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Abstract

Social link recommendation systems, like “People-
you-may-know” on Facebook, “Who-to-follow” on
Twitter, and “Suggested-Accounts” on Instagram
assist the users of a social network in establishing
new connections with other users. While these sys-
tems are becoming more and more important in the
growth of social media, they tend to increase the
popularity of users that are already popular. Indeed,
since link recommenders aim at predicting users’
behavior, they accelerate the creation of links that
are likely to be created in the future, and, as a con-
sequence, they reinforce social biases by suggest-
ing few (popular) users, while giving few chances
to the majority of users to build new connections
and increase their popularity.

In this paper we measure the popularity of a user
by means of its social influence, which is its ca-
pability to influence other users’ opinions, and we
propose a link recommendation algorithm that eval-
uates the links to suggest according to their incre-
ment in social influence instead of their likelihood
of being created. In detail, we give a constant factor
approximation algorithm for the problem of maxi-
mizing the social influence of a given set of target
users by suggesting a fixed number of new connec-
tions. We experimentally show that, with few new
links and small computational time, our algorithm
is able to increase by far the social influence of the
target users. We compare our algorithm with sev-
eral baselines and show that it is the most effective
one in terms of increased influence.

1 Introduction

Nowadays, recommendation system has become a key in-
gredient to boost social networks revenue. These systems
help users decide which product to buy, news to read, or
which movie to watch. Their combination with online so-
cial networks opens up new opportunities for product mar-
keting as well as improving the user experience helping them
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to make new friends and therefore be exposed to more in-
formation. Indeed, adding new connections between users
increase the capabilities of a social network of spreading in-
formation which in turn increases the retention rate and the
number of new subscriptions. In fact, the capability of a
user to spread information, usually called social influence,
is directly correlated with both the user engagement and its
revenue [Chaoji et al., 2012]. Being able to quickly and ef-
fectively reach a large number of people by sharing content
helps a user to express and diffuse its own opinion, and to dis-
cover novel contents and information. At the same time, this
increases the chances of making profits from advertisement.

Most of the existing link recommendation systems do not
consider the impact of the new links on social influence,
which is crucial for both users and social networks. Instead,
they exploit similarity metrics of user profiles and structural
network properties to estimate the likelihood that a link is
adopted by users. Based on this estimation, they recommend
links that are likely to be established; we point the reader to a
recent survey [Li et al., 2018]. For example, the Friend-of-
Friend algorithm [Liben-Nowell and Kleinberg, 2007] sug-
gests links towards the users that have the highest number
of common friends with the receiver of the recommendation.
While these approaches are accelerating the growth of social
networks, they are also altering their structure, amplifying
the popularity of well-known users and reinforcing social bi-
ases and under-representation of demographic groups, respect
to their natural growth [Sanz-Cruzado and Castells, 2018;
Stoica et al., 2018; Su et al., 2016].

In this paper we look at social influence as a measure of
users’ popularity and propose a link recommendation algo-
rithm that focuses on links that increase the social influence
of a target group of users. We formulate the link recommen-
dation task as an optimization problem that asks to suggest
a fixed number of new connections to a subset of users with
the aim of maximizing the network portion that is reached by
their generated content.

1.1 Related Work

There exist an extensive literature on the problem of recom-
mending links to users of a social networks [Li et al., 2018;
Eirinaki et al., 2018]. However, there are only few studies on
the problem of adding links in a network considering social
influence. In the following, we focus on two widely stud-
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ied diffusion models, the Independent Cascade Model (ICM)
and the Linear Threshold Model (LTM) [Kempe et al., 2015],
and review papers that study network modification problems
in these models. ICM has been considered in several studies.
D’Angelo et al. [2019] introduced the Influence Maximization
with Augmentation problem (IMA) that consists in adding a
limited number of edges incident to a given set of nodes in
order to maximize their capability of spreading information.
They proved that such problem is NP -hard to approximate
within a factor greater than 1−1/2e and provide an approxima-
tion algorithm that almost matches such upper bound. Shel-
don et al. [2012] study the problem of adding nodes in a net-
work to maximize the diffusion in a network. They show that
their problem is not submodular and propose exact integer
programming formulations. Wu et al. [2015] considered other
types of graph modifications such as modifying the probabil-
ity of infect other nodes, however, they show that the problem
is NP -hard and is neither sub- nor super-modular.

