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One-dimensional arrays with nearest-neighbor interactions occur in several physical
contexts: magnetic chains, Josephson-junction and quantum-dot arrays, 1D boson and
fermion hopping models, and random walks. When the interactions at the boundaries
differ from the bulk ones, these systems are represented by quasi-uniform tridiag-
onal matrices. We show that their diagonalization is almost analytical: the spectral
problem is expressed as a variation of the uniform one, whose eigenvalues constitute
a band. A density of in-band states can be introduced, making it possible to treat
large matrices, while few discrete out-of-band localized states can show up. The
general procedure is illustrated with examples. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4797477]

I. INTRODUCTION

The need of diagonalizing quasi-uniform tridiagonal (QUT) matrices, namely tridiagonal ma-
trices which are uniform except at the boundaries, appears in many branches of physics and
mathematics.1–5 In particular, tridiagonal matrices generally occur in the theory of one-dimensional
lattices with nearest-neighbor interactions. In this context, quasi-uniform tridiagonal matrices have
been recently applied for achieving high quality quantum communication between distant parts6–12

and for describing spin systems in a spin environment.13–15

In this paper we put forward a general method for calculating the eigenvalues and the eigen-
vectors of symmetric tridiagonal matrices by exploiting the property of bulk uniformity. This allows
us to put the eigenvalues in the form of deformations, defined by suitable shifts, of those of the
fully uniform case, which are known to form a band. The modified density of the eigenmodes in
the band is expressed in terms of functions which can be analytically evaluated and depend on the
non-uniform matrix elements. Particular examples of this technique can be found in Refs. 6 and 16.
In addition, a small number of localized eigenstates could emerge from the band and have to be
accounted for separately: we give a general criterion for establishing the presence of out-of-band
states by means of the normalization integral for the in-band ones.

Section II is devoted to briefly set up the notations used in this paper; the method for dealing
with quasi-uniform tridiagonal matrices is developed in Sec. III; eventually, Sec. IV proposes a few
illustrative examples.

II. TRIDIAGONAL MATRICES

A symmetric � × � tridiagonal matrix T = {Tμν} has 2� − 1 independent real elements,
namely Tμμ ≡ aμ (μ = 1, . . . , �) and Tμ, μ + 1 = Tμ + 1, μ ≡ bμ (μ = 1, . . . , � − 1). Its spectral
decomposition is T = O† � O, where O = {Okμ} is orthogonal, its rows being the � eigenvectors of
T with eigenvalues λk, and � = diag({λk}).

a)Author to whom correspondence should be addressed. Electronic mail: ruggero.vaia@isc.cnr.it.
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T is said to be mirror-symmetric if it is also symmetric with respect to the skew diagonal, namely
[T, J] = 0, where Jμν = δμ, � + 1 − ν is the mirroring matrix. In the mathematical language, such
matrices are both persymmetric (JTJ = Tt) and centrosymmetric (JTJ = T). It is known that the
eigenvectors of a mirror-symmetric T are either symmetric or antisymmetric,17

Ok,�+1−μ = (−)k+1 Okμ, (1)

this formula assumes that bμ > 0 and the eigenvalues {λk} are listed in decreasing order.
The eigenvectors can be completely expressed in terms of characteristic polynomials of subma-

trices of T, evaluated at the eigenvalues. In order to prove this, let us introduce the following notation
for tridiagonal submatrices:

Tμ:ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aμ bμ

bμ aμ+1 bμ+1

bμ+1
. . .

. . .

