐪f
|||Uw

||𝐪0⟩ , (18)

where it is the explicit form of fM(w) that defines the language  accepted by the automaton M. It is
quite straightforward to recognize that the spin network computational space 𝔊n(V ,E) × 𝐂2J+1 (for a
fixed n and for any specific choice of J) naturally turns into families of quantum automata.

3.2. Braiding spin networks and representations of SU(2)q
In order to be able to process (closures of) braids, it is necessary to modify the spin network setting
in such a way that the information about over or under-crossing of pairs of braid strands might be
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DOI: 10.1002/cta



962 A. MARZUOLI AND M. RASETTI

recovered unambiguously through unitary transformations (to be looked at as new types of gates in the
computational context). Here, we resort to the algebraic approach embodied into the so-called repre-
sentation ring ℜ (SU(2) q) of the quantum group SU(2)q‡ and defined following in the footsteps of the
construction of SU(2)-representation theory [4, 5].

The ground ring in which the link invariants will take their values is Λ = Z[q±1] ⊂ C, with
q = exp(2𝜋i∕r) a complex primitive r-th root of unity (then in practice these expressions are Laurent
polynomials in q and q−1 with coefficients in the relative integers Z). The elements of ℜ (SU(2)q) are
complex Hilbert spaces, invariant under the action of the group (recall that a vector space V is invari-
ant under the action of a group G if G × V → V , namely transformed vectors keep on belonging to
V; such spaces are referred to as invariant G-modules). As it happens for SU(2), it can be shown that
ℜ (SU(2)q) is spanned by finite-dimensional SU(2)q-modules {Vj}.

In the case of SU(2), the labels {j} (the spin quantum numbers from the quantum mechanical point of
view) run over all integers and half-integers {0, 1

2
, 1, 3

2
,…}, and each Vj is characterized by its dimen-

sion (2j+ 1) and is irreducible (namely cannot be decomposed into a direct sum of invariant subspaces
of lower dimensions). In the q-deformed case, it can be shown that the SU(2)q-modules {Vj} are irre-
ducible if and only if the labels {j} run over the finite set of colors {0, 1

2
, 1, 3

2
,… , r}. Each Vj, spanned

by (2j+1) vectors, can be characterized by a specific scalar ∈ Λ, the q-integer or q-dimension [2j+1]q,
where [𝔫]q = (q𝔫∕2 − q−𝔫∕2)∕(q1∕2 − q1∕2) for 𝔫 ∈ N+, a positive integer. Thus, for each choice of the
integer r, we have a distinguished family of irreducible representations (irreps) of SU(2)q

𝔉r = {Vj }j=0,…,r ; Vj ↔ [2j + 1]q , (19)

which makes ℜ (SU(2)q) a finitely generated ring. As in the case of SU(2), the ring structure is made
explicit in terms of the direct sum ⊕ and tensor product ⊗ of irreps, namely

Vj ⊕ Vk ∈ ℜ (SU(2)q) if j, k ≤ r ,

Vj ⊗ Vk ∈ ℜ (SU(2)q) if j + k ≤ r ,
(20)

where the ranges of the labels have to be suitably restricted with respect to the standard case. The
analog of the Clebsch–Gordan series, giving the decomposition of the tensor product of two irreps into
a (truncated) direct sum of irreps, reads

Vj1 ⊗ Vj2 =
min{j1+j2,r−j1−j2}⨁

j=|j1−j2|
Vj. (21)

Note however that the ring ℜ(SU(2)q) is much richer than its ′classical′ SU(2) – counterpart because
SU(2)q can be endowed with a quasi-triangular Hopf algebra structure. Besides the standard operators
⊕ and ⊗, we can indeed introduce here a comultiplication Δ ∶ SU(2)q → SU(2)q⊗SU(2)q, an antipode
map A ∶ SU(2)q → SU(2)q, a counit 𝜀 ∶ SU(2)q → C and a distinguished invertible element

R ∈ SU(2)q ⊗ SU(2)q, (22)

called the R-matrix. We do not insist any further on the explicit definitions of Δ (particularly relevant
here as it is the operation equivalent – in the new scheme – to the composition of angular momenta in
the SU(2) case), A and 𝜀, and refer for instance to [22] for more details.