We now review papers on network modification problems
under LTM. Heuristics for the edge removal problem have
been studied in [Kuhlman et al., 2013; Kimura et al., 2008]

but without providing an approximation guarantee. Khalil et
al. [Khalil et al., 2014] consider two types of graph modifi-
cation, adding/deleting edges in order to minimize the infor-
mation diffusion showing that this network structure modi-
fication problem has a supermodular objective and therefore
can be solved by algorithms with proven approximation guar-
antees. Zhang et al. [2015] consider the problem remov-
ing edges and nodes with the aim of minimizing the infor-
mation diffusion and develop algorithms with rigorous per-
formance guarantees and good empirical performance. Ex-
perimental studies show that increasing the connectivity or
the centrality of a node, by adding edges to the graph, lead
also to an increase in the expected number of nodes that
the diffusion process is able to reach [Crescenzi et al., 2016;
Parotsidis et al., 2016; Papagelis, 2015].

Our Contribution We consider the IMA problem intro-
duced in [D’Angelo et al., 2019]. We first focus on the LTM
model of diffusion and show that the objective function is
monotone and submodular. We exploit this property to show
that a greedy algorithm guarantees a 1 − 1/e approxima-
tion. We then propose several techniques that heuristically
speed up the running time of our algorithm and of that
in [D’Angelo et al., 2019]. We test our algorithms in several
random and real-world networks, showing that they are able
to substantially increase the spreading capabilities of the tar-
get nodes and outperform many alternative baselines.

2 Notation and Problem Statement

In this section, we first define the information diffusion mod-
els used in the paper, and then introduce the IMA problem
and the related notation.

2.1 Information Diffusion Models

A social network is represented by a weighted directed graph
G = (V,E,w), where nodes V represent users, edges E rep-
resent relationships between users, and the weight function

w : V × V → [0, 1] represents the influence between users.
Let Nv denote the set of the in-neighbors of node v ∈ V .

Both ICM and LTM models distinguish between nodes that
spreads information, called active, and all the others, called
inactive. Active nodes are the ones that, with some proba-
bility, diffuse the information to their neighbors. The ICM
model requires a diffusion probability to be associated with
each edge, whereas LTM requires an influence degree to be
defined on each edge and an influence threshold on each node.
For both models, the diffusion process proceeds iteratively in
a synchronous way along a discrete time-axis, starting from
an initial set of nodes, usually called seeds. The process ter-
minates when no further node gets activated.

Kempe et al. showed that the distribution of the set of ac-
tive nodes in the graph starting from the seed set nodes, usu-
ally denoted as A0, under both the ICM and LTM process
is equivalent to the distribution reachable from the same set
A0 in the set of random graphs called live-edge graphs (The-
orem 4.5, 4.6 in [Kempe et al., 2015]), since the processes
are point-wise identical, also the expected number of acti-
vated nodes is the same. Given a graph G = (V,E,w), a
live-edge graph G′ = (V,E′), where E′ ⊆ E, is built as
follows: (ICM) Every edge (u, v) ∈ E is selected to be in-
serted to E′ independently at random with a probability pro-
portional to its weight wuv; (LTM) every node v ∈ V , in-
dependently, picks at most one of its incoming edges with
probability equal to the weight of that edge: edge (u, v) ∈ E
is selected with probability wuv , and no edge is selected with
probability 1−

∑

(u,v)∈E wuv .

Moreover, evaluating the expected number of active nodes
is #P -complete [Chen et al., 2010], however it can be ef-
ficiently approximated by using a polynomial number live-
edge graph: Kempe et al. proved that, by applying a multi-
plicative form of the Chernoff bound, we can get (1 ± ǫ)-
approximation to the expected number of active nodes, with
high probability ([Kempe et al., 2015, Proposition 4.1]).

2.2 Problem Statement

Given a directed graph G = (V,E,w), a budget B ∈ N

and a set A ⊆ V of seed nodes consider a larger graph
Ḡ = (V, Ē, w) where Ē contains all the edges in E and, in
addition, it contains all the remaining pairs between nodes in
A and any other node in V , namely, Ē = E ∪ (A× V ) with
the constraint that

∑

(u,v)∈Ē wuv ≤ 1 for any node v ∈ V .

