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The deep structural properties of a quantum information theoretic approach
to formal languages and universal computation (the unifying tool being the
Quantum Spin Network Automaton scheme of computation), as well as those
of the topology problem of deªning the presentation of the Mapping Class
Group of a smooth, compact manifold are shown to be grounded in the com-
mon categorical features of the two problems.

1. Hilbert and Physics
The role and presence of David Hilbert in Physics are most probably as
relevant as they are in Mathematics. His fundamental contributions to
functional analysis, in particular the introduction of the notion of inªnite-
dimensional space (now universally referred to as Hilbert space) became
crucial in quantum mechanics as well as in several areas of classical phys-
ics; and his discovery of the action of the ªeld equations, in parallel to and
independently from Einstein’s, had a tremendous impact in general rela-
tivity (Hilbert 1924). However, only recently, with the development of
Quantum Information, Hilbert’s ideas—in fact, his philosophical views—
enter at a very fundamental level, and let his profound nature of a true,
dedicated, superb man of science most strongly emerge («Wir müssen
wissen, wir werden wissen»), standing on two of his famous 23 problems for
the XX-th Century.

Hilbert’s interest in problems bearing on the foundation of classical
mathematics (Hilbert 1900), essentially bracketed between two Interna-
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tional Congresses of Mathematicians, the ªrst in Paris in 1900, the second
in Bologna in 1928, has now come to be known as Hilbert’s Program. The
program calls for a formalization of all of mathematics in axiomatic form,
together with a proof that this axiomatisation of mathematics is consistent
(Gray and Rowe 2000). Three of the questions posed there are: 1) is math-
ematics complete? 2) is mathematics consistent? 3) is mathematics decid-
able? (the Entscheidungsproblem, the “decision problem”). Such problems
bear on some of the most spectacular progress in mathematics of the past
century, for example they have to do with Gödel’s second incompleteness
theorem. But, also, quantum information has cast a new light on these fun-
damental questions, entering in this intriguing scenario with a novel per-
spective whose reach and signiªcance have mostly to do with algorithmic
complexity and decidability.

In the spirit of this far-reaching, unifying program, this note aims to
show that category theory allows one to unveil an unexpected and deep
connection between a number of fundamental problems belonging to ap-
parently distant scientiªc ªelds. Speciªcally, by resorting to the language
of category theory, one can envisage a surprising equivalence (to wit, a for-
mal identity) between: i) the presentation of the group of diffeomorphisms
in the topology of manifolds; ii) the composition of angular momenta in
quantum mechanics; iii) Lambda calculus and Pi calculus in the theory of
computation and of programming within symbolic manipulation schemes
and iv) the proof theory in linear logic. As an illustrative case, here we
shall conªne attention to the equivalence between the ªrst two problems,
leaving the most general case for a future paper.

2. Topology of Manifolds
We enter now the realm of topology. The latter deals with equivalence
classes of geometrical objects which are globally invariant under biuni-
vocal, bicontinuous mutual transformations. The main objects of topol-
ogy are manifolds, i.e., spaces every point of which has a neighbour-
hood homeomorphic to a Euclidean space. The most general property of
3-manifolds (Thurston 1997) is prime decomposition: every compact orient-
able 3-manifold M decomposes uniquely as a connected sum M � P1#•••
#Pn of 3-manifolds Pi, which are referred to as Prime Manifolds because
they can be decomposed as connected sums only in the trivial way
Pi � Pi#S(3).

The fundamental tool for classifying manifolds is to study their set of
invariants. In standard topology invariants used to be created to distinguish
between manifolds according to properties which could be detected via a geo-
metrical representation; and the invariant deªnition would in this case make

Perspectives on Science 99



clear what property the invariant is associated with. For example, the
genus g of a smooth, closed, oriented surface S (i.e., the number of handles
of S, which fully determines topological type of S) is obtained from the
topological invariant known as Euler number �

�(S) � 2 � 2g,

and the latter can be easily evaluated by Euler’s formula �(S) � V � F �
E upon tessellation of S; with V � #Vertices; F � #Faces; E � #Edges.

New invariants of three-manifolds (hence of knots) were instead ‘dis-
covered’, whose deªnition is based on topological quantum ªeld theory
‘technology’. These invariants provide information about purely topological
properties we would be unable to detect, nor even to hint, via the mere
geometric representation.

Of particular interest in this context is the set of questions bearing on
the topology of surfaces and in particular the mapping-class-group pre-
sentation problem (Birman, Hilden 1971).