The far-reaching role played by the R-matrix becomes manifest when we define its action on the
tensor product of a pair of irreducible SU(2)q-modules in ℜ(SU(2) q). Denoting by R̂ the operator
associated to R, we have

R̂ ∶ Vj ⊗ Vk −→ Vk ⊗ Vj, (23)

‡The ‘quantum group’ SU(2) q is not quite a group, rather it is a q-deformation of the universal enveloping algebra (a Hopf
algebra) of the Lie algebra of SU(2), with an additional composition law called the coproduct, see in the succeeding text
some more details.
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where the values of the labels j, k have to be suitably restricted according to (20). These R̂-operators
will be referred to as the braiding operators associated with the R-matrix (22). If we further extend the
action of R̂ to the ordered product of three irreps Vj ⊗ Vk ⊗ Vl by defining

R̂jk
.
= R̂⊗ Id ∶ (Vj ⊗ Vk) ⊗ Vl −→ (Vk ⊗ Vj) ⊗ Vl , (24)

R̂kl
.
= Id ⊗ R̂ ∶ Vj ⊗ (Vk ⊗ Vl) −→ Vj ⊗ (Vl ⊗ Vk) , (25)

where Id is the identity operator on the corresponding sub-space, then it can be shown that these
operators satisfy the quantum (i.e., q-deformed) Yang–Baxter equation

R̂jk R̂kl R̂jk = R̂kl R̂jk R̂kl . (26)

Notice the formal equivalence of this equation with the ‘three-body’ defining relations of the braid
group (see caption of Figure 6). The explicit expression of the braiding operator R̂ (and of its inverse
R̂

−1
) can thus be worked out explicitly by selecting orthonormal basis sets in the SU(2)q -modules

Vj,Vk, for each admissible choice of the pair j, k. In such bases, all the braiding operators (23), (24)
and (25) are unitary.

With these premises, the ‘colored invariant’ for an oriented link L with M components can be now
consistently interpreted as a single, Λ-linear map

J (L; q; j1, j2,… , jM) ∶ ℜ (SU(2)q) −→ Λ , (27)

where the choice of the integer r in the root of unity q – the running variable of the polynomial – is
constrained by the requirement r ≥ M, at least in the most general case (M distinct colors).

3.3. Quantum automaton computation of Jones polynomial

The step-by-step prescription for working out J (L; q; j1, j2,… , jM) in the simple case case of the Bor-
romean link of Figure 4 (a 3-component knot made of three interlaced rings) depicted in Figure 7 is
given in Appendix B.

Figure 7. A presentation of the oriented and colored Borromean link as a closed braid on six strands. The
parallel straight lines 1 (≡ 𝜆1) and 2 (≡ 𝜆2) intersect the diagram in points to be associated with Hilbert

spaces, which inherit the coloring from the corresponding strands.
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Among the SU(2)q-colored link polynomials (27), the Jones invariant [14] is the simplest spin- 1
2

colored polynomial, and represents the prototype of all of the topological quantum invariants (which
include also invariants of 3-dimensional manifolds [22]). The reason why Jones’ case is so crucial in
the computational context is actually due to the fact that a simpler link invariant that can be computed
efficiently, the Alexander–Conway polynomial, is incomplete, while the problem of computing other
polynomial invariants is 𝐍𝐏-hard (see [16, 23] for definitions and reviews on computational questions).
Indeed, it was proven in [23] that the evaluation of the Jones polynomial of an alternating link L̃ at
a root of unity q is #𝐏-hard. ‘Alternating’ links are special instances of links, the planar diagrams of
which exhibit over and under crossings alternatively; thus, the evaluation of the invariant of generic,
non-alternating links is at least as hard. The computation becomes feasible when the argument q of the
polynomial is a 2nd, 3rd, 4th, and 6th root of unity (refer to [23] for details on this technical issue).
Recall finally that the #𝐏 complexity class can be defined as the class of enumeration problems in which
the structures that must be counted are recognizable in polynomial time. A problem 𝜋 in #𝐏 is said
#𝐏-complete if, for any other problem 𝜋′ in #𝐏, 𝜋′ is polynomial-time reducible to 𝜋; if a polynomial
time algorithm were found for any such problem, it would follow that #𝐏 ⊆ 𝐏. A problem is #𝐏-hard if
some #𝐏-complete problem is polynomial-time reducible to it. Instances of #𝐏-complete problems are
the counting of Hamiltonian paths in a graph, and the most intractable problems arising in statistical
mechanics, such as the enumeration of configurations contributing to ground state partition functions.

