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Abstract—Resting state functional magnetic resonance imaging (rffMRI) can be used to measure functional connectivity and then
identify brain networks and related brain disorders and diseases. To explore these complex networks, however, huge amounts of data
are necessary. Recent advances in neuroimaging technologies, and the unique methodological approach of rfMRI, have enabled us to
an era of Biomedical Big Data. The recent progress of big data sharing projects with their challenges are discussed. This increasing
amount of neuroimaging data has greatly increased the importance of developing preprocessing pipelines and advanced analytic
techniques, which are better at handling large-scale datasets. Before applying any analysis method on rfMRI data, several
preprocessing steps need to be applied to reduce all unwanted effects. Three alternative ways to get access to big preprocessed rfMRI
data are presented involving the minimal preprocessing pipelines. There are several commonly used methods to examine functional
connectivity. However, they become limited in the analysis of big data, and a new tool to explore such data is necessary. We propose a
number of novel methods rooted in algebraic topology and collectively referred to as Topological Data Analysis to rfMRI functional
connectivity. Their properties for big data analysis are also discussed.

Index Terms—Big data, Brain network, Functional connectivity, Graph theory, Preprocessing pipeline, Resting-state fMRI, Topological

data analysis

1 INTRODUCTION

HE human brain is a complex network of functionally
T and structurally interconnected regions. Although each
region has its own task and function, these different brain
regions continuously share information with each other and
then form a complex integrative network named the brain
network. To understand the organization of the human
brain, one can study the underlying connectivity of different
functional brain regions, or functional connectivity, as well
as physical or structural connectivity in the brain.

Functional connectivity is primarily explored and inves-
tigated through resting state functional magnetic resonance
imaging (rfMRI or R-fMRI) and is typically analyzed in
terms of correlation or spatial grouping based on temporal
similarities [1]. These approaches are supported by the fact
that during rest, in the absence of any explicit task, the spon-
taneous neuronal activity patterns of multiple brain regions
observed through changes in a blood-oxygen-level depen-
dent (BOLD) signal (or rfMRI time-series) are not random
and unstructured, but, in contrast, are highly correlated.
In other words, functional connectivity can be explored
by measuring the level of synchronization of rfMRI time-
series between anatomically separated brain regions. These
approaches assume similar patterns of activation can re-
flect functional and neuronal communication between brain
regions regardless of the apparent physical connectedness
of the regions. Functional networks generated using these
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approaches are also termed resting-state networks [2].

Since rfMRI relies on the assumption that spontaneous
low frequency BOLD fluctuations (0.01-0.1 Hz) are a mea-
sure of intrinsic activity in the brain, a group of researchers
have questioned whether the fluctuations observed during
the resting-state could be artifacts of other bodily functions
[3]. Although the true neuronal basis of these fluctuations
has not yet been fully understood, there are several supports
for a possible neuronal basis of rfMRI. For instance, most of
the resting-state connected activities tends to occur along
structural networks in the brain [4] as well there is an
association between information derived from rfMRI and
from other measures of neuronal activity [5].

The first and the most fundamental resting-state network
is the so-called default mode network (DMN), firstly pre-
sented in a seminal rfMRI study of Biswal and colleagues
[4] and have been confirmed later by a series of studies (e.g.
[6], [7]). Unlike other brain networks that can be observed
and identified by their activation during tasks, DMN is a
group of brain regions that is active during rest, in a baseline
or default mode of the brain, and deactivated during a
variety of cognitive tasks. These studies also suggest that
brain networks which activate or deactivate together during
tasks maintain their signature connectivity at rest. It means
that neuroscientists can study the known functional brain
networks of both healthy and abnormal brain without the
use of specially designed tasks, which may be unable to
be completed by young children or patients who cannot
perform either complex cognitive tasks or long experiments.

Other advantages of employing rfMRI [8] include the
simplicity of the procedure, which may offer a better signal-
to-noise ratio (SNR), and its relatively short period of
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acquisition time, which allows for increased sample size
or big data. Unlike task-based imaging which typically
extracts only one feature brain network, rfMRI allows us
to observe many brain networks at once (or multi-purpose
data sets [8]). With rfMRI, functional connectivity can also
be applied to examine several hypothesized and believed
functional dysconnectivity effects in brain disorders and
diseases such as Alzheimers disease, amyotrophic lateral
sclerosis, attention deficit hyperactivity disorder (ADHD),
autism, epilepsy, Parkinson’s disease, schizophrenia, mul-
tiple sclerosis, and obsessive compulsive disorder (for a
review, see [8], [9]). This information will be useful for
clinicians for prognosis, diagnosis and treatments. Unfor-
tunately, clinical applications of rfMRI are still at an early
stage of development.

Although functional connectivity based on rfMRI can
reveal interesting new findings about the functional connec-
tions of brain regions and networks, huge amounts of data
are necessary to explore these complex networks. Recent
advances in neuroimaging technologies combined with the
unique methodological approach of rfMRI have enabled us
to an era of “Biomedical Big Data”. The 1000 Functional
Connectomes Project [10] and the Human Connectome
Project [11], both neuroimaging databases, for instance,
have publicly released over 1,000 rfMRI data sets. Here we
present the recent progress of existing shared rfMRI big
data sets (in Section 2). The increasing amount of shared
neuroimaging datasets has greatly increased the importance
of developing data preprocessing pipelines and advanced
analytic techniques, which are better at handling large-scale
rfMRI data.

Before applying any analytic technique on rfMRI data,
several preprocessing steps are required in order to: reduce
various artifacts, align the data acquired at different points
in time for an individual subject, establish some correspon-
dence between the brains of different subjects, and so on.
While it is acknowledged in the literature that different
methods and their order in the preprocessing pipelines can
affect the results obtained from statistical group difference
tests and classification models (e.g. [12], [13], [14], [15]), most
studies used their own specific pipeline and no consensus
across the studies has been found regarding the optimal pre-
processing pipeline. Here we present state-of-the-art rfMRI
preprocessing pipelines, with a focus on software packages
designed for large-scale rfMRI data analysis (in Section 3).

After the rfMRI data has been preprocessed, there are
several commonly used methods for examining functional
connectivity such as seed-based correlation analysis (SCA),
cluster analysis, principal component analysis (PCA), inde-
pendent component analysis (ICA) and graph theory (for
a review, see [1], [16]). However, these traditional methods
encounter limits in terms of their descriptive power when
faced with complex, highly-dimensional datasets describing
interactions between large number of elements, as is often
the case in the analysis of big data. New tools to complement
the explore and analysis of such data sets are necessary.
Therefore, we lastly propose a set of novel methods, which
are rooted in algebraic topology and collectively referred
to as “Topological Data Analysis” to rfMRI functional con-
nectivity and their properties for big data analysis are also
discussed (in Section 4).