For a set S of edges in Ē\E, let us denote by G(S) the
graph augmented with the set of edges S, i.e. G(S) =
(V,E ∪ S). In the Influence Maximization with Augmenta-
tion problem (IMA) we aim at finding a set S ⊆ Ē\E of size
B in order to maximize the expected number of active nodes
in G(S) at the end of the ICM or LTM process. Let us denote
by G(S) the set of all possible live-edges sampled from G(S),
then we denote as σ(A,S) :=

∑

G′∈G(S) P (G′) |RA(G
′)|

the expected number of activated nodes at the end of the pro-
cess with seed nodes A in graph G(S), where, RA(G

′) is
the set of reachable nodes from nodes in A in graph G′, i.e.,
RA(G

′) = {u ∈ V : ∃ path from v ∈ A to u ∈ G′}. Thus,
the IMA problem consists in finding a set S∗ such that

S∗ = argmax
S⊆Ē\E:|S|≤B

σ(A,S).
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The IMA Problem Under ICM Here we review previ-
ous results on the IMA problem under ICM. The problem
was originally introduced in [D’Angelo et al., 2016], where
the authors defined a preliminary version of the IMA prob-
lem in which the set of seed nodes is a singleton and pre-
sented a constant factor approximation algorithm for that
case. In [D’Angelo et al., 2019] they extended the original
problem without restrictions on the seed set size. Namely,
they studied the problem of adding a set of edges incident
to an arbitrary set of initial seeds, without exceeding a given
budget, in order to maximize the number of nodes that even-
tually become active. Moreover, they consider the case in
which the cost of any single edge is a value between [0, 1].
They first proved that under ICM and with unitary cost on
the edges the IMA problem is NP -hard to be approximated
within a constant factor greater than 1 − (2e)−1. For this
case, they provide a greedy based algorithm that guarantees
a 1 − e−1 − ǫ approximation factor. This result has been
obtained by proving that the objective function σ(A,S) is
monotone and submodular w.r.t. set S, and hence the greedy
algorithm in [Nemhauser et al., 1978] can be used to obtain
the mentioned approximation ratio. They extend this result to
the general cost case by using an enumeration technique.

3 Approximation for IMA under LTM

In this section, we first prove that the function σ(A,S) under
LTM is monotone and submodular w.r.t. to the set of added
edges S and then we exploit this property to provide a con-
stant approximation algorithm for the IMA problem.

Le us denote by G the set of all possible live-edge graphs
sampled from graph G. For every live-edge graph G′ =
(V,E′) ∈ G we denote by P (G′) the probability that G′ is
sampled, and by p(v,G′) the probability for a node v ∈ V of
having an incoming edge in G′. Therefore, p(v,G′) is either
equal to wuv if there exists an edge (u, v) ∈ E′, for some
u ∈ Nv , or p(v,G′) = 1 −

∑

(u,v)∈E wuv if no edge is se-

lected. Then we can easily extend this notation to a set of
nodes V ′ ⊆ V as p(V ′, G′) =

∏

v∈V ′ p(v,G′). Thus,

P (G′)=
∏

(u,v)∈E′

wuz

∏

v∈V : 6∃(u,v)∈E′

(

1−
∑

(u,v)∈E

wuv

)

.

Finally we denote as PS (G′) = p(V,G′, S) the probabil-
ity of a live-edge graph G′ ∈ G(S), where G(S) is the set of
all possible live-edge graphs sampled from graph G(S).

We first fix the following observation: Consider the proba-
bility of a live-edge G′ sampled from G(S ∪ {e}) and a sec-
ond live-edge graph G′′ ∈ G(S) when adding a new edge
e = (a, v) in G(S). Probabilities PS∪e (G

′) and PS (G′′)
differ only in the calculation concerning node v, since all the
other nodes have the same set of possible in-neighbors with
the same set of weights. Therefore, we have 3 cases:

1. For any live-edge graph G′ ∈ G(S ∪ e) that selects an
edge different from e as incoming edge to v there exists
a corresponding G′′ ∈ G(S) with the same edge set,
therefore we have that PS∪e (G

′) = PS (G′′);

2. For any live-edge graph G′ ∈ G(S ∪ e) in which
no incoming edge is selected for the node v

there exists a corresponding G′′ ∈ G(S) with
the same edge set. In this case PS∪e (G

′) =
p(V \{v}, G′, S)(1 −

∑

z∈Nv

wzv − we) and

PS (G′′) = p(V \{v}, G′′, S)(1 −
∑

z∈Nv

wzv),

where p(V \{v}, G′, S) = p(V \{v}, G′′, S);

3. For any live-edge graph G′ ∈ G(S ∪ e), G′ = (V,E′),
that selects e as incoming edge to v we have that
PS∪e (G

′) = p(V \{v}, G′, S)we. Note that, in this
case we have |RA(G

′)| ≥ |RA(G
′′)|, for any live-edge

graph G′′ ∈ G(S) with edge set E′\{e}.