For S a Riemann surface of genus g ≤2, the mapping class group
MCG(S) is a discrete group of symmetries of S interpreted as the group of
isotopy-classes of the automorphisms of S. Speciªcally, for M a (smooth)
topological manifold, the mapping class group is the group of isotopy-
classes of the diffeomorphisms of M:

MCG(M) � Diff(M)/Diff0(M),

where Diff(M) is the group of diffeomorphisms of M, whereas Diff0(M) is
the group of diffeomorphisms of M homotopic to the identity by a homo-
topy that takes the boundary into itself.

MCG(M) is generated by Dehn’s twists (Dehn 1938), deªned as follows.
Consider � a simple closed curve in S. A tubular neighborhood A of � is
an annulus. The Dehn twist � is the map from S to itself which is the
identity outside A and inside A is a full (2	) rotation of the boundaries of
A (topologically equivalent to circles) one with respect to the other. Theo-
rems by Dehn, Lickorish and Humpries state that the minimal number of
curves necessary to generate MCG(S) is 2g � 1 for g 
 1. Typically curves
�j, j � 1, . . . , 2g � 1, are chosen to be elements of the homology basis,
i.e., representative cycles of the homology, of S.

In general the problem of ªnding the presentation of MCG(S) requires
the introduction of the appropriate combinatorial structure, which resides
in the Hatcher-Thurston complex.
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3. The Hatcher-Thurston Complex
Consider a set of pairwise disjoint non-separating simple closed curves on
S, C1, C2, . . . , Cg, such that the surface obtained from S by cutting it
along all Ci, 1 � 1, . . . , g is connected (i.e., it is a sphere with 2g bound-
ary components). The set of representatives of their equivalence class,
{c1, c2, . . . , cg} is called a ‘cut system’ and it is customarily denoted by
�c1, c2, . . . , cg�.

Let v and w be two cut systems. Suppose that there are c ∈ v and d ∈ w
such that the number of mutual intersections i(c,d) � 1, and v � {c} �
w � {d}. In this case, we say that w is obtained from v by an elementary
move and we write v ⇔ w.

If �c1, c2, . . . , ci, . . . , cg� �c1, c2, . . . , ′c i , . . . , cg� is an elementary move, we
write simply �ci� ⇔ � ′c i�.

The graph HTg(S), whose vertex set consists of all the cut systems on S
and whose (unordered) edge set consists of all pairs of vertices {v, w} such
that v ⇔ w, is the 1-skeleton of the Hatcher-Thurston complex HT(S)
(Hatcher, Thurston 1980).

Triangles. If three vertices have g � 1 common elements and if the re-
maining classes c, c
, c� satisfy i(c,c
) � i(c, c�) � i(c
,c�) � 1, then there is a
triangle relation, which writes

�c� ⇔ �c
� ⇔ �c�� ⇔ �c�.

Rectangles. If four vertices have g � 2 common elements and if the re-
maining classes c1, c2, d1, d2 are such that i(c1, c2) � i(d1, d2) � 1, i(ci, dj) �
0, i, j � 1,2, then there is a rectangle relation,

�c1, d1� ⇔ �c1, d2� ⇔ �c2, d2� ⇔ �c2, d1� ⇔ �c1, d1�.

Pentagons. If ªve vertices have g � 3 common elements and if the re-
maining classes c1, c2, c3, c4, c5 have representatives intersecting each other
in the following way: i(c1, c2) � i(c2, c3,) � i(c3, c4) � i(c4, c5) � i(c5, c1) � 1,
whereas all other pairs ci,cj not listed have i(ci, cj) � i(cj, ci) � 0, then there
is a pentagon relation,

�c1, c4� ⇔ �c2, c4� ⇔ �c2, c5� ⇔ �c3, c5� ⇔ �c1, c3� ⇔ �c1, c4�.

The Hatcher-Thurston complex HT(S) is a two-dimensional CW-complex
(i.e., a simplicial complex made of a set of basic building blocks [cells]
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topologically glued together) obtained from HTg(S) by attaching a 2-cell
along each triangle, rectangle and pentagon. Hatcher and Thurston
used this complex to get a presentation for the mapping class group for
closed orientable surfaces, proving that HT(S) is connected and simply
connected.

This construction has to be kept in mind as we move to knots, which
play a crucial role in the discussion of topological invariants, because they
bear on the whole structure of manifold invariants and can be constructed
by a standard “cup/cap” method out of braids.