2 BiIG RFMRI DATA

Large shared rfMRI data sets are necessary to obtain new
insights and interesting findings in the large-scale organi-
zation of complex cognitive operations in the human brain.
Besides the fact that some clinical and research questions
cannot be answered using a single small data set since each
sub-population may exhibit different features that are not
shared by others, larger samples are generally preferable in
order to compensate for the large inter-subject and intra-
subject variability typical in rfMRI recordings. There are
many advantages of big data sharing (or Big Value) such as
improving reliability and reproducibility of research (i.e., in-
creasing statistical power and reducing false-positive rates),
improving research practices, maximizing the contribution
of research subjects, backing up valuable data and reducing
the cost of research within the neuroimaging community
[17].

Thanks to the unique methodological approach of rfMRI,
a long-standing interest in acquiring the large-scale func-
tional neuroimaging data sets has been increasingly fulfilled
over the last decade. Recent advances in neuroimaging
technologies as well data storage, management and sharing
systems also enable the unrestricted sharing and open access
of big neuroimaging data involving the projects with special
emphasis on rfMRI data: the 1000 Functional Connectomes
Project [10] and the Human Connectome Project [11]. The
recent progress of these two big data sharing projects is
focused and presented in this section.

2.1 The 1000 Functional Connectomes Project

The 1000 Functional Connectomes Project (FCP) was
launched in 2009 by gathering rfMRI data from over 1,300
subjects collected independently at 33 international insti-
tutes and centers [10]. All datasets are fully accessible
upon successful registration at http://fcon_1000.projects.
nitrc.org. All datasets are anonymous and demographic
information provided is limited to age, gender and handed-
ness. No extensive data preprocessing has been performed
for any of the data sets. However, scripts for further prepro-
cessing of the data sets are provided as part of the project
involving motion correction, spatial filtering with 6 mm
FWHM (full width at half maximum) and 12 DOF (degrees
of freedom) affine transformation to MNI152 (the Montreal
Neurological Institute of McGill University Health Centre)
stereotaxic space [10].

To demonstrate the feasibility of pooled rfMRI data from
multiple sites, Biswal et al. [10] performed several functional
connectivity analyses using two commonly used methods:
SCA and ICA on 1,093 subjects from 24 sites. The results
show evidence of a universal functional architecture (i.e.,
the consistent patterns of functional connectivity across data
collection sites) as well age- and sex-related differences in
rfMRI measures-based frequency-domain analysis. These
findings confirm the usefulness of the high-throughput
rfMRI data. Consequently, data from this project have been
used as a common test bed to evaluate new methods pro-
posed in this field of research (e.g. [18], [19]).

This project served as the parent project for many large-
scale datasets under the International Neuroimaging Data-
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Sharing Initiative (INDI) project': for instance, the Autism
Brain Imaging Data Exchange (ABIDE)* with 1,026 indi-
viduals with autism spectrum disorder (ASD) and 1,130
typical controls from 17 different sites [20], ADHD-200°
with 383 children and adolescents with ADHD and 491
controls from 8 multiple sites [21], and the Consortium for
Reliability and Reproducibility (CoRR)* with 1,652 subjects
[22]. The ongoing phase of this project is to regularly release
(e.g. weekly, monthly, or quarterly) prospective rfMRI data
sets? such as the enhanced Nathan Kline Institute-Rockland
Sample (NKI-RS)® with a current total of 973 subjects [23].

All the FCP datasets are distributed using XNAT’, the
most widely-used imaging informatics platform developed
by the Neuroinformatics Research Group [24]. To support
cloud computing, the FCP data is recently available for
download from an Amazon Simple Storage Service (S3)
bucket®. Further, the data from both FCP and INDI was
preprocessed using different preprocessing pipelines and is
openly shared under the new project, namely, the Prepro-
cessed Connectomes Project. Unfortunately, several limita-
tions for the FCP have been acknowledged, for instance,
rfMRI data is pooled from previously collected data so there
is no prior coordination of data acquisition methods [10].

2.2 The Human Connectome Project

The Human Connectome Project (HCP) was launched in
2010 led by the WU-Minn HCP consortium [11], [25]. In
the first phase of this project, methods for data acquisition
and analysis were developed. The standardized imaging
protocols and preprocessing pipelines [26] were then ap-
plied in the second phase when data was being acquired
from a target number of 1,200 subjects at three different
institutes. The subjects being studied are healthy twins
and their non-twin siblings ages 22-35 from varying ethnic
groups. All neuroimaging data and most of the behav-
ioral data are accessible upon successful registration at
www.humanconnectome.org. This neuroimaging data in-
cludes not only rfMRI but also diffusion MRI (dMRI) with
tractography analysis, task-evoked fMRI (tfMRI) and mag-
netoencephalography (MEG). Getting access to restricted
data elements: family structure (twin or non-twin status),
age and handedness requires the acceptance of the HCP
Restricted Data Use Term.

The first subset of the whole target samples were re-
leased on March, 2013. To date, HCP released the entire data
sets for 1,206 subjects for a total of more than 64 terabytes
via ConnectomeDB [27], a data management system based
on XNAT. Similar to FCP, the HCP data is also made avail-
able on Amazon S3 to allow users to process and analyze
the data directly through Amazon Web Services (AWS), a
cloud-based data processing. Instead of downloading all the
datasets, one can also order the data on eight 8-terabyte hard
drives (the so-called Connectome in a Box). In addition, a

1. http:/ /fcon_1000.projects.nitrc.org/indi/IndiRetro.html

2. http:/ /fcon_1000.projects.nitrc.org/indi/abide/

3. http:/ /fcon_1000.projects.nitrc.org/indi/adhd200/

4. http:/ /fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
5. http://fcon_1000.projects.nitrc.org/indi/IndiPro.html

6. http:/ /fcon_1000.projects.nitrc.org/indi/enhanced /

7. www.xnat.org

8. https:/ /aws.amazon.com/s3/
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set of software packages are provided as part of the projects
involving the HCP minimum preprocessing pipeline scripts
[26].

This project currently served as a baseline for many
new large-scale data sharing projects. The new projects are
built upon the HCP by using the same data acquisition and
analysis. For example, the Developing Human Connectome
Project (dHCP)” is a study of human brain connectivity from
20 to 44 weeks post-conceptional age; the Baby Connectome
Project (BCP) for children from birth through five years of
age, the Lifespan Human Connectome Project (L-HCP)'? for
different age groups across the lifespan (4-6, 8-9, 14-15, 25-
35, 45-55, 66-75) [28]. In addition to healthy subjects, more
than ten projects are funded to study connectomes related
to human disease.