We can now prove the following theorem.

Theorem 1. Given a graph G = (V,E), σ(A, (V,E ∪S)) is
a monotone submodular function of S ⊆ Ē\E.

Proof. We first prove that σ(A, ·) is a monotonically increas-
ing function, formally σ(A,S ∪ {e}) ≥ σ(A,S) for any
S ⊆ Ē\E and e = (u, v) ∈ Ē\E.

We decompose σ(A,S ∪ {e}) as the sum over all the live-
edge graphs in which: an edge in E has been selected; v has
no incoming edges; and edge e has been selected. Formally, 1

σ(A,S ∪ {e}) =
∑

G′∈G(S∪e)
s.t.∃(z,v)∈E′,z 6=u

PS∪e (G
′) |RA(G

′)|

+
∑

G′∈G(S∪e)
s.t.6∃(z,v)∈E′

PS∪e (G
′) |RA(G

′)|+
∑

G′∈G(S∪e)
s.t.e∈E′

PS∪e (G
′) |RA(G

′)|

Similarly we have that σ(A,S) can be decomposed
as: σ(A,S) =

∑

G′′∈G(S)
s.t.∃(z,v)∈E′′

PS (G′′) |RA(G
′′)| +

∑

G′′∈G(S)
s.t.6∃(z,v)∈E′′

PS (G′′) |RA(G
′′)|.

Using observation 1 and 2 we can consider pair of live-
edge graphs, one from G(S ∪ e) and one from G(S), and
notice that the two graphs are equivalent in the case in which
an edge different from e is selected or node v has no incoming
edges. Although, in the latter case the probabilities to sample
the live-edge graph aare not equal. Thus, we have that

σ(A,S ∪ {e})− σ(A,S) =
∑

G′∈G(S∪e)
s.t.6∃(z,v)∈E′

p(V \{v}, G′, S)
(

1−
∑

z∈Nv

wzv−wuv

)

|RA(G
′)|

+
∑

G′∈G(S∪e)
s.t.e∈E′

p(V \{v}, G′, S) · we · |RA(G
′)|−

∑

G′′∈G(S)
s.t.6∃(z,v)∈E′′

p(V \{v}, G′′, S)
(

1−
∑

z∈Nv

wzv

)

|RA(G
′′)|.

Thus, we have that σ(A,S ∪ {e}) − σ(A,S) =
∑

G′∈G(S)
s.t.6∃(z,v)∈E′

p(V \{v}, G′, S)we

(

|RA(G
′′′)|−|RA(G

′)|
)

,

where G′′′ is the graph G′ augmented with the edge e and the

1E′ and E′′ denote the edges sets of graphs G′ and G′′, resp.
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number of live-edge graphs such that the edge e has been se-
lected is the same as the number of live-edge graphs for which
no incoming edge is selected for v. Note that this value is
greater or equal than zero because |RA(G

′′)| ≥ |RA(G
′)|.

In order to prove that the function is submodular, we show
that for each pair of sets S, T such that S ⊆ T ⊂ Ē\E
and for each e = (a, v) ∈ Ē\(T ∪ E), σ(A,S ∪ {e}) −
σ(A,S) ≥ σ(A, T ∪ {e}) − σ(A, T ). Let V ′ be the set of
nodes that have an incoming edge from the set T\S, namely,
V ′ = {v : (w, v) ∈ T\S}. Observe that for any live-edge
graph G′ ∈ G(S) for which the nodes in V ′ have no incoming
edges there exists G′

1, . . . , G
′
ℓ ∈ G(T ) such that G′ ⊆ G′

i for

any i = 1, . . . , ℓ and RA(G
′) ⊆ RA(G

′
i), where ℓ = 2|T\S|.