. . .
. . .

aν−1 bν−1

bν−1 aν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

and for the corresponding characteristic polynomials,

χμ:ν(λ) = det[λ − Tμ:ν], (3)

where μ ≤ ν; then T1: � ≡ T and χ1: �(λ) ≡ χ (λ); the eigenvalues are the � solutions of the secular
equation χ (λk) = 0. By expanding from the bottom (upper) corners, these polynomials are found
to satisfy the recurrence relations

χμ:ν(λ) = (λ − aν) χμ:ν−1(λ) − b2
ν−1 χμ:ν−2(λ), (4a)

χμ:ν(λ) = (λ − aμ) χμ+1:ν(λ) − b2
μ χμ+2:ν(λ). (4b)

The following important and useful formula (see, e.g., Ref. 18) expresses the product of two
components of the same eigenvector:

χ ′(λk) OkμOkν = χ1:μ−1(λk)

( ν−1∏
σ=μ

bσ

)
χν+1:�(λk), (5)

which holds for μ ≤ ν if one defines χ1:0(λk) = χ�+1:�(λk) ≡ 1. One can assume bμ �= 0 for all
μ = 1, . . . , � − 1, as otherwise the diagonalization of T would split into the diagonalization of
independent submatrices, so that the eigenvalues of T are nondegenerate. Hence, the derivatives of
the characteristic polynomial at the eigenvalues do not vanish, χ ′(λk) �= 0, and Eq. (5) can be solved
for the eigenvector components, for example,

O2
k1 = χ2:�(λk)

χ ′(λk)
, O2

k� = χ1:�−1(λk)

χ ′(λk)
(6)

and from one of these (one can arbitrarily choose the positive root) the remaining elements of the
kth eigenvector follow by means of Eq. (5); for instance, taking μ = 1,

Okν = Ok1b1 · · · bν−1
χν+1:�(λk)

χ2:�(λk)
, (7)

note that the assumption that T is unreduced (i.e., all b’s are nonzero) implies that Ok1 does not
vanish, so also χ2:�(λk) �= 0: indeed, from Eq. (5) one has Ok1Ok� = b1...b� − 1/χ ′(λk) �= 0. This
shows that the orthogonal matrix O can be fully expressed in terms of characteristic polynomials.
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Note also that the recurrence equations (4) give

Ok,ν+1 = λk − aν

bν

Okν − bν−1

bν

Ok,ν−1 (ν = 1, . . . , �−1) (8)

with the assumption Ok0 = 0; these equations can be used for a sequential computation of the
eigenvectors’ components once the eigenvalues are known. An important consequence of this con-
struction is that, once the first components of the eigenvectors (Ok1) are determined from Eq. (6),
the eigenvectors come out already normalized, i.e., the matrix O is orthogonal, making the explicit
normalization unnecessary and tremendously simplifying the analytical calculations.

When the matrix size � is large, the characteristic polynomials χμ:ν(λk) have a high degree and
the analytical evaluation of the eigenvalue decomposition is very demanding. In Sec. III, we provide
general simplified formulas for the eigenvalues and for the eigenvector elements, Eqs. (6) and (7),
in the case of a quasi-uniform matrix T.

III. QUASI-UNIFORM TRIDIAGONAL MATRICES

A. Uniform tridiagonal matrices

A uniform tridiagonal matrix has equal elements within each diagonal, namely aμ = a and
bμ = b, and without loss of generality one can set b = 1 and a = 0. In this case the recurrence
relations (4) for the characteristic polynomials are found to be equal to those defining the Chebyshev
polynomials of the second kind,19

Un(ξ ) =
(
ξ +

√
ξ 2−1

)n+1 − (
ξ −

√
ξ 2−1

)n+1

2
√

ξ 2−1
, (9)

the correspondence being χ1:�(λ) = U�(λ/2). Setting ξ ≡ cos k the Chebyshev polynomials of the
second kind can be compactly written as

Un(cos k) = sin[(n+1)k]

sin k
, (10)

so that the secular equation χ (λ) = U�(λ/2) = 0 defines the � eigenvalues λ ≡ 2 cos k corresponding
to

k ≡ k j = π j

� + 1
, ( j = 1, . . . , �). (11)

With no ambiguity we will use, henceforth, the index k as running over such a set of � discrete
values, so we may keep the notations introduced for the spectral decomposition and, e.g., write the
eigenvectors of the uniform case as

Okμ =
√

2

�+1
sin μk.