2.3 Challenges of Big rfMRI Data

Data gathered for the FCP and the HCP does exhibit several
big data quantities (V’s definitions [29]). Although the size
of rfMRI data is not as big as other forms of data (such as
genome sequencing data), these shared large-scale datasets
are big enough that a single computer cannot process them.
In other words, this rfMRI data does exhibit Big Volume.
Many methods for preprocessing rfMRI data and functional
connectivity have been designed when the data size is not
really big. These approaches thus have difficulty in handling
the large-scale data (e.g. PCA [30], [31]). Considering the
FCP and the HCP data has only recently been released,
and only few recent methods are able to handle large-scale
rfMRI data, research based on this data is considerably new.
Novel methods capable of analyzing such data should be
developed either by modifying traditional methods that rely
on parallel computing environment or by proposing new
methods that work naturally on a parallel computing or a
cloud computing environment.

Big Variety refers to the diversity of information within
a single big rfMRI dataset (intra-dataset variety) or the di-
versity of multiple rfMRI datasets (inter-dataset variety). Big
Variety can also occur when rfMRI data is analyzed together
with other neuroimaging data and behavioral data. This is a
critical stage in Big Data research since it is widely acknowl-
edged that no single big data set should be considered to be
true, and thus cross-validation of several imaging modalities
is necessary. Thanks to the HCP, it involves multiple imag-
ing modalities (rfMRI, tfMRI, dMRI, MEG) allowing inves-
tigators to apply multimodal data integration techniques to
improve the reliability and robustness of the results [32]. Big
data sharing projects that are focused primarily on sharing
of other MRI data types are the OpenfMRI project!! (which
are focused primarily on sharing of tfMRI) and the Open
Access Series of Imaging Studies (OASIS) project'? (which
has shared more than 500 subjects worth of structural MRI
data). For the OpenfMRI project, the number of currently
available subjects across 63 datasets is 2,158. Furthermore,
HCP also provide different types of preprocessed fMRI
data ranging from unprocessed NIfTI images, minimally

9. www.developingconnectome.org

10. http:/ /lifespan.humanconnectome.org
11. https:/ /openfmri.org

12. www.oasis-brains.org
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preprocessed NIfTI images, ICA denoised rfMRI data to
functional connectivity data. This increases the degree of
utility and flexibility to re-analyze the data for investigators,
as compared to coordinate-based data and statistical maps
(which typically included in most neuroimaging papers or
are available through several data sharing projects such as
BrainMap'?, Neurosynth!*, SumsDB'"> and NeuroVault'®).

Big Veracity refers to the noise, incomplete, inconsistent
or erroneous in data. Although big data is very good at de-
tecting correlation especially subtle correlations that might
miss by analyzing smaller datasets, scientists are likely to
find many statistically significant correlations every time
looking on larger dataset and thus scientists should be very
aware of which correlations are meaningful. This is due
to the fact that in large-scale datasets, large deviations are
more attributable to variance (or noise) than to real infor-
mation (or signal). Specifically, non-neuronal fluctuation in
rfMRI data can increase the apparent functional connectivity
between brain regions (i.e., increasing an opportunity to
find spurious and/or fluke correlations) by introducing
spurious common variance across rfMRI time-series. Data
preprocessing is thus necessary and is a crucial stage in Big
Data research. Several preprocessing steps are progressively
becoming more accepted as standard in the analysis of
rfMRI data, although these advanced techniques used in
data preprocessing pipelines often dramatically increase
the computational burden. A new software suit that is
capable of preprocessing big data using advanced analytic
techniques should be developed. The reduction of data is
another crucial stage especially when dealing with large-
scale data sets with Big Veracity, that is, discriminating rel-
evant and meaningful features using selection or extraction
methods from the whole set of features which potentially
contains irrelevant, redundant and noisy information. These
tasks can also be done using Topological Data Analysis. This
approach is not only reducing the effect of negative elements
but also reducing the amount of storage space required.

Big Velocity could come from prospective rfMRI data in
a research setting. Big Velocity also occurs when data is
coming in and processing at higher speed such as a real-
time monitoring of a patient’s current condition in a clinical
setting [33].

3 BIG DATA PREPROCESSING PIPELINES

Before applying any rfMRI technique for investigating func-
tional connectivity, several data preprocessing steps need to
be performed to remove all unwanted effects in rfMRI data
and also increase the possibility of observing neural effects.
This large number of inter-connected preprocessing steps
collectively referred to as a pipeline (or workflow). So far
there is no agreement on what constitutes the optimal data
preprocessing pipeline nor how to select the best pipeline
given a specific intended application. Most studies use their
own specific pipeline, often defined by the experimenters’
personal preference, or by the defaults of the software
package used. No consensus thus has been found across the

13. www.brainmap.org

14. www.neurosynth.org

15. http:/ /sumsdb.wustl.edu/
16. http:/ /neurovault.org
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studies [12]. Further, it is widely acknowledged that differ-
ent versions of preprocessing pipelines can affect the results
obtained from statistical group difference tests and clas-
sification models [13]. Three important characteristics that
have been changed from one rfMRI study to another study
are: (1) which preprocessing steps are applied; (2) in what
order; and (3) their values of parameters involved in certain
steps. Due to the large number of possible combinations, it is
difficult to evaluate all of them on big rfMRI datasets. There
have been few systematic approaches assessing the effect of
different preprocessing pipelines applied in rfMRI methods
to study functional connectivity of the brain, particularly in
large-scale datasets [14], [15]. In this paper, we present three
alternative ways to access big preprocessed rfMRI data: (1)
the minimal preprocessing pipelines; (2) the Preprocessed
Connectomes Project; and (3) the software packages for big
rfMRI data. Each of which has its own advantages and
disadvantages depending on the type of analysis.

3.1 Minimal Preprocessing Pipelines

Although the unprocessed NIfTI (Neuroimaging Informat-
ics Technology Initiative [34]) data is available through data
sharing projects, these projects anticipate that investigators
will prefer to use the preprocessed data obtained from the
minimal preprocessing pipelines developed by their team
members. The principal goal of the minimal preprocessing
pipelines is to provide rfMRI data with a minimum standard
of data quality while the amount of information actually
removed from the data is minimized. This minimally pre-
processed data could be used as the starting point for any
analysis. This is particularly advantageous for investigators
who lack sufficient computational resources to preprocess
large-scale datasets.

To obtain optimal results, however, it is important to
apply further preprocessing steps which are dependent on
the rfMRI methods used and/or characteristics of the data
acquisition (in case of applying these pipelines on their
own data). The notable minimal preprocessing pipelines are
the ones implemented in the data sharing projects like the
HCP. Since the HCP minimal preprocessing pipelines [26]
are specially designed to their own specific data acquisition
protocols, any study that would like to use the HCP minimal
preprocessing pipelines requires their minimum data acqui-
sition protocols. The interesting characteristic of the HCP
acquisition system is the use of the fast repetition time (TR)
sampling based multiband pulse sequences. Based on this
approach, all slices acquired in each volume are very close
together (as compared to typical fMRI acquisition system)
and thus it is not necessary (but still optional) to carry out
slice timing correction in the HCP pipelines.