While for all graphs G′ ∈ G(S) that have at least an edge
incoming a node in V ′, there exists a corresponding live-edge
graph G′′ ∈ G(T ) that is sampled with the same probability
as G′. In the former case, instead, we have that the proba-
bility for each G′

i, i = 1, . . . , ℓ, is equal to the probability of
the corresponding live-edge G′ in G(S) in which no incom-
ing edge is selected for the nodes in V ′. Formally we have
that PS (G′) = p(V \V ′, G′, S)

∏

v∈V ′(1−
∑

z∈Nv

wzv) and

PT (G′
i) = p(V \V ′, G′, S) · p(V ′, G′, T\S), where

p(V ′, G′, T\S) =
∏

z∈V s.t.
(u,z)∈E′∩(T\S)

wuz

∏

z∈V s.t.
6∃(u,z)∈E′∩(T\S)

(

1−
∑

w:(w,z)∈E∪T

wwz

)

.

Then,
∑ℓ

i=1 PT (G′
i) = p(V \V ′, G′, S)

∏

v∈V ′(1 −
∑

z∈Nv

wzv) = PS (G′).
Finally we can write the difference in the increment when

adding the edge e = (a, v) in the set T as follow:

σ(A, T ∪ {e})− σ(A, T ) =

∑

G′∈G(S)
s.t.6∃(z,v)∈E′

(

ℓ
∑

i=1

PT (G′
i) we

(

|RA(G
′′)| − |RA(G

′)|
))

≤

∑

G′∈G(S)
s.t.6∃(z,v)∈E′

(

p(V \V ′, G′, S)
∏

v∈V ′

(1−
∑

z∈Nv

wzv)
)

we

(

|RA(G
′′)| − |RA(G

′)|
)

≤
∑

G′∈G(S)
s.t.6∃(z,v)∈E′

p(V \{v}, G′, S) we

(

|RA(G
′′)| − |RA(G

′)|
)

that is equal to σ(A,S ∪ {e}) − σ(A,S), where G′′ is the
graph G′ augmented with the edge e.

Thus, we can use a simple greedy algorithm (reported in
Algorithm 1) to find a set S of edges whose value σ(A,S)
is at least 1 − 1/e times the one of an optimal solution for
the IMA Problem. The algorithm iterates B times and, at
each iteration, it adds to an initially empty solution S an
edge ê = (â, v̂) s.t. (â, v̂) ∈ Ē\E that gives the maximum
marginal increment of the value of σ(A,S). Note that we
are not able to compute exactly the value of σ(A,S) in poly-
nomial time but, with probability 1 − δ, we can compute an

Algorithm 1 Greedy algorithm for IMA.

Require: Graph G = (V,E,w); Seed set A; Budget B
1: for i = 1, 2, . . . , B do
2: for each e ∈ Ē\(E ∪ S) do
3: Use repeated sampling to estimate a (1 + λ)-

approx. of σ(A,S ∪ {e}) with prob. 1− δ
4: Let σ̃(A,S ∪ {e}) be the estimation

5: ê=argmax{σ̃(A,S∪{e})|e=(a, v) ∈ Ē\(E∪S)}
6: S := S ∪ {ê}

7: return S

1 + λ approximation of it by sampling a polynomial number
of live-edge graphs, for any λ and δ [Kempe et al., 2015]. We
then exploit the result of Nemhauser et al. that allows us to
analyze the greedy algorithm in the case of monotone sub-
modular objective functions that can be approximately evalu-
ated [Nemhauser et al., 1978]. The next corollary follows.

Corollary 1. Algorithm 1 guarantees an approximation fac-

tor of
(

1− 1
e
−ǫ

)

for the IMA problem, where ǫ is any positive

real number.

The computational complexity of Algorithm 1 is O(B ·
|V | · g(|V |, |E| + B)), where g(|V |, |E| + B) is the com-
plexity of computing an approximation σ̃(A,S) of σ(A,S)
in a graph with |V | nodes and |E| + B edges. More pre-
cisely, it runs in B iterations, each of which requires es-
timating the expected spread of O(|V |) node sets. Since
g(|V |, |E| + B) = O(|E| · R) where R is the number of
simulations, then the complexity of the greedy algorithm is
O(B · |V | · |E| · R) which is clearly infeasible, in terms of
running time, for very large real networks.

4 Improving the Running Time

In what follows we propose some techniques to heuristically
reduce the running time of the greedy algorithm. Note that
this techniques can be applied to the greedy algorithm pro-
posed in [D’Angelo et al., 2019] and to Algorithm 1. In Sec-
tion 5 we evaluate an implementation of the algorithm that
exploits a combination of these heuristics.