B. Quasi-uniform tridiagonal matrices

A tridiagonal matrix T is said to be quasi-uniform if it is mainly constituted by a large uniform
tridiagonal block Tu:v of size n × n (with n = v−u+1), i.e., its elements are au = au+1 = · · · = av

≡ a and bu = bu+1 = · · · = bv−1 ≡ b. By “large uniform block” it is meant that the number of
different elements, sitting at one or both corners, is much smaller than the size of the whole matrix
T, namely that � − n � �. Indeed, the important point of our approach is in taking into account
the uniform part of T, which for QUT matrices is almost the whole T, and use the properties of
Chebyshev polynomials for reducing the complexity of Eqs. (5) and (6). Again, without loss of
generality we set a = 0 and b = 1 in what follows.

The results we present in this paper are based on the following important statement: the character-
istic polynomial of QUT matrices can always be expressed in terms of the Chebyshev polynomials19
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of the first and second kind, Tn+1(ξ ) and Un(ξ ),

χ (2ξ ) ≡ χ1:�(2ξ ) = u(ξ )Un(ξ ) + t(ξ ) Tn+1(ξ ), (12)

where u(ξ ) and t(ξ ) are low-degree polynomials: indeed, their degree cannot be larger than � − n
and � − n − 1, respectively. Their coefficients involve the nonuniform matrix elements and
generally they can be easily calculated by means of Eqs. (4).

In order to prove the above general statement we start from the characteristic polynomial of the
uniform tridiagonal submatrix Tu:v and calculate the characteristic polynomial of larger submatrices
by means of Eq. (4a):

χu:v(2ξ ) = Un(ξ ),

χu:v+1(2ξ ) = (2ξ − av+1)Un(ξ ) − b2
v Un−1(ξ ),

χu:v+2(2ξ ) = (2ξ − av+2) χu:v+1(2ξ ) − b2
v+1 Un(ξ ),

...

χu:�(2ξ ) = p̃0(ξ )Un(ξ ) + p̃1(ξ )Un−1(ξ ), (13)

this holds for some polynomials p̃0(ξ ) = (2ξ )�−v + . . . and p̃1(ξ ), whose coefficients are products
of the nonuniform matrix elements av+1, . . . , a� and bν , . . . , b�. By further enlarging the matrix Tu: �

in the upper corner by means of Eq. (4b) we first obtain

χu−1:�(2ξ ) = (2ξ − au−1) χu:�(2ξ ) − b2
u−1 χu+1:�(2ξ ),

where χu+1:�(2ξ ) concerns the QUT matrix Tu + 1: � whose uniform block is (n − 1) × (n − 1), so
its expression analogous to Eq. (13) involves Un−1(ξ ) and Un−2(ξ ). Proceeding further one has

χu−2:�(2ξ ) = (2ξ − au−2) χu−1:�(2ξ ) − b2
u−2 χu:�(2ξ ),

...

χ1:�(2ξ ) = p0(ξ )Un(ξ ) +p1(ξ )Un−1(ξ ) +p2(ξ )Un−2(ξ ), (14)

for some polynomials p0(ξ ), p1(ξ ), and p2(ξ ). This expression allows us to recover Eq. (12), using
the identities

Un−1(ξ ) = ξ Un(ξ ) − Tn+1(ξ ), (15a)

Un−2(ξ ) = 2ξ Un−1(ξ ) − Un(ξ ),

= (2ξ 2−1)Un(ξ ) − 2ξTn+1(ξ ) (15b)

and identifying

u(ξ ) = p0(ξ ) + ξ p1(ξ ) + (2ξ 2 − 1)p2(ξ ), (16a)

t(ξ ) = −p1(ξ ) − 2ξ p2(ξ ). (16b)

The usefulness of expressing χ (λ) ≡ χ1:�(λ) in the form (12) is evident looking at the analog of
Eq. (10) for the first-kind Chebyshev polynomials,