Specifically, the HCP minimal preprocessing pipelines
for functional preprocessing pipelines consist of correction
of gradient-nonlinearity-induced distortion, realignment of
the time-series to correct for subject head motion, registra-
tion of the fMRI data to the structural data, reduction of
the bias field, normalization of the 4D image to a global
mean, masking the data with the final brain mask, and
the spatial smoothing using a novel geodesic Gaussian
surface smoothing algorithm with 2 mm FWHM [26]. Pre-
processing steps that may remove significant amounts of
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information (e.g. temporal filtering, significant spatial filter-
ing, nuisance signal regression, and movement scrubbing)
are not included in these pipelines. For instance, although
high frequencies have been commonly related to nuisance
signals [35], some studies suggest that there is important
information contained in high frequencies (0.1 to 0.5 Hz)
[36]. Therefore, the preprocessing steps that still remain a
topic of debate are generally excluded from the minimal
preprocessing pipelines. It is interesting that the HCP mini-
mal preprocessing pipelines include the field map distortion
correction step which in practice is often neglected instead.
For the FCP data, only three simple preprocessing steps
have been performed comprising of NIfTI format conver-
sion, uniform orientation placement and the first-5-time-
points removal. These few preprocessing steps may not be
sufficient to yield the minimum data quality standard, and
further preprocessing steps may be necessary. Further, be-
sides the minimal preprocessing pipelines implemented in
the data sharing projects, a few software packages provide
the minimal preprocessing pipelines as an option, such as
SPM and C-PAC. Note that the full name of software tools
and packages can be found in Table 1 and 2. The contri-
butions of these tools and packages have been presented
throughout this section. More details about their principles
as well as the pros and cons can be found in [37] and [38].

3.2 Preprocessed Connectomes Project

The principal goal of the Preprocessed Connectomes Project
(PCP)" is to provide systematically preprocessed rfMRI
data from the FCP and the INDI databases using different
preprocessing pipelines. This is due to the fact that there
is no consensus on the best preprocessing pipelines in this
research field. Different preprocessing choices will allow
investigators to compare the results and consequently will
lead us to find the best preprocessing strategies later. An-
other reason behinds this project is to broaden the range of
investigators who can access to the large-scale rfMRI data.
Each of which was implemented using the chosen param-
eters and default settings of commonly used preprocessing
pipeline softwares. All the preprocessed data is available on
the Neuroimaging Informatics Tools and Resources Clear-
inghouse (NITRC) and on the Amazon S3 bucket.

It is interesting that the preprocessing steps implemented
by the different common software suits are quite similar
although the specific algorithms and their parameters used
in each of the steps may vary, as can be observed in Table 3.
This is due to the fact that most of them are developed by in-
tegrating several common brain imaging tools for functional
and structural preprocessing together. A list of neuroimag-
ing tools for general and wide-ranging purposes used by the
preprocessing pipeline and functional connectivity software
packages related to rfMRI analysis is presented in Table
1. For instance, CCS [49] builds upon a set of three main
available tools: AFNI, FSL and FreeSurfer together with in-
house developed functions while C-PAC [50] is developed
by integrating many functions from three tools including
AFNI, FSL and ANTS. Likewise, a general purpose software
tool named SPM has been used as a basis for building
many software suits with more specific purposes such as

17. http:/ / preprocessed-connectomes-project.org
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BrainVISA, CONN, cPPI, gPPI, SEM, SnPM, and TDT (for
more details, see Table 2).

The first preprocessed data in this project is from the
ADHD-200 data. This data was preprocessed by three differ-
ent pipelines: the Athena pipeline'® (using AFNI and FSL),
the NIAK pipeline! (using NIAK on CBRAIN), and the
Burner pipeline? (using SPM). The forthcoming release is
the preprocessed data using the CIVET pipeline®! [71]. It
should be noted that the CBRAIN platform?? is a web-based
collaborative research platform that allows investigators to
integrate large neuroimaging data resources, preprocessing
and analysis software tools as well as high-performance
distributed computing facilities together within a controlled,
secure environment [72]. Other datasets from the FCP and
the INDI databases have been added later including the
Beijing Enhanced Diffusion Tensor Imaging dataset, the
Neurofeedback Skull-stripped repository and ABIDE. For
the preprocessed ABIDE data, four different software pack-
ages were used involving CCS, C-PAC, DPARSF and NIAK.
Besides the default settings used in each software suit (Table
3), two preprocessing steps that still remain a topic of
debate, i.e., temporal filtering (0.01-0.1 Hz) and global signal
regression, were included and excluded, which provide four
different preprocessing strategies for each pipeline. Further,
statistical derivatives (e.g. amplitude of regional homogene-
ity (ReHo) [73], low frequency fluctuations (ALFF) [74] and
fractional ALFF (fALFF) [75]) were also calculated from each
of the preprocessing data sets using the C-PAC software.

3.3 Software Packages for Big rfMRI Data

A number of requirements and features are necessary to be
offered by the pipeline softwares designed to handle large-
scale rfMRI data such as configuration, robust, reliable, ex-
tendable and provenance tracking (e.g. [49], [66]). Currently,
there are some progress toward parallelization for the three
major neuroimaging software tools: SPM, FSL and AFNI. By
performing them with an additional package (such as Con-
dor) or platform (such as OpenMP), some functions can then
be executed in parallel on several central processing unit
(CPU) cores or on several computers. However in common
neuroimaging tools (Table 1), parameters may need to be
manually set step-by-step and subject-by-subject which will
be time-consuming and not suitable for big data analysis.
Many preprocessing pipeline software suits then have been
developed to provide a user-friendly environment (Table 2).
Unfortunately, only few of them have been mainly designed
to preprocess and analyze big data.