Yet, the intractability of the computability of the Jones polynomial does not rule out the possibility of
approximating efficiently Jones invariant. Given the question ′how hard is it to approximate the Jones
polynomials? ′, one has to look at a specific, additive approximation of its value for a fixed q. The latter
is a number Z such that, for any choice of a small real 𝛿 > 0, the numerical value of J(L, q), when we
substitue in its expression the given value of q, differs from Z by an amount ranging between −𝛿 and
+𝛿. In a probabilistic setting (either classical or quantum), we require that the value Z can be accepted
as an approximation of the polynomial if

Prob
{| J(L; q; {ji}) − Z | ≤ 𝛿

}
≥

3
4
, (28)

where for simplicity, we consider any link as a closed braid. We refer the reader to [24] and [25] for
more accurate statements of (28).

The spin network q-deformed automaton model is based on recoupling transformations, each of
which can be decomposed into a series of elementary quantum 6j transformations. The quantum circuit
implementing the decomposition of the eight-point fundamental block in terms of q−6j gates is shown
in Figure 8, where also the corresponding path on the spin network graph is shown. The spin network

Figure 8. The quantum circuit implementing the decomposition of the eight-point basic (“conformal”) block
in terms of q − 6j gates. An efficient quantum algorithm for the latter has been discussed in [26]. The

corresponding path on the spin network graph is shown in the lower part.
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q-deformed automatonhas been shown to be able to implement braiding operators as well as unitary
transforms associated with the q-deformed 6j and 3nj symbols (the q-analog of j-gates in Section 2) in
polynomial time with respect to the size of the input [17–19, 27]. The relevant quantities encoding the
size of a typical instance of the computational problem – here a link diagram L presented as a closed
braid on n strands – are the number of crossings 𝜅 of the link and the braid index n. Moreover, each of
such elementary unitary operations can be efficiently implemented also in the frame of the standard,
Boolean quantum circuit model.

It is worth to recall that further extensions of such q-deformed automaton models have been applied
to deal with the efficiency of the calculation of the permanent of a matrix [28] and to model combina-
torially the characterization of topological phases of matter and relared anyonic-type computation, see
[29, 30] and reference therein.

The deep connection with the q-braided spin-network computational scheme comes out however
when one recognizes that the quantity in Equation (B.5) of Appendix B, representing the extended
Jones polynomial, is not only the quantum transition amplitude of a finite states-automaton but com-
plies also with the expectation value (14) associated with a path  in the q version of the spin-network
computational space. This does not mean, of course, that we have set up a quantum algorithm for the
extended Jones polynomial in the strict sense, because the encoding map could not be efficiently rep-
resented (nor approximated) with respect to standard models of computation (Boolean circuits, Turing
machines). We provide however instead a quantum system whose evolution can be controlled in such
a way that its probability amplitudes give the desired link polynomials.

Finally, let us comment as well on the basic issue characterizing the model of quantum computation
adopted. A central role in the scheme is played by the quantum recognizer  (see Appendix C for
details) able to process efficiently the language  generated by the braid group with transition matrices
given by Kaul’s unitary representations, and the related probability distributions associated with quan-
tum topological invariants. It might be tempting to proceed without this step, processing directly the
unitary representations within the quantum circuit scheme of computation. However, the basic mor-
phisms of the q-tensor category on which the recognizer is modeled can be efficiently compiled and
approximated on a quantum circuit, as the implementation of a q − 6j transformation is independent
on both the input size of the algorithmic problem and on the values of its entries. This opens the possi-
bility of looking at the q-spin network simulator as the fundamental model of computation for a wide
range of algorithmic problems in geometric topology and group theory.