4. Knots
Knots are equivalence classes with respect to isotopies (Birman 1974).
Central problem of knot theory is the classiªcation of knots, i.e., given
two knots deciding whether or not they are topologically equivalent.
Classiªcation is made in terms of invariants, in the form of polynomials
whose coefªcients encode the topological properties of a class of knots (Al-
exander polynomial (Alexander 1928), Jones polynomial (Jones 1985),
etc.). The construction is often non-trivial. For example the Alexander
polynomial (in the running variable t ∈ R) is constructed in the follow-
ing way.

Given the knot projection over a plane, number the self-intersection
over-crossings following the knot along a selected orientation from an ar-
bitrary start point P. Let Xk, with k � 1, . . . , n, denote the arc between
overcrossings k � 1 and k (mod n). Underpass at k can be of: type I, if at k
under-pass connecting Xk to Xk�1 it is crossed by over-passing Xi from
right to left; type II, if at k under-pass connecting Xk to Xk�1 it is crossed
by over-passing Xi from left to right.

The Alexander matrix A, of elements aki is then constructed as follows.
The k-th row of A corresponds to the k-th underpass. Except for akk, akk�1,
aki, i � k, k � 1, all elements of the k-th row of A are zero, with the pre-
scribed exceptions: i) for i � k or i � k � 1, akk � �1; akk�1 � 1, ii) for
i � k, k � 1, akk � 1, akk�1 � �t, aki � t �1, for type-I underpass;
akk � �t, akk�1 � 1, aki � t � 1, for type-II underpass.

The Alexander Polynomial �(t) is derived from A calculating any mi-
nor of order n � 1 and multiplying it by the power �m (m ∈ N) of �t in
such a way that the polynomial in t thus obtained has no negative powers
and has positive constant term. For example, the ‘trefoil’ knot has �(t) �
1 � t � t2.

The construction of the Jones Polynomial is still combinatorial, but it
is based on a set of subtle properties of topological quantum ªeld theory
rather than on the simple algebraic features of the knot incidence matrix.
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For the trefoil knot the Jones polynomial in the running variable q ∈ C is
J(q) � q�1 � q�2 � q�4.

It is crucial here that as far as Algorithmic Complexity is concerned,
while evaluation of the Alexander polynomial is P (a lower cost, because
this polynomial does not provide a complete classiªcation of knots, for ex-
ample it is unable to distinguish amphicheiral knots), evaluation of the
Jones polynomial—which provides a more complete classiªcation—is a
#P-hard problem from the computational point of view (Jaeger, Vertigen,
Welsh 1990): there exist no efªcient classical algorithms for its evaluation.
However, the Jones polynomial is efªciently evaluated (i.e., in poly-time
and in the additive approximation) by the spin network quantum automa-
ton, discussed in the next section.

5. Physics and Information Manipulation: The Spin Network Quantum
Automaton
A discretized, idealized version of physics, quantum mechanics and topo-
logical quantum ªeld theory support each a different Turing-machine
computational model (or equivalent: circuits, automata, etc.), whose rep-
ertoire is determined (and limited) only by the physical theory itself. This
bears on hard undecidability questions, such as the Davis-Matijasevich-
Putnam-Robinson result on Hilbert’s tenth problem about the solution of
certain Diophantine equations, or the Boone-Novikov theorem about the
insolvability of the word problem for ªnitely presented groups. Indeed,
Quantum Information Theory can efªciently approach these hard topolog-
ical or geometric problems reducing their computation to polynomial
(both space and time) complexity.

A particularly promising scheme is topological quantum computation,
which is designed to comply with the behaviour of partition and correla-
tion functions of a non-abelian topological quantum ªeld theory, with
gauge group G � SU(2). The action of the theory is the non-linear Chern-
Simons-Witten (CSW) action (Witten 1989), (Kohno 1992), character-
ized by a coupling constant �, referred to as the level of the theory. The
key point here is that, due to their invariance under gauge and diffeo-
morphism transformations, which freeze out local degrees of freedom, par-
tition and correlation functions of such theory share a global, ‘topological’
character. It was a seminal result of Witten the discovery that they encode
topological information.

We shall focus on a speciªc topological quantum computational model,
the “Spin Network Quantum Automaton” (SNQA) which stems from a
discrete, ªnite version of the non-Abelian topological quantum ªeld the-
ory characterized by the CSW action. The SNQA is capable of solving in
the additive approximation a number of #P problems in topology and for-
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mal language theory in polynomial time (Rasetti, Marletto 2009) [a quan-
tum machine of dimension O(poly(n)) is said to operate in the “additive
approximation” if the algorithm performed by the unitary U over an
n qubit pure state |�� which can be prepared in O(poly(n)) time is such
that it is possible to construct a statistical ensemble in which, sampling
for a O(poly(n)) time two random variables, say X and Y, one ªnds E[X �
iY] � � | U | �].