Parallel computing capacity may be considered as the
most important feature which developers have paid at-
tention to. In order to preprocess a total of 418 subjects
from the NKI-RS datasets, for example, the CCS pipeline

18. www.nitrc.org/plugins /mwiki/index.php/neurobureau:
AthenaPipeline

19. www.nitrc.org/ plugins /mwiki/index.php?title=neurobureau:
NIAKPipeline

20. www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
BurnerPipelineg

21. www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
CIVETPipeline

22. www.cbrain.mcgill.ca
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TABLE 1
A List of Neuroimaging Software Tools for General Purposes

Software Full name Programming Availability
Languages
AFNI [39] Analysis of Functional Neurolmages C https:/ /afni.nimh.nih.gov/afni/
ANTs Advanced Normalization Tools C++ http://stnava.github.io/ ANTs/
FreeSurfer [40] FreeSurfer C/C++/Shell | https://surfernmr.mgh.harvard.edu
FSL [41] FMRIB Software Library C++/Shell https:/ /fsl.fmrib.ox.ac.uk/fsl/fslwiki
SPM [42] Statistical Parametric Mapping MATLAB/C www.filion.ucl.ac.uk/spm/
TABLE 2

A List of fMRI Preprocessing Pipeline and Functional Connectivity Software Packages

Software Full name Programming Availability
Languages
BASCO [43] BetA-Series COrrelation MATLAB www.nitrc.org/projects/basco/
BCT [44] Brain Connectivity Toolbox MATLAB www.brain-connectivity-oolbox.net/
Biananes [45] Scalable fMRI Data Analysis Scala/C https://github.com/rboubela/biananes
BrainNet Viewer [46] BrainNet Viewer MATLAB www.nitrc.org/ projects/bnv/
BrainVISA [47] BrainVISA Python/C++ http:/ /brainvisa.info/web/index.html
BROCCOLI [48] Software for Fast fMRI Analysis OpenCL/C++ https:/ / github.com/wanderine/BROCCOLI/
on Many-Core CPUs and GPUs
CCS [49] Connectome Computation System MAT}S]Z?I;ﬁthon https://github.com/zuoxinian/CCS
C-PAC [50] Configurable Pipeline for Python https:/ /fcp-indi.github.io
the Analysis of Connectomes
CONN [51] Functional Connectivity Toolbox MATLAB www.nitrc.org/projects/conn/
cPPI [52] Correlational Psychlophysiological MATLAB www.nitrc.org/projects/cppi_toolbox/
Interaction
DPABI [53] a toolbox for Data Processing MATLAB http:/ /rfmri.org/dpabi
and Analysis for Brain Imaging
Data Processing Assistant for .
DPARSF [54] : MATLAB http:/ /rfmri.org/DPARSF
Resting-State fMRI
GAT [55] Graph Analysis Toolbox MATLAB www.nitrc.org/ projects/gat/
GIFT [56] Group ICA Of fMRI Toolbox MATLAB http:/ /mialab.mrn.org/software/gift/index.html
Generalized Psychophysiological . . .
gPPI [57] Inter};ctiorr)lsy & MATLAB www.nitrc.org/projects/gppi
A user-friendly toolbox for
GraphVar [58] comprehensive graph analyses of MATLAB www.nitrc.org/ projects/graphvar/
functional brain connectivity
GRETNA [59] GRaph thEoreTical Network Analysis MATLAB www.nitrc.org/projects/gretna/
GTG [60] Graph Theory GLM MATLAB Toolbox MATLAB www.nitrc.org/ projects/metalab_gtg/
NBS [61] Network-Based Statistic MATLAB www.nitrc.org/ projects/nbs/
NIAK [62] Neuroimaging Analysis Kit MATLAB/Octave www.nitrc.org/ projects /niak /
Nilearn [63] Machine 1.earrT1ng for Python https:/ /nilearn.github.io
Neuro-Imaging in Python
Nipype [64] Ne‘uro.lmagmg in Python: Python http:/ /nipy.org/nipype
Pipelines and Interfaces
PRoNTo [65] Patterr‘l Reclognition for MATLAB/C++ www.mlnl.cs.ucl.ac.uk/pronto/index.html
Neuroimaging Toolbox
PSOM [66] Pipeline System for Octave and MATLAB | MATLAB/Octave http:/ /psom.simexp-lab.org
PyMVPA [67] MultiVariate Pattern Analysis in Python Python WWW.pymvpa.org
REST [68] Resting-State fMRI Data Analysis Toolkit MATLAB http:/ /restfmri.net
SEM Structural Equation Modelling MATLAB http:/ /dslink333.dyndns.org/SEM.htm
SnPM [69] Statistical NonParametric Mapping MATLAB http:/ /warwick.ac.uk/snpm
TDT [70] The Decoding Toolbox MATLAB https:/ /sites.google.com/site/tdtdecodingtoolbox/
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Chosen Parameters and Default Settings of Four Different Functional Preprocessing Pipelines for the ABIDE Data (PC: Principal

TABLE 3

Components, WM: White Matter, CSF: CerebroSpinal Fluid)

Preprocessing step CCS C-PAC DPARSF NIAK
Drop the first few volumes 4 0 4 0
Slice timing correction Yes Yes Yes No
Motion realignment Yes Yes Yes Yes
. L 4D Global mean 4D Global mean Non-uniformity correction
Intensity normalization No . .
to 10,000 to 10,000 using median volume

Nuisance signal regression
(Head motion)

Friston’s 24-parameter
motion signal

Friston’s 24-parameter
motion signal

Friston’s 24-parameter
motion signal

Scrubbing and the 1st PC of
6 parameters and their squares

Nuisance signal regression
(Tissue signals)

Mean WM and CSF
signals

The first 5 PCs from
WM and CSF signals

Mean WM and CSF
signals

Mean WM and CSF
signals

Nuisance signal regression

Linear and quadratic
trends

Linear and quadratic
trends

Linear and quadratic
trends

Discrete cosine basis with

(Low-frequency drifts)

a 0.01 Hz high-pass cut-off

took approximately 15,000 CPU h in the Dell Blade Clus-
ter System [49]. Thus pipelines that can execute jobs in
parallel on a multi-core machine or a supercomputer are
needed, which allow us to reduce the total time necessary
to complete an analysis. C-PAC and PSOM are two common
big data processing software packages. These softwares link
together many functions from the common neuroimaging
tools into pipelines that can execute in a single run on high-
performance computing architectures, after a proper config-
uration has been set. Bellec et al. [66] tested the performance
of the PSOM framework using the ADHD-200 datasets and
showed that we could reduce the processing time for 198
subjects (with a total data size of 7.7 gigabytes and 5,153 jobs
included in the NIAK pipeline) from over a week down to
less than 3 h with 200 computing cores.

PSOM also offers other two important features that allow
us to handle with big data, i.e., fault tolerance and smart
updates. Specifically, PSOM will run each job for multiple
attempts before considering it as a failed job while all the
failed jobs can be automatically restarted after the pipeline
termination by the investigator. Furthermore, if the restart
of an analysis is needed, only the parts of the pipeline that
need to be reprocessed or impacted by the changes will be
executed which can be detected automatically by the tool-
box. These two features are very useful particularly in the
development phase (e.g. selecting the optimal algorithms
and parameters of the pipeline) since the pipelines may be
needed to restart multiple times at several stages. However,
this framework does not focus on pipeline mapping and
this key feature is performed by interfacing PSOM pipelines
to another software tool with powerful pipeline mapping
capabilities such as CBRAIN instead.