• Exploiting submodularity. Since σ(A,S) is submod-
ular, we have that the increment to the expected num-
ber of active nodes after adding an edge e to G(S) is
monotonic non-increasing. Thus, the increment is up-
per bounded by any solution S′ ⊆ S with the addition
of the new edge e, that is σ(A,S′ ∪ {e}) − σ(A,S′) ≥
σ(A,S ∪ {e}) − σ(A,S). We can exploit this property
in Algorithm 1 to reduce the computational complexity
of our algorithm. Consider the loop at line 1 for any
iteration i ≥ 2 and for some edge e, we check if the in-
crement found so far is greater than the increment in the
previous iteration, i.e., i − 1, with the edge e. In this
case, in fact, we know that the edge e cannot increase
the value of σ(A,S) more than the maximum found so
far. Therefore, in this case we prune the search.

• Live-edge graph reduction. At the end of each iteration
of the loop at line 1 of Algorithm 1, we reduce the size
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of all the live-edge graphs by removing the nodes that
become influenced when adding an edge to the solution.
Reducing the size after each iteration reduces the time
required to compute σ̃(A,S ∪{e}) for each new edge e.

• Low probability candidate edge pruning. The greedy
algorithm needs to compute σ̃(A,S ∪ {e}) for each e ∈
Ē\(E ∪S) to find an edge that maximizes this quantity.
However, if we have that wa1u > wa2u for some nodes
a1, a2 ∈ A and u ∈ V \A, then σ(A,S ∪ {a1, u}) >
σ(A,S ∪ {a2, u}). Thus, in the loop of line 2 we only
consider, for each u ∈ V \A, the edge (a, u) ∈ Ē\(E ∪
S) with the highest weight.

• Reduction to Limited Seed Selection. Given a
weighted directed graph with edge weights capturing in-
fluence probabilities (in ICM or LTM), an integer B′,
and two sets of nodes A,L ⊆ V , the Limited Seed Se-
lection problem (LSS) aims to to find a set of B′ users
S ⊆ L such that, by targeting S ∪A, the expected num-
ber of influenced users is maximum. Nodes in S are
excluded from the objective function.

Problems IMA and LSS have the same objective func-
tion, but the former looks for a set of edges, while the
later looks for a set of nodes to be added to a give set
of seeds. In what follows we describe how to transform
an instance IIMA of the IMA problem into an instance
ILLS of the LSS problem and how to transform a so-
lution SLSS for ILLS into a solution SIMA for IIMA

with the same value. Given IIMA = (G,A,B), we

define ILSS = (Ĝ, L,B) where Ĝ = (V̂ , Ê, ŵ) is a
graph obtained by adding |L| = |V \A| · |A| nodes and
edges to G. Formally, let L = ∪a∈ALa be the addi-
tional nodes, where |Li| = |V \A| and La ∩ Lb = ∅,

for each a, b ∈ A, a 6= b. Then, V̂ = V ∪ L and

Ê = E ∪
⋃

a∈A(La × (V \A)). The weights of the
new edges are equal to that of the corresponding edges
in Ē\E, i.e. ŵa′v = wav , for each a ∈ A, a′ ∈ La, and
v ∈ V \A. Any solution SLSS for ILSS is made of nodes
in L and each of these nodes corresponds to unique edge
in G, we define SIMA accordingly. We denote with σG

and σ
Ĝ

the expected number of influenced nodes in G

and Ĝ, respectively. The next theorem show that the two
solutions have the same value.2

Theorem 2. In both ICM and LTM, σ
Ĝ
(A∪SLSS , ∅) =

σG(A,SIMA) +B.

Thanks to Theorem 2, we can use any algorithm for LSS
to solve IMA. Problem LSS is different from the in-
fluence mazimization problem in [Kempe et al., 2015].
However, many algorithm for this latter can be easily
adapted for solving LSS. In particular, we adapt the al-
gorithm presented in [Cohen et al., 2014] such that it
finds a seed set S⊆L, given a limited set of nodes L.

5 Experimental Study

In this section we experimentally evaluate the performance of
our greedy algorithm and of that in [D’Angelo et al., 2019].

2Note that the objective function of LSS is σ
Ĝ
(A∪SLSS , ∅)−B.