Tn(cos k) = cos(nk), (17)

which turns Eq. (12) into

χ (2 cos k) = u(cos k)
sin[(n+1)k]

sin k
+ t(cos k) cos[(n+1)k], (18)
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hence, the secular equation χ = 0 can be written

sin[(n+1)k − 2φk] = 0 (19)

with the angle φk defined by

tan 2φk = − t(cos k)

u(cos k)
sin k. (20)

Equivalently, the same form of the secular equation can be derived directly by simply rewriting
Eq. (10) as sin k Un(cos k) = �{

ei(n+1)k
}

and replacing it in Eq. (14), which turns indeed into

�{
ei[(n+1)k−2φk ]

} = 0, (21)

where 2φk coincides with the phase of the complex number

wk ≡ p0(ξ ) + e−ik p1(ξ ) + e−2ik p2(ξ ) = |wk | e−2iφk . (22)

It is convenient, in order to easily recover the limit of a fully uniform � × � matrix T, to use
slightly modified versions of Eqs. (19) and (20), namely

sin[(�+1)k − 2ϕk] = 0 (23)

with shifts ϕk defined by

2ϕk = (�−n) k − tan−1

[
t(cos k)

u(cos k)
sin k

]
. (24)

Hence, the eigenvalues of the QUT matrix, parametrized as λ = 2 cos k, with k ∈ [0, π ], can be
obtained from the equations

k ≡ k j = π j + 2ϕk j

�+1
, ( j = 1, . . . , �), (25)

which determine the allowed values of k. Comparing with Eq. (11) it appears that the shifts ϕk

represent the deviation from the uniform case, where they vanish. Equation (25) can be solved
numerically for any j (except for a few j’s if there are out-of-band eigenvalues, see below). Usually,
an iterative computation is fast converging; in the limit of � � 1 even the truncation of (25) after
the first iteration can be very accurate, as it was verified in the cases considered in Refs. 6 and
16. Note that while Eqs. (19) and (23) are well-defined, there is an ambiguity in expressing their
solutions as in Eq. (25), due to the fact that the phase shifts involve the multivalued tan − 1 function
whose conventional range is [ − π /2, π /2]: this can yield π -steps at the zeroes of the argument’s
denominator, so care has to be taken in choosing a continuous phase for k ∈ (0, π ).

Noteworthy, in the limit of large �, Eq. (25) allows us to obtain a useful analytic expression of
the density of statesρk defined in the interval k ∈ [0, π ], namely

ρ−1
k = ∂ j k = π

�+1 − 2ϕ′
k

, (26)

by means of which summations over eigenmodes can be transformed into integrals over k,

∑
j

(· · · ) 	
∫ π

0
dkρk(· · · ), (27)

one can also observe that ρ−1
k represents the spacing between subsequent allowed values of k: the

deformation from the equally-spaced k’s of the uniform case, π /(� + 1), is represented by the
correction term with ϕ′

k .

C. Eigenvectors

The boundary elements of the eigenvectors given in Eq. (6) can be calculated using the same
formalism. Indeed, following the construction of Subsection III B we can find the polynomials u�(ξ ),
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t�(ξ ), u�(ξ ), t�(ξ ) such that

χ2:�(2ξ ) = u�(ξ )Un(ξ ) + t�(ξ ) Tn+1(ξ ),

χ1:�−1(2ξ ) = u�(ξ )Un(ξ ) + t�(ξ ) Tn+1(ξ ), (28)

where the symbols � and � clearly refer to the submatrices T2: � and T1: � − 1, respectively. Accord-
ingly, expressing χ ′(λ) as a function of Un and Tn+1 thanks to the relations

T ′
n+1(ξ ) = (n+1)Un(ξ ), (29a)

(1−ξ 2)U ′
n(ξ ) = ξUn(ξ ) − (n+1) Tn+1(ξ ), (29b)

Eqs. (6) take the form

O2
1k = 2

u�(ξk)Un(ξk) + t�(ξk) Tn+1(ξk)

u�
n(ξk)Un(ξk) + t�

n (ξk) Tn+1(ξk)
, (30a)