Another group of interesting big data processing soft-
ware suits is the one designed to enable the advantages
of parallel computing with a special emphasis on using in-
expensive and powerful graphics processing units (GPUs).
BROCCOLI [48] is one of the softwares in this group which
is written in OpenCL (Open Computing Language). This
makes BROCCOLI able to run the analysis in parallel. To
test the parallelization efficiency of BROCCOLI, Eklund
et al. [48] have run several benchmark experiments on a
number of open access fMRI datasets with three different
hardware configurations (i.e., an Intel CPU, an Nvidia GPU,

and an AMD GPU). As compared the results for non-linear
spatial normalization as an example with other three major
neuroimaging tools, BROCCOLI with an Nvidia GPU can
run 525 times faster than FSL and AFNI and 195 times
faster than AFNI with OpenMP [48]. The results clearly
support that parallel processing of the rfMRI data can lead
to significantly faster analysis pipelines, which is very im-
portant for big data analysis. However, several limitations
of this software suit are acknowledged. For instance, BROC-
COLI does not provide a graphical user interface. Since this
software suit is implemented using OpenCL, it performs
best for Nvidia GPUs and thus code optimization for other
hardware platforms (e.g., Intel and AMD) is necessary.
Biananes [45] is another software in this group which uses
GPUs to compute the voxel-wise correlation/connectivity
matrix in the highest HCP resolution of all in-brain voxels.
This software also provides a distributed file reader for 4D
NIfTI fMRI data for use in an Apache Spark environment.
By using a scalable platform [45], [76], [77], we can move
data analysis and computational tasks to cloud service
providers, for example the AWS cloud which can run the
Spark Framework with the GPU accelerated computation.

3.4 Challenges of Data Preprocessing Pipelines

The first two alternative approaches could be consecutively
used as the first and the second starting points for inves-
tigators who would like to perform functional connectiv-
ity analyses on big rfMRI data but do not have enough
sufficient computational resources to acquire or preprocess
large-scale data, or those who prefer to focus on data
analysis rather than data acquisition and preprocessing.
As previously mentioned the minimally preprocessed data
provides a minimum standard of data quality while greater
amount of information is still contained in the data. If
further preprocessing steps are necessary, preprocessed data
from the PCP that was prepared using the default chosen
parameters and settings of several common preprocessing
software suits would be a safe bet for further data analyses
as they would represent peer-reviewed accepted preprocess-
ing implementations. Investigators can choose one of the
pipelines that is appropriate to their application or even
compare the results across the different pipelines.
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On the other hand, if investigators have enough re-
sources to preprocess large-scale rfMRI data, they could use
one of the software packages designed for preprocessing
large-scale rfMRI data as discussed in the third alternative
approach. They could also consider to preprocess their own
data using the minimum preprocessing pipelines and/or
the default preprocessing pipelines from common software
packages as the starting points. However, several modifi-
cations and additional steps may be required to make the
pipeline more suitable to the challenge of unique charac-
teristics of specific rfMRI data and functional connectivity
analysis methods proposed. For example, the dHCP mini-
mal preprocessing pipelines which are developed based on
the HCP have modified several preprocessing steps in order
to preprocess the data with low and variable contrast and
high levels of head motion in neonate acquisition [78]. To
yield the valid and optimal results for specific application, a
comprehensive investigation of optimal preprocessing steps
and parameter values is necessary.

There are several specific areas in which the prepro-
cessing pipelines need to be improved, and novel methods
will continue to be developed. Since there is currently no
solution to find the best preprocessing pipelines, data pre-
processing steps that are consensus across common software
pipelines and/or high-quality peer-reviewed research stud-
ies by using a systematic review and meta-analysis could be
one of the solutions. For instance, most recently, Caballero
and Reynolds [79] suggested some guidelines to choose the
preprocessing steps and their order. Specifically, the prepro-
cessing pipeline could start by despiking the fMRI data and
then applying a block of operations involving physiological
noise correction, slice timing correction, volume registration
and correction of magnetic field distortions. The choice of
the order within this block is still controversial and they
recommend to integrate these four operations into a unified
framework. Next, the alignment of the subject’s anatomical
image to the functional data could be performed. The final
steps consist of spatial smoothing, and the combination of
nuisance regression, temporal filtering and censoring. The
nuisance regressors can be defined either on anatomical
masks or by data decomposition techniques such as PCA,
kernel PCA and ICA. An additional advantage of data
driven approaches is that it can also reduce multiple noise
fluctuations simultaneously. However, it has been suggested
that for example spatial ICA cannot completely separate
physiological noise components and denoising physiolog-
ical noise based on external recordings is necessary prior to
ICA decomposition. In future studies, more comprehensive
investigations are still needed to determine better evidence-
based recommendations and best practices for minimal
and/or optimal preprocessing pipelines.

Further, as it is acknowledged that data preprocessing
pipelines can affect the final results obtained from statistical
group difference tests and classification models, and there
have been very few systematic studies investigating these
effects, a better understanding of whether and which pre-
processing steps and parameters affect the results derived
from any analysis method is warranted. This is also very
important to determine the best, or the optimal, preprocess-
ing pipelines. For example, Vergara et al. [14] evaluated the
effect of several preprocessing pipelines in the detection of

8

abnormal functional network connectivity and the classifica-
tion of patient and control using group ICA methods. Four
different pipelines were tested with special emphasis on the
effects of (1) the order of head motion correction: before or
after group ICA applied, and (2) temporal filtering to re-
move relatively high frequency content. Both experimental
and simulation data was used. For real data, two different
cohorts were included in the study: one cohort is mild
traumatic brain injury patients with controls and the other
cohort is smokers and non-smokers. The results of this study
show that data preprocessing pipeline can change the final
results. That is, if motion correction is applied before group
ICA, patient-control group differences are increased as well
as correlation with behavioral assessments are stronger.
Andronache et al. [15] evaluated the effect of several
preprocessing pipelines in the detection of the DMN us-
ing the SCA and ICA methods. Five different pipelines
were tested by adding several preprocessing steps (e.g.
removal of co-variance with movement parameters, band-
pass filtering, etc.) to the minimum preprocessing pipelines
(i.e., realignment, slice timing correction, normalization to
MNI space, and spatial smoothing). Only the real data
was used in this study including patients with disorders
of consciousness and their control counterparts. The results
support the study of Vergara et al. [14] that data prepro-
cessing pipeline can change the final results. The results of
this study also show that different functional connectivity
methods (SCA and ICA) are affected by data preprocessing
pipelines differently. Although the effect is reduced when
extensive preprocessing steps are applied, it may be due
to the fact that some meaningful variability in the data is
removed and the valid results are not obtained. The effect
of preprocessing pipelines on other commonly used or novel
analysis methods should be investigated in future studies.