APPENDIX A: UNITARY M-GATES

M-gates are implemented – inside each computational Hilbert space J
n (𝔟) – by the Wigner

D-functions D J
M M′ , namely the matrix elements of a (unitary) rotation operator 𝔇 J

M M′ in the JM
representation (Equation (11)). A W-matrix can be always expressed as

D J
M M′ (𝛼𝛽𝛾) = e−iM𝛼 d J

M M′ (𝛽) e−iM′𝛾 , (A.1)

where d J
M M′ (𝛽) is the reduced W-matrix. It is worth to recall that in the general case (N any integer and

j1, j2,…, jn+1 chosen in {0, 1∕2, 1, 3∕2,…}) the reducible (2J + 1)× (2J + 1) W-rotation matrix DJ
MM′

will admit a block diagonal decomposition into irreducible rotation matrices of lower ranks. From the
computational point of view, this provides a more general notion of universal set of elementary M-
gates than that currently adopted in (Boolean) quantum information schemes, typically given in terms
of 2×2 (1-qubit) and 4×4 (2-qubit) unitary matrices [6]. Actually, each matrix element of any rotation
�̂�(𝛼, 𝛽, 𝛾), parametrized by Euler’s angles, DJ

MM′ = ⟨JM |�̂� |J′M′⟩ can be factorized in a well-defined
way, and the procedure is independent of the binary bracketing structure associated to J

n (𝔟). The
explicit expression of such factorization can be written symbolically as

D J (𝛼𝛽𝛾) =
∑

{m,m′}

N∏
i=1

(
C ki

ki−1 ji
D ji (𝛼𝛽𝛾) C

k ′
i

k ′
i−1 ji

)
, (A.2)
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where we dropped the matrix indices M,M′,mi,m
′
i on the W-matrices D J , D ji (i = 1, 2,… ,N ≡ n+1),

and similarly C∙
∙∙’s are Clebsch–Gordan coefficients with m-type entries omitted. Notice that at the left-

hand-side of (A.2) is implicit, and omitted, a factor
N∏

i=1
𝛿ki,k

′
i
{jiki−1ki}, where {a b c} is a symbol that

equals 1 if (a + b + c) is an integer and |a − b| ≤ c ≤ a + b ; 0 otherwise. The summation is over all
magnetic quantum numbers of the angular momentum operators {𝐉i}, while {𝐤i = 𝐣1+· · ·+𝐣i} are spin
quantum numbers associated with the intermediate operators introduced in (4). In (A.2) there appear
N (≡ # of incoming spins) factors, each containing a W-matrix in the irreducible ji-th representation
of dimension (2ji + 1), and a total amount of 2N Clebsch–Gordan coefficients. Each matrix element of
D ji can be further factorized into the (sum of) product of 2ji W-matrices in the fundamental j = 1∕2

representation of SU(2). Recall that the explicit form of D
1
2

m m′ (m,m′ ∈ { 1
2
, − 1

2
}) reads

D
1
2

m m′ (𝛼 𝛽 𝛾) =
(

e−i𝛼∕2 cos(𝛽∕2) e−i𝛾∕2 −e−i𝛼∕2 sin(𝛽∕2) ei𝛾∕2

ei𝛼∕2 sin(𝛽∕2) e−i𝛾∕2 ei𝛼∕2 cos(𝛽∕2) ei𝛾∕2

)
, (A.3)

As a consequence of the aforementioned remarks, we conclude that the elementary factors appearing
in the right hand side of (A.2) needed to determine one matrix element of D J , namely D J

M M′ (𝛼 𝛽 𝛾) for
some MM′, are

2N C-G coefficients ; 2J ≡ 2
N∑

i=1

ji W-matrices D
1
2

m m′ (A.4)

and the number of factors one needs in order to evaluate the whole D J amounts to [2(J + N)](2J+1)2 .
These estimates represent in fact upper bounds on the number of factors, because we may reduce the
number of elementary W-matrices by employing some 3×3 matrices D 1 of the j = 1 irrep. Moreover, by
considering a purely fermionic [bosonic] symmetric N-multiplet, the expression (A.2) does not contain
C-G coefficients anymore, and the number of elementary factors to be taken into account in (A.4) is
simply 2J ≡ N [ J ≡ N, respectively ], see Appendix B1 of Ref. [2] and original references therein.
Thus the frame of the spin network circuits turns out to be much richer than the Boolean case, as it

includes the usual Boolean gates as particular instances. Note finally that D
1
2

m m′ is an elementary gate
in any situation; it is also universal for the two particular cases discussed earlier.