O2
�k = 2

u�(ξk)Un(ξk) + t�(ξk) Tn+1(ξk)

u�
n(ξk)Un(ξk) + t�

n (ξk) Tn+1(ξk)
, (30b)

where ξ k ≡ λk/2 ≡ cos k and

u�
n(ξ ) = u′(ξ ) + ξ

1−ξ 2
u(ξ ) + (n+1) t(ξ ), (31a)

t�
n (ξ ) = t ′(ξ ) − n+1

1−ξ 2
u(ξ ). (31b)

As the eigenvalues are the solutions of the secular equation,

0 = u(ξk)Un(ξk) + t(ξk) Tn+1(ξk), (32)

the high-degree polynomials Un(ξk) and Tn+1(ξk) can be removed from (30) and accordingly

O2
1k = 2

u�(ξk) t(ξk) − t�(ξk) u(ξk)

u�
n(ξk) t(ξk) − t�

n (ξk) u(ξk)
, (33a)

O2
�k = 2

u�(ξk) t(ξk) − t�(ξk) u(ξk)

u�
n(ξk) t(ξk) − t�

n (ξk) u(ξk)
. (33b)

This shows a remarkable result, namely that, although the eigenvector components generally de-
pend on complicated high-degree polynomials, for QUT matrices one can express the boundary
coefficients of the eigenvectors in terms of ratios of low-degree polynomials.

Further simplifications can be obtained by replacing again ξ k = cos k. In fact, from Eq. (24)

2ϕ′
k = (�−n) − tu cos k + (t ′u − u′t) sin2 k

u2 + t2 sin2 k
, (34)
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where the argument ξ k of u and t is understood, so that the eigenvector elements (33) read

O2
1k = 2 sin2 k

�+1 − 2ϕ′
k

u�(ξk) t(ξk) − t�(ξk) u(ξk)

u2(ξk) + t2(ξk) sin2 k
, (35a)

O2
�k = 2 sin2 k

�+1 − 2ϕ′
k

u�(ξk) t(ξk) − t�(ξk) u(ξk)

u2(ξk) + t2(ξk) sin2 k
. (35b)

These expressions generalize what was found in Refs. 6 and 16.
As for the remaining elements, note that the recurrence relation (8) in the bulk, i.e., for u < ν

< v, reads

Ok,ν+1 + Ok,ν−1 = (eik + e−ik) Okν, (36)

whose generic solution is

Okν = �{eikναk}, (37)

for any complex number αk independent of ν, which has to be determined by requiring that the
“boundary” relations (8), i.e., for ν = 2, . . . , u and ν = v, . . . , �−1 be satisfied.

D. Out-of-band eigenvalues

The fact of setting λ ≡ 2 cos k does not imply that all eigenvalues are included in the band
[ − 2, 2]. For a QUT matrix this is generally true for the largest part of the spectrum, though a few
eigenvalues can emerge over or below the band when (the absolute values of) the nonuniform matrix
elements are large enough; correspondingly, Eq. (25) cannot be solved for a few values of j, i.e.,
Eq. (23) has less than � solutions in the interval k ∈ [0, π ]. On the other hand, the out-of-band
eigenvalues are still described by λ ≡ 2 cos k, but with complex values of k = q + ip; for the
eigenvalues to be real q must be either 0 or π , i.e.,

λ = ± 2 cosh p (38)

and p ≥ 0. Correspondingly, one can take the expression for the Chebyshev polynomials when the
absolute value of the argument is larger than one,

Un(± cosh p) = (±)n sinh (n+1)p

sinh p
. (39)

In the large-� limit, the out-of-band eigenvalues have to be considered separately by adding to the
integral (27) the sum over the out-of-band states. As for the eigenvectors, the recurrence relation (8)
in the bulk, i.e., for u < ν < v, reads

Op,ν+1 + Op,ν−1 = ±(ep + e−p) Opν, (40)

where the sign corresponds to that of Eq. (38); the generic solution is

Opν = (±)ν
(
αp epν + βp e−pν

)
, (41)

where the real numbers αp and βp (independent of ν) have to be determined by requiring that the
“boundary” relations (8), i.e., for ν = 2, . . . , u and ν = v, . . . , �−1 be satisfied.