4 RFMRI TECHNIQUES

Functional Magnetic Resonance provides complex signals to
study the highly variable and entangled activity of the brain.
Being able to parse it and extract meaningfulx information
is one of the great challenges of neuroimaging research. We
can broadly identify two main types of analysis: one fo-
cuses on identifying functionally independent brain regions,
or functional subnetworks, usually associated to specific
functions; a second one focused instead on the relational
among the activities of sets of regions. Classic examples of
the first approach as decomposition techniques, like ICA
and PCA which we already mentioned in previous sections.
Here we put our focus on the second type, with particular
attention The most relevant examples are techniques that
produce simplified topological representation (e.g. Mapper
[80], [81]), graph-theoretic and network tools amenable
to statistical mechanical treatments [82], and finally full
fledged topological data analysis tools, in particular persis-
tent homology [83]. In the following, we briefly illustrate the
merits of each and their relevance for big data analysis.

4.1 Mapper Algorithms and Data-Driven Methods

Mapper, first introduced by Singh et al. [81], is one of the
most used topological tools for direct data exploration. Its
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An Overview of Available Softwares for Mapper and Persistent Homology. We provide here a minimal overview and a list of references to
existing softwares for TDA, with a short description of the respective advantages and limits. We refer to [84] for a thorough review including
computational performances and scalings with dataset size relevant to big data analysis.

Software Programming Main Features Ref./URL
Languages
MapperTools Python Clean implementation, two-dimensional filters, easy access to metadata. [85]
PythonMapper R Clean implementation, ease of use, recently revamped [86]
Javaplex Java ?ersistent and zigzag homolf)gy, various filtrations available, ' (87]
provides homology generators. Lims.: rather slow and memory-taxing

Perseus C++ Based on Morse reductions, various filtrations available. Lims.: no generators [88], [89]

jHoles Java Fast preprocessing, weighted network homology. Lims.: single application, not very versatile | [90], [91]
Dionysus Python /C++ .Persistent and zigzag homo.logy, vineyards, various filtrations av.ailz?ble,. [92]

provides homology generators Lims.: sparsely documented and compilation issues

Phat/Dipha C++ Fast, parallel implementation of simplicial and cubical homology. Lims.: no generators [93], [94]

Gudhi C++ Multi-field homology, various filtrations available. Lims.: no generators [95], [96]
Ripser C++ Fast computation of VietorisRips persistence barcodes. Lims.: no generators [97]

fundamentally new character, shared with persistent ho-
mology, comes from its algebraic foundation: its recovers
the shape of topological spaces at the mesoscopic scale
by going beyond the standard measures defined on data
points” pair. Given a point cloud dataset, typically in high
dimensions, one begins by dividing the space into a set of
overlapping slices. Within each of thses a local clustering
algorithm is performed to partition the points in a set of
separate clusters. Since the slices are overlapping, there
will be common points between adjacent ones. One can
then build a topologically simplified skeleton of the original
dataset by joining together clusters that belong to adjacent
slices and that have non-empty intersection (i.e., that contain
some of the same points across the two slices) [80]. This type
of approach is guaranteed to preserve the overall topology
via the gluing of local clusterings.

Mapper lends itself to the analysis of very large datasets,
because the complete problem (e.g. the overall clustering
structure) is subdivided in any number of smaller local
problems (i.e., the clusterings within slices), which can
be run in parallel and that are merged only at the final
step. Moreover, the local clusterings depend only on the
distances between the points in the slices, hence also high-
dimensional data are projected effectively down to a (typi-
cally small) distance matrix. These properties make Mapper
a very good tool for the analysis of large-scale data as this
approach can be naturally performed in a framework of big
data analysis such as the Google’s MapReduce paradigm
[98].

Despite the useful properties of Mapper, to our knowl-
edge only one recent study has leveraged it for the study of
rfMRI data. Kyeong et al. [99] used the Mapper algorithm
to investigate the relationship between brain functional
connectivity and characteristics of ADHD (from the ADHD-
200 datasets). Because ADHD is defined as a single disor-
der without subtypes [100], thus the topological network
obtained from the Mapper algorithms is presented as a
long gradual progression. Although this study does not
show the clustering potential of the Mapper algorithm to
identify meaningful subtypes, the resulting topological net-

work of the Mapper algorithm can significantly distinguish
patients with ADHD from normal control subjects (P-value
< 0.0005). Moreover, the results obtained using the Mapper
algorithm should be the same either the rfMRI data was
preprocessed with or without scrubbing the time points that
showed large head motions since the values of the chosen
objective measure are almost the same (r = 0.99). This study
supports the useful properties of the Mapper algorithms,
and warrants the potential of Mapper for future studies
of brain function connectivity and characteristics of many
brain disorders and diseases.

To discuss this in more details, standard clustering ap-
proaches for rfMRI work by constructing a series of spatially
(or ICA-) coherent coarse-grained regions [1] that are then
thought as nodes for a similarity or correlation network.
However, Zuo and Xing [101] strongly recommend voxel-
wise analysis because the analysis of the signal averaged
from multiple voxel based on anatomical structure can lead
to difficulties in the reliability and interpretation of derived
results. The clustering of activity time-series obtained dur-
ing rfMRI is the direct and natural application of the Mapper
algorithm. Thanks to their scalability, Mapper approaches
would be able to address directly high-resolution voxel-
level datasets without the need for any preliminary coarse-
graining of the regions or resampling data to a lower
isotropic resolution and would be able to yield a fully
functional representation. Thus we can use clustering-based
mapper algorithms instead of existing slower methods used
for rfMRI studies: hierarchical clustering [102], spectral clus-
tering, k-means clustering, or fuzzy clustering [103].

Further, clustering is considered as an exploratory data-
driven approach which is used to overcome the limitation of
model-based analyses (e.g. SCA, ReHo, ALFF and fALFF).
Despite serving similar purposes as other common data-
driven methods such as ICA and PCA, a comparison be-
tween several different clustering and ICA methods in a
systematic fMRI study [104] showed that clustering outper-
forms ICA (i.e., the most frequency used method for rfMRI
studies [105]) for classification purposes. While the efficacy
of PCA is strongly dependent on assumptions of linearity,
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normality, and high SNR of the rfMRI data, clustering-based
mapper algorithms are free from these assumptions and
have achieved to extract non-trivial qualitative information
from large-scale datasets (e.g. extracting a previously un-
known subtype of breast cancer with a unique mutational
profile and excellent survival [106]).

Note also that the output of Mapper depends critically
on the chosen slicing of the original dataset. In other words,
choosing the slicing defines what will be the interpretation
of the resulting network. This opens the door to combining
the full set of existing data-reduction and data-analysis tech-
niques with Mapper. For example, by using the projections
of the dataset along main directions obtained by (group)
PCA, ICA, or similar decomposition techniques [30], [31],
[105], that is using information that is fully contained within
the dataset itself; it is however also possible to augment
this information by including in the slicing function meta-
information about the subjects under study, making this tool
extremely versatile for both data exploration and feature
extraction in large complex datasets.