The SNQA belongs to the class of quantum automata (Moore,
Crutchªeld 2000), deªned as a 5-tuples {H;L;U;| s�i;|s�acc}, where H is a
(ªnite dimensional) Hilbert space, L the language used to provide inputs
to the automaton and U a set of transition rules which describe the evolu-
tion of the automaton. |s�i is the initial state of the automaton and |s�acc its
ªnal (accepted) state. This model can be thought of as a Turing machine
whose tape is constrained to move only in one direction. The states of the
automaton coincide with the internal states of the machine, and L is gen-
erated by the alphabet A used to write the symbols on the tape. The tran-
sition rules are a set of unitary operators, one for each ‘letter’ of A, to be
applied whenever the automaton reads on the tape the corresponding sym-
bol. In the ensuing context the transition rules are but unitary representa-
tions of words, namely ªnite sequences of symbols, in the alphabet. A
word is accepted by the automaton with probability p, if p is the quantum
probability, i.e., the square absolute value for the evolution amplitude
from the initial to the ªnal state represented by that particular word ac-
cording to the unitary representation adopted.

In order to explain the SNQA construction in some detail, we shall
ªrst describe the Spin-Network Quantum Simulator (SNQS) (Marzuoli,
Rasetti 2002), (Marzuoli, Rasetti 2005), a computational model that
exploits the tensor algebra associated with the (binary) coupling and
recoupling theory of SU(2) quantum angular momenta. The SNQA
generalises the latter from simulator to automaton, to embrace the tensor
(co-)algebra (Bergen, Catoiu, Chin 2004) associated with the quantum
group (Majid 1995), (Kassel 1995) SUq(2). Consider n (quantum) angular
momenta with given, ªxed sum J. Each computational block of the spin-
network represents a particular way of combining pairwise irrep subspaces
of the Hilbert space associated with the given J. The Hilbert spaces thus
generated, each (2J � 1)-dimensional (J (J � 1) being the eigenvalue
of J2), are the simultaneous eigenspace of the squares of 2(n � 1)
Hermitean, mutually commuting angular momentum operators with
ªxed sum, of the intermediate angular momentum operators and of the
operator Jz (the projection of the total angular momentum J along the
quantization axis). For any given pair (n; J), allowed binary coupling
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schemes involve all the n � 1 angular momentum quantum numbers
{j1, . . . , jn�1 and also the quantum numbers {k1, . . . , kn�1 (corresponding
to the n � 1 intermediate angular momenta). Hilbert spaces correspond-
ing to different coupling schemes, although isomorphic, are not identical
since they actually correspond to (partially) different complete sets of
physical observables. This happens because the tensor product is not an as-
sociative operation. The js quantum numbers can be integers or half-odd
rationals, while the range of the kr is constrained by Clebsch-Gordan de-
compositions; they provide the alphabet in which quantum information is
encoded (the rules and constraints of the coupling schemes are instead part
of the ‘syntax’ of the resulting coding language). The ªnite-dimensional
Hilbert space in which computations are performed is the graph Gn with a
ªnite number of vertices, corresponding to the computational blocks, and
a set of edges corresponding to the allowed ‘elementary’ unitary evolutions
(gates) connecting different blocks.

The gates can be realized in a combinatorial way by noticing that each
computational block is actually a binary tree, whose leaves are labeled by
the irreps of the incoming spins, while the root is labeled by the quantum
number J of J. Any operation/transformation one can perform on such tree
can be reduced to the application of a set of elementary moves which are of
one of only two possible types: the twist operation, that simply swaps two
nearest Hilbert subspaces in the tensor product of characterizing the total
Hilbert space, and the rotation operation, which changes the binary cou-
pling structure of the concurrent Hilbert spaces in minimal way. The
twist amounts to modifying the computational states by a phase factor,
whereas the rotation is related to the unitary transformation implemented
by an SU(2) 6j-symbol (or 6jq). More speciªcally, the unitary trans-
formations associated with recoupling coefªcients (3nj symbols) of
SU(2) can be split into elementary j-gates, namely Racah and phase trans-
forms. A Racah transform is deªned formally as R:|. . .((ab)d c)ƒ . . . ;
JM��|. . .