An example of how to deal with such eigenvalues is given in Sec. IV A.
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IV. EXAMPLES

A. Mirror-symmetric two-edge matrix

As a first example we consider a mirror-symmetric QUT matrix with two non-uniform edges:
the uniform block is of size n = �− 2, so the matrix reads, setting b = 1 and a = 0,

T = T1:� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x y

y 0 1

1 0 1

1
. . .

. . .

. . . 1

1 0 y

y x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

and, with the notations of Sec. III, u = 2 and v = �−1.
Keeping the notation λ ≡ 2ξ , thanks to the recursion relations (4) it holds that

χ2:�(2ξ ) = (2ξ−x)Un(ξ ) − y2 Un−1(ξ ),

χ3:�(2ξ ) = (2ξ−x)Un−1(ξ ) − y2 Un−2(ξ ),

χ1:�(2ξ ) = (2ξ−x) χ2:�(2ξ ) − y2χ3:�,

= (2ξ−x)2 Un(ξ ) − 2(2ξ−x)y2 Un−1(ξ ) + y4 Un−2(ξ ). (43)

Accordingly, the secular equation for the in-band eigenvalues is given by (23), where the shifts are
more easily found from Eq. (22): indeed, thanks to mirror symmetry, wk turns out to be a square,

wk = (2ξ − x − y2e−ik)2 = [
(2−y2) cos k − x + iy2 sin k

]2
, (44)

so that

ϕk = k − tan−1 y2 sin k

(2−y2) cos k − x
. (45)

The expression (43) can be rewritten in the form (12) by means of the properties (15), so with the
notation of Sec. III we identify the coefficients of Eqs. (12) and (28) as

u(ξ ) = [
(2−y2)ξ − x

]2 − y4 (1 − ξ 2), (46a)

t(ξ ) = 2y2
[
(2−y2)ξ − x

]
, (46b)

u�(ξ ) = u�(ξ ) = (2−y2)ξ − x, (46c)

t�(ξ ) = t�(ξ ) = y2. (46d)

Of course, Eq. (45) can be obtained using straightforward trigonometric identities also from (24)
and the above polynomials. As for the first components of the eigenvectors, they follow from Eq.
(35):

O2
k1 = O2

k� = 2

�+1−2ϕ′
k

y2 sin2k

[(2−y2) cos k − x]2 + y4 sin2k
. (47)

Moreover, imposing to the generic solution (37) the conditions (8) at the corners, one finds

αk = 1 − x e−ik + (1−y2) e−2ik

y sin k
Ok1, (48)
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FIG. 1. Eigenvalues of the matrix (42) for y = 1 as a function of the corner element x, for matrix sizes � = 10 and 50. When
x > 1 there can be two out-of-band eigenvalues.

so that all components of the eigenvectors have a fully analytical expression

Okν = sin νk − x sin(ν−1)k + (1−y2) sin(ν−2)k

y sin k
Ok1

=
(

2

� + 1 − 2ϕ′
k

) 1
2

sin(νk − ϕk), (49)

for ν = 2, . . . , � − 1. Equations (49) and (47), together with (45) and (23), give a complete solution
to the analytical diagonalization problem of matrix (42). Note that for x = 0 this expression is in
agreement with Ref. 10.