4.2 Graph Theory and Networks

Graph theory is the mathematics of networks which de-
scribe pairwise relationships [107], as sets of nodes and
links, usually equipped with a weight. Networks, thanks
to their expressive power and simplicity, have become over
the last decade into one of the most popular tools to de-
scribe both the brain’s physical structure and its patterns
of activity [108]. Indeed, via network representations it has
been possible to uncover a large set of properties of brain
function that previously could hardly be described: among
others, for example, we now know that specific functional
subnetworks correspond to known cognitive and sensory
modalities [109], that the observed robustness of the brain
to lesions and perturbations is rooted in the combination
of small-worldness and strong local clustering coefficient
displayed by real-world networks [110], or that information
in the brain is processed in tightly integrated modules and
then shared across longer distances via long-range links
[111]. Until recently, most of the research in functional net-
work however focused on small-size parcellations because
they provided anatomically interpretable descriptions and
also facilitated the computation of graph metrics, which can
often be rather cumbersome computationally. This trend is
changing however due to the combined effect of increased
computational power, optimised network analysis libraries
[112], [113] and accurate measurements. For example, the
first tools to analyze large-scale neural network data over
Spark architectures [114], as well as scalable techniques able
to process, analyze, correlate fMRI data at the full-voxel
matrix level [115], are being developed, allowing de facto
the scaling of network techniques to the scale of big data.
Despite their success, networks however can only describe
many-body interactions as the sum of pairwise interactions,
an assumption that is not always verified and that, in some
applications, can provide a biased representation of the
system under study.

4.3 Persistent Homology

One progressively more popular answer to the need to
describe higher-order interactions is given by another TDA
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technique, persistent homology. It yields deeper, quantita-
tive information about the shape of a dataset than that
obtained through Mapper, and allows richer descriptions
than those provided by networks, at the cost of increased
interpretative complexity. Persistent homology works by
building a multi-scale summary of a whole dataset via a se-
ries of progressively finer approximations, called filtration,
of the relation between neighbourhoods of points. Filtration
is the key point in order to consider all possible thresholds,
avoiding one of the main cons in graph theory. In addition,
persistent homology is phrased in the language of simpli-
cial complexes that, by construction, describe many-body
interaction patterns and thus go beyond the network de-
scription based on two-point interactions (i.e., edges defined
on two points, simplices are generic sets of points) [1]. For
this reason, it has found wide application in neuroscience
with direct applications to the study of rfMRI correlation
networks for healthy [116], [117], [118] and altered [119] or
pathological [120] brain states, models of spatial learning
[121], [122], and dynamical functional connectivity [123].

Indeed, even when starting directly from network data,
persistent homology is able to provide information that is
not easily —or sometimes at all- available from the stan-
dard combinatoric or statistical mechanical point of view,
e.g. topological distances defined via persistence diagram
useful in discriminating between brain network [124] and
multi-scale network descriptions, i.e., that do not require
choosing a threshold, of the functional network yielding
discrimination power that was absent from a pure graph-
theoretic perspective [119], [125].

Interestingly, once topological features are detected, sta-
tistical mechanical methods can give an important contribu-
tion to their interpretation, e.g. via projections to simpler
representation (e.g. scaffolds [116]), and the modeling of
what should be considered significant structure and what
noise, e.g. by constructing minimal topological random null
models [126], [127], [128].

One of the main limits for the application to large
datasets is however that persistent homology can be com-
putationally cumbersome if computed naively. However,
recent algorithmic advances have significant reduced its
complexity and parallel algorithms have become available
(such as a spectral sequence algorithm [129], a chunk algo-
rithm [93], [94] and a number of others (e.g. [130], [131],
[132], [133])). As a result, persistent homology can be now
used to approach very large, high-dimensional data sets, for
example fMRI data.

Furthermore, there have been recent advances in meth-
ods to compare the information obtained from persistent
homology across subjects and groups: the persistence land-
scape, introduced by Bubenik et al. [134], allows the direct
comparison of the persistence profiles of different subjects,
while kernelization techniques [135], [136] will allow to ap-
ply machine-learning techniques to the persistent homology.
Persistent homology, while very promising, is still in its in-
fancy as a branch of data science. It provides a radically new
perspective on how we approach data and brings with itself
a new language grounded in algebraic topology. However,
there are still open challenges in order to fully leverage
its potential in the study of large rfMRI datasets. The first
and most obvious one is the necessity to keep improving
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the computational scalability of persistent homology. While
topological simplification via Mapper is cheap and scalable,
it also does not directly yield the quantitative output that
persistent homology provides. It is then paramount to im-
prove further on the existing implementations, in particular
in the direction of effective simplicial complex reduction
schemes preserving not only the topological information at
the global level, but also the actual localization of homology
classes [130]. A second challenge is lowering the entry cost
for practitioners coming from outside the TDA community
and seeking to apply these techniques to their specific case
studies. Although the required mathematical background
is significant, having user-friendly and well documented
software packages dedicated to the fMRI analysis would
already go a long way in this direction.

5 CONCLUSION

The era of “Biomedical Big Data” has arrived for the rfMRI
research, thanks to the unrestricted sharing and open access
of big neuroimaging data: the 1000 Functional Connectomes
Project and the Human Connectome Project. These large-
scale rfMRI data does exhibit the 5 V’s of Big Data: Volume,
Veracity, Variety, Velocity and Value. Thus, there is an urgent
need to develop data preprocessing pipelines and analyses
methods for big rfMRI data.

For data preprocessing pipelines, three alternative ap-
proaches to get access to big preprocessed rfMRI data were
presented. If investigators would like to perform analyses
on big rfMRI data but lack sufficient resources to acquire
or preprocess them, or prefer to focus on data analysis
rather than data acquisition and preprocessing, the first
two approaches: the minimal preprocessing pipelines and
the Preprocessed Connectomes Project are the good starting
points for their own analysis. If investigators have enough
resources to preprocess large-scale data, they can choose
one of the software suits designed for preprocessing big
data. However, a comprehensive investigation of the effects
of data preprocessing steps on the results obtained from
functional connectivity analyses as well as an extensive
development of the new preprocessing software packages
for large-scale data is highly necessary in future studies.

After rfMRI data has been preprocessed, there are sev-
eral methods commonly used in rfMRI studies to examine
functional connectivity such as SCA, PCA, ICA and cluster-
ing methods. To enable these approaches to identify large-
scale brain networks, recently more sophisticated studies
have been performed. However, we still should consider
some limitations of the existing common methods, and a
novel method is essential for big rfMRI data analysis. We
proposed a technique called Topological Data Analysis to rs-
fMRI functional connectivity. Many TDA properties clearly
show the potential of different TDA methods to be used as
big rfMRI data analyses methods. Clinical applications of
rfMRI-based TDA should be explored in future studies.
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