APPENDIX B: AUTOMATON PROCESSING OF THE BORROMEAN LINK

The procedure outlined in Section 3 is illustrated here in details.

• Present an M-components link L = ∪Li (i = 1, 2,… ,M) as the so-called plat closure (Figure 7)
of a braid and choose an orientation for each component (depicted by an arrow). Assign to each
component a (distinct) ‘color’ ji,

Li −→ ji (i = 1, 2,… ,M) . (B.1)

• Insert two parallel horizontal lines 𝜆1, 𝜆2 cutting the cap and cup portions of the diagram, respec-
tively. This choice provides the diagram with an overall, downward orientation. The region of the
diagram lying between 𝜆1 and 𝜆2 is an open braid whose strands inherit suitable labels from the
colorings (B.1).

• Assign to the intersection point between a line (𝜆1 or 𝜆2) and the string labeled by j the SU(2)q
irreducible module Vj belonging to the distinguished family defined in (19). The whole configura-
tions of intersection points on 𝜆1 and 𝜆2, each ordered from left to right, are to be associated with
the SU(2)q -modules V𝜆1

and V𝜆2
, respectively, each of which is the ordered tensor product of the

individual irreps. To give an explicit expression of these correspondences, consider the particular
case of the 3-components Borromean link in Figure 7, where

V 𝜆1
= Vj ⊗ Vj ⊗ Vk ⊗ Vk ⊗ Vl ⊗ Vl ,

V 𝜆2
= Vk ⊗ Vk ⊗ Vj ⊗ Vj ⊗ Vl ⊗ Vl .

(B.2)
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Note that V 𝜆1
and V 𝜆2

have the same dimension as Hilbert spaces over C, given by the product of
the dimensions of the individual factors. The number of such factors, say 2N, is the same for the
two spaces and equals the number of strands of the braid, or even the number of caps (cups) lying
above the line 𝜆1 (below 𝜆2) divided by two. This feature derives of course from the topological
presentation we adopted for the link L, because the braid obtained from the plat closure of any link
has an even number of strands.

• Going on with the example, in the representation ring ℜ(SU(2)q ) there exists the well defined,
unitary operator B̂(L; q; j, k, l) to be associated with the trasformation relating V 𝜆1

and V 𝜆2
in the

diagram of the Borromean link L in Figure 7

B̂(L; q; j, k, l) ∶ V 𝜆1
−→ V 𝜆2

, (B.3)

where V 𝜆1
and V 𝜆2

are explicitly defined in (B.2). The composite braiding operator B̂(L; q; j, k, l)
can be decomposed into an ordered sequence of the elementary unitary braiding operators R̂ (and
their inverses) introduced in (23), suitably tensorized with identities. The sequence is uniquely
determined by going trough the diagram from 𝜆1 to 𝜆2.

• In the case of the Borromean link, the matrix elements of the braiding operator (B.3) evaluated on
(the tensor product of) orthonormal basis vectors of the spaces Vj,Vk, Vl can be collected into a
unitary (2J + 1) × (2J + 1) matrix parametrized by the colors j, k, l, namely

B𝛼𝛽 (j, k, l) ∈ U(Λ, 2J + 1) (𝛼, 𝛽 = 1, 2,… , 2J + 1), (B.4)

where U(Λ, 2J + 1) is the algebra of unitary matrices on the ground ring Λ ≡ Z[q, q−1] and
(2J + 1) = (2j + 1)(2k + 1)(2l + 1).

Finally, the colored link invariant J(L; q; j, k, l) is obtained by taking the trace of the matrix (B.4),
formally

J(L; q; j, k, l) = (Tr B𝛼𝛽) (j, k, l), (B.5)

where the resulting quantity turns out to contain powers of q and q−1 and the colorings through
the quantum dimensions [2j + 1]q, [2k + 1]q and [2l + 1]q.

APPENDIX C: THE QUANTUM RECOGNIZER

In the frame of the quantum spin network simulator scheme, a computation is represented by a col-
lection of step-by-step transition rules selecting (families of) ‘directed paths’ in the spin-network
computational space 𝔊n(V ,E) × C2J+1; all starting from the same input state and ending in an admis-
sible output state. A single path is thus posed into a one-to-one correspondence with a (finite-state)
quantum automaton calculation once a particular encoding scheme is selected for the problem to
be addressed.