We remark that as long as there are no out-of-band eigenvalues, Eq. (47) is exactly normalized,
i.e.,

∑
k O2

k1 = 1; thanks to Eq. (27), in the large-� limit the sum turns into the integral

I(x, y) =
∫ π

0

dk

π

2 y2 sin2k

[(2−y2) cos k − x]2 + y4 sin2k
= 1. (50)

Eigenvalues λ �∈ [ − 2, 2] can exist for large x or y. Let us consider the simpler case y = 1, with
x > 0, which is reported in Fig. 1. From Eq. (43) one finds the secular equation

U� − 2xU�−1 + x2U�−2 = 0, (51)

that, by means of the representation (39), gives rise to two implicit solutions,

x =

⎧⎪⎨
⎪⎩

cosh �+1
2 p

cosh �−1
2 p

≥ 1

sinh �+1
2 p

sinh �−1
2 p

≥ �+1
�−1

, (52)

hence, two eigenvalues λ = 2 cosh p can emerge from the band, one for x > 1 and the second for
x > �+1

�−1 , which correspond to a mirror-symmetric and a mirror-antisymmetric eigenvector; in the
large-� limit both equations tend to x = ep so the two eigenvalues converge to the value λ = x
+ x− 1. The existence of out-of-band eigenvalues for x > 1 is reflected in the integral (50), because
I(x, 1) = θ (1−x) + θ (x−1)x−2: indeed, the full normalization requires the contribution from the
out-of-band components.

The above application, besides the in-band state density, has immediately given the exact out-of-
band eigenvalues. The comparison with the approach of Ref. 20, where the same task is accomplished
by perturbation theory and by an ansatz for the eigenvectors, illustrates how effective and general is
our technique. In particular, the ansatz is nothing but the bulk solution (41).
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FIG. 2. Eigenvalues of the matrix (42) for x = 0 as a function of y, for matrix sizes � = 10 and 50. When y >
√

2 there can
be two pairs of opposite out-of-band eigenvalues.

A similar reasoning applies when y is left to vary while x = 0, reported in Fig. 2, though in
this case the out-of-band eigenvalues occur as two pairs of opposite sign. We find indeed I(0, y)
= θ (2 − y2) + θ (y2 − 2)(y2−1)−1, which is smaller than 1 for y >

√
2.

To establish, the existence of out-of-band states becomes difficult in complex scenarios (e.g.,
with more elements on the boundaries): still, verifying the continuum-limit normalization of the
in-band eigenvectors allows one to immediately detect whether out-of-band states exist or not.

For instance, let us consider the general case with both x and y varying: although calculating
the integral (50) is not trivial, we know that it must evaluate to 1 as long as all eigenvalues belong
to the band [ − 2, 2]. This can be shown to be the case whenever y <

√
2 − x . The appearance of

out-of-band states occurs when crossing the line y2 + x = 2, as for
√

2−x < y <
√

2+x one has

I(x, y) = 2y2

x2+4y2−4 + x
√

x2+4y2−4
, (53)

eventually, for y >
√

2+x the result is even independent of x, namely I(x, y) = (y2−1)−1.

B. More mirror symmetric elements

As a second example we consider a mirror-symmetric matrix with more nonuniform elements
on the edges,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x

x 0 y

y 0 1

1 0 1

. . .
. . .

. . .

1 0 1

1 0 y

y 0 x

x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�×�

. (54)
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Using straightforward algebra we find

wk = [
2−y2−x2 + (2−y2) cos 2k + iy2 sin 2k

]2
,

u(ξ ) = [
2ξ 2(2−y2) − x2

]2 − (1−ξ 2) 4ξ 2 y4,

t(ξ ) = 4ξ y2
[
2ξ 2(2−y2) − x2

]
,

u�(ξ ) = u�(ξ ) = ξ
[−2y4 − x2(2−y2) + 4(2−2y2+y4)ξ 2

]
,

t�(ξ ) = t�(ξ ) = y2
[
4(2−y2)ξ 2−x2

]
,

and accordingly

ϕk = 2k − tan−1

[
y2 sin 2k

z2 + (2 − y2) cos 2k

]
, (55)

O2
1k = O2

k� = 2

�+1−2ϕ′
k

x2 y2 sin2 k[
z2+(2−y2) cos 2k

]2+y4 sin2 2k
, (56)

where z2 ≡ 2 − x2 − y2.

C. Non-mirror-symmetric matrix

In order to connect our formalism with the results of Ref. 1, let us consider the following
non-mirror-symmetric matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x y

y 0 1

1 0 1

1 0 1

1
. . .