Name |V | |E|
Software Engineering (SE) 3,141 14,787

Theoretical CS (TCS) 4,172 14,272
High-Performance Comp. (HPC) 4,869 35,036

Wiki-Vote (Wiki) 7,115 103,689
Computer Graphic (CGM) 8,336 41,925
Computer Networks (CN) 9,420 53,003
Artificial Intelligence (AI) 27,617 268,460

Slashdot (Sl) 51,083 130,370
Epinions (Epi) 75,879 508,837

Slashdot-Zoo (Sl-z) 79,116 515,397
Digg 279,630 1,731,653

Citeseer 384,413 1,751,463
Twitter 465,017 834,797

Table 1: Real-world networks.

For both ICM and LTM, we implemented two versions of
these algorithms: GREEDY1 exploits the first three heuristics
described in the previous section; and GREEDY2 exploits the
reduction to LSS. We compare the number of activated nodes
in a graph augmented by using the greedy solution with the
number of activated nodes in the original graph and in the
graph augmented by using several alternative baselines.

All our experiments have been performed on a com-
puter equipped with two Intel Xeon E5-2643 CPUs (6 cores
clocked at 3.4GHz) and 128GB RAM; our programs have
been implemented in C++ (gcc compiler v4.8.2 with opti-
mization level O3). We evaluate the performance of the al-
gorithm on four types of randomly generated directed net-
works which exhibit many of the structural features of com-
plex networks and on real-world graphs that are suitable for
our problem, taken from KONECT [Kunegis, 2013], Arnet-
Miner [Arnetminer, 2015] and SNAP3 repositories4. The size
of the graphs are reported in Table 1. For both synthetic and
real-world networks, we choose 0.1% of the nodes in V as
seeds and we add up to B = 2 · |A| edges. For these exper-
iments, the seed nodes are chosen uniformly at random. The
weights on the edges in both models are generated as fol-
lows: In ICM we are assigned the probabilities to the edges
according to the weighted model, i.e., for each edge (u, v),
assign wuv = 1/Nv; In LTM instead we generate for each
node v ∈ V a random variable w̄v ∈ [0, 0.5] that repre-
sent the probability that v does not select any edge in the
live-edge graph, then we assigned for each edge (u, v) in the

graph a weight equal to 1−w̄v

Nv

and w̄v

2 is assigned to a new

edge.5 As a measure of the quality of the solution, we adopt
the expected number of active nodes σ(A,S). As discussed
in the preliminaries, it has been proven that evaluating this
function is #P -complete in general. However, by simulat-
ing the diffusion process a polynomial number of times and
sampling the resulting active sets, it is possible to obtain arbi-
trarily good approximations to σ(A,S). We experimentally
tested that 500 samples are enough to obtain a good estima-

3http://snap.stanford.edu/data
4Here we report only the results on real world networks, those

on random instances can be found in the full version of the paper.
5Note that it is unlikely that more than two edges towards the

same node in V \A are added in the solution.
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Figure 1: Comparison between GREEDY2 and the baselines on
Slashdot-Zoo for ICM (top) and LTM (bottom).

tion. Hence, we run 500 trial to estimate the value of σ in
the algorithms and in the final solution. In Table 2, we re-
port: σ(A, ∅) and σ(A, ∅)% that are the absolute and rela-
tive initial number of active nodes; σ(A,S) and σ(A,S)%,
are the absolute and relative number of active nodes after
the edge addition; the relative increment computed as I =
σ(A,S)−σ(A,∅)

σ(A,∅) × 100; and T , the time in seconds. The ex-

pected number of active nodes in GREEDY1 and GREEDY2
are similar, except from the time (GREEDY2 is faster), and a
small difference is due to the sampling technique used to es-
timate σ̃(A,S). Thus we reported the results for GREEDY2.
From the table we can see that our algorithm is able to highly
increase the number of activated nodes with respect to the
original graph. Moreover, thanks to the reduction to LSS,
the running time is small and this allows us to solve IMA in
large networks. We compare GREEDY1 and GREEDY2 with
the following alternatives that connect the given seed set to
a set of B nodes chosen accordingly. AdamicAdar (AA):
nodes with the highest Adamic-Adar [2003] index; PrefAtt
(PA): nodes chosen according to the Preferential Attachment
model [Bollobás et al., 2003; Newman, 2001]; Jaccard (J):
nodes with the highest Jaccard [1901] coefficient; Degree
(D): nodes with the highest out-degree; Topk (TopK): nodes
with the highest harmonic centrality [Boldi and Vigna, 2014];
Prob (Prob): nodes adding the edges with highest probability;
Seed (KKT): nodes chosen by the greedy algorithm proposed
in. [Kempe et al., 2015]; Random (R): nodes extracted uni-
formly at random. In Figure 1, we compare GREEDY2 with