In the SU(2)q case (the SNQA), the simulator (or, better, the associated automaton) can be identified
as a quantum recognizer, a quantum machine that can operate on quantum languages recognizing the
family they belong to. First defined by Wiesner and Crutchfield [31] a quantum recognizer  is a
particular type of finite-state quantum machine defined as a five-tuple {Q,,X,Y , T(Y|X)}, where:
(i) Q is a set of 𝔫 basis states, the internal states of the machine; (ii)  is an 𝔫-dimensional Hilbert
space in which a particular (normalized) state, |Ψ0⟩, ∈  is singled out as start state expressed in the
basis Q; (iii) X,Y ∈ {𝔞, 𝔯, 𝜖} (𝔞

.
= accept, 𝔯

.
= reject, 𝜖

.
= the null symbol) are finite alphabets for

input and output symbols respectively; and (iv) T(Y|X) is the subset of 𝔫 × 𝔫 transition matrices of
the form {𝐓(y|x) =  (x)P(y); x ∈ X, y ∈ Y}, where  (x) is a unitary matrix which determines the
state vector evolution and P(y) is a projection operator associated with the output measurement on a
complete set of observables associated with the upgraded state vector.

In this kind of machine, the output alphabet is chosen in such a way that a word w written in the input
alphabeth X must be either accepted or rejected, while for the null symbol the requirement is P(𝜖) ≡ I
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(the identity matrix). The one-step transition matrices applied to the start state |Ψ0⟩ assume therefore
the form, ∀x ∈ X,

𝐓
⎛⎜⎜⎝
𝜖

𝔞
𝔯

||||||
|||| x

)
=  (x)

⎛⎜⎜⎜⎝
P(𝜖)
P(𝔞)
P(𝔯)

⎞⎟⎟⎟⎠
≡  (x)

⎛⎜⎜⎝
I|Ψ0⟩⟨Ψ0|

I − |Ψ0⟩⟨Ψ0|
⎞⎟⎟⎠ ,

according to whether no measure is performed or the output is ‘accepted’ or ‘rejected’.
These general axioms can be adapted to make such a machine able to recognize a language 

endowed with a word-probability distribution 𝔭(w) over the set of words {w} ∈ . In particular, for any
word w = x1x2 … xl ∈ , the recognizer one-step transition matrix elements are required to be of the
form 𝐓ij(xs) = ij(xs) on reading each individual symbol xs ∈ w, namely no measurement is performed
at the intermediate steps (with i, j running from 1 to 𝔫). Each ij(xs) satisfies the condition |ij(xs) |2 >

0 and the recognizer upgrades the start state to  (w) |Ψ0⟩ .
=  (xl) · · · (x1) |Ψ0⟩. Only then the

machine assigns to the word w the number 𝔭(w), 0 ≤ 𝔭(w) ≤ 1, 𝔭(w) = | ⟨Ψ0| (w)P(𝔞) (w)|Ψ0⟩ |;
which is the probability of accepting the word w as a whole. More generally, the machine accepts
a word w according to the a priori probability distribution Pr(w) with a word-probability treshold 𝛿,
0 ≤ 𝛿 ≤ 1, if and only if | Pr(w) − 𝔭(w) | ≤ 𝛿 , ∀w ∈ . If the accuracy 𝛿 is set to 0, the two
probability distributions Pr and 𝔭 coincide.

The success of the algorithm in evaluating the goodness of an approximation of the Jones polyno-
mial is due to the feature that transition amplitudes for such automata are indeed just Jones polynomials
if  is the language associated with the braid group. The quantum circuit which efficiently simulates
the dynamics of these automata, if appropriately controlled and sampled with a set of measurements,
not only approximates the knot invariants, but recognizes as well and counts the group identity ele-
ments necessary to approach the combing problem. As for the complexity of the corresponding circuit,
because the time complexity of the spin network automaton is polynomial in the size of the input, the
algorithm that efficiently simulates the automata is expected to provide an efficient estimation for the
latter problem as well.
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