. . .

. . . 1

1 0 1

1 z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�×�

, (57)

where � = n + 2. We find

t�(ξ ) = 1, u�(ξ ) = ξ−z,

t�(ξ ) = y2, u�(ξ ) = (2−y2)ξ−x,

t(ξ ) = 2ξ−x−y2z, u(ξ ) = (x−2ξ )(z−ξ ) + y2(zξ−1),

and in particular

tan 2φk = (x + y2z − 2 cos k) sin k

(x − 2 cos k)(z − cos k) + y2(z cos k − 1)
, (58)

from which the spectral decomposition follows. In fact, it can be shown that, once Ok1 is calculated
with Eq. (35), the remaining eigenvectors are given by (49), except for the �th one that follows from
Eq. (8). Equation (58) extends the results of Ref. 1: for example when x = 0, y = 1, and z = − 1 we
find 2φk = − 3

2 k and

k j = 2π j

2� + 1
,
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recovering Theorem 1 of Ref. 1. With the proper parametrization it can be shown that the other
theorems of Ref. 1 concerning symmetric tridiagonal matrices follow as well.

V. CONCLUSIONS

We have introduced a technique for the analytical diagonalization of large QUT matrices. The
quasi-uniformity has been exploited to show that almost all eigenvalues belong to the same band
of those of the fully uniform matrix, λ = 2 cos k, with k ∈ [0, π ], and that their distribution is a
deformation of the equally spaced k’s of the uniform case, characterized by shifts ϕk, as Eqs. (24)
and (25) show. The first components Ok1 of the normalized eigenvectors are written in terms of
ratios of low-degree polynomials (35) that can be easily calculated from the non-uniform part of
the QUT matrix, while the other components are constructed recursively from Ok1 using Eq. (8);
exploiting the uniform-bulk property, i.e., using Eq. (37), all components can be expressed as Ok1

times a combination of Chebyshev polynomials, as shown in a particular example by Eq. (49).
In the case of a large QUT matrix, the eigenvalues can be described in terms of a modified

density of states within the band of the corresponding uniform matrix. A limited number of out-of-
band eigenvalues can exist and have to be accounted for separately as discussed in Sec. III D and
exemplified in Sec. IV A.

ACKNOWLEDGMENTS

The authors thank T. J. G. Apollaro, A. Cuccoli, and P. Verrucchi for fruitful discussions. L.B.
thanks M. Allegra for helpfully reading this manuscript.

1 W.-C. Yueh, “Eigenvalues of several tridiagonal matrices,” Appl. Math. E-Notes 5, 66 (2005).
2 C. da Fonseca, “On the eigenvalues of some tridiagonal matrices,” J. Comput. Appl. Math. 200, 283 (2007).
3 S. Kouachi, “Eigenvalues and eigenvectors of tridiagonal matrices,” Electron. J. Linear Algebra 15, 115 (2006).
4 J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer-Verlag, Berlin, 1995).
5 O. Mülken and A. Blumen, “Continuous-time quantum walks: Models for coherent transport on complex networks,” Phys.

Rep. 502, 37 (2011).
6 L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and P. Verrucchi, “Long quantum channels for high-quality entanglement

transfer,” New J. Phys. 13, 123006 (2011).
7 T. J. G. Apollaro and F. Plastina, “Entanglement localization by a single defect in a spin chain,” Phys. Rev. A 74, 062316

(2006).
8 L. Banchi, A. Bayat, P. Verrucchi, and S. Bose, “Nonperturbative entangling gates between distant qubits using uniform

cold atom chains,” Phys. Rev. Lett. 106, 140501 (2011).
9 N. Yao, L. Jiang, A. Gorshkov, Z.-X. Gong, A. Zhai, L.-M. Duan, and M. Lukin, “Robust quantum state transfer in random

unpolarized spin chains,” Phys. Rev. Lett. 106, 040505 (2011).
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