G σ(A, ∅) σ(A, ∅)% σ(A,S) σ(A,S)% I% T

IC
M

SE 13.38 0.43 103.45 3.29 670.95 0.04
TCS 9.49 0.23 97.63 2.34 928.76 0.07
HPC 9.36 0.19 165.75 3.40 1670.83 0.07
Wiki 10.07 0.14 333.37 4.69 3257.87 0.12
CGM 20.34 0.24 257.62 3.09 1166.71 0.12
CN 22.21 0.24 397.95 4.22 1765.86 0.10
AI 68.94 0.25 1017.82 3.69 1362.71 0.47
Sl 126.11 0.25 612.52 1.20 408.63 1.72
Epi 352.17 0.46 1230.23 1.62 249.32 3.25
Sl-z 570.84 0.72 3425.87 4.40 505.14 2.63
Citeseer 683.16 0.18 13072.36 3.40 1813.52 12.20
Twitter 2861.20 0.62 207061.00 44.53 7136.87 10.23
Digg 3848.57 1.38 14835.40 5.31 285.48 14.32

L
T

M

SE 12.40 0.39 59.45 1.89 276.88 0.10
TCS 8.34 0.20 51.78 1.24 430.62 0.13
HPC 7.91 0.16 87.98 1.81 935.87 0.39
Wiki 9.17 0.13 120.93 1.70 1151.57 1.33
CGM 16.69 0.20 128.96 1.55 525.37 0.29
CN 18.30 0.19 204.73 2.17 936.94 0.43
AI 53.15 0.19 530.99 1.92 767.02 4.74
Sl 87.97 0.17 663.43 1.30 592.51 6.82
Epi 174.98 0.23 2248.09 2.96 999.34 37.42
Sl-z 206.35 0.26 3203.52 4.05 1160.21 36.48
Citeseer 623.82 0.16 5901.46 1.54 846.03 42.98
Twitter 1673.07 0.36 127414.00 27.40 7515.56 13.33
Digg 447.59 0.16 14002.80 5.01 3028.52 128.43

Table 2: Results for real-world networks.

the other approaches on the Slashdot-Zoo network. Results
for other networks and for GREEDY1 are similar to this case.
The plots show the average number of active nodes as a func-
tion of the number of added edges. The experiments clearly
show that GREEDY2 outperforms all the alternative baselines
in terms of expected number of active nodes. Indeed, all
the other competitive algorithms require to add a large num-
ber of edges to A in order to significantly increase the ex-
pected number of influenced nodes with respect to the initial
value (B = 0), whereas our algorithm increases σ(A,S) by
a greater amount with only few added edges.

6 Conclusions and Future Work

We proposed a link recommendation algorithm that, differ-
ently from other link recommenders, takes into account the
amount of social influence provided by the new connections
to the receiver of the recommendation. Our algorithm has
a theoretical performance guarantee and, moreover, we have
experimentally shown that the algorithm can be used in very
large real-world networks and thus can be applied in practice.

Our algorithm aims at maximizing the amount of influence
of the users that receive the recommendation. This can be
used to improve the popularity of niche users and counter-
balance that of famous ones. One interesting open question
would be to devise a link recommender that directly consid-
ers in its objective function the balancing of social influence
among users, in such a way that social biases are mitigated.
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Éva Tardos. Maximizing the spread of influence through a
social network. Theory of Computing, 11:105–147, 2015.

[Khalil et al., 2014] Elias Boutros Khalil, Bistra N. Dilkina,
and Le Song. Scalable diffusion-aware optimization of
network topology. In 20th KDD, pages 1226–1235, 2014.

[Kimura et al., 2008] Masahiro Kimura, Kazumi Saito, and
Hiroshi Motoda. Solving the contamination minimization
problem on networks for the linear threshold model. In
10th PRICAI, pages 977–984, 2008.

[Kuhlman et al., 2013] Chris J. Kuhlman, Gaurav Tuli,
Samarth Swarup, Madhav V. Marathe, and S. S. Ravi.
Blocking simple and complex contagion by edge removal.
In 13th ICDM, pages 399–408, 2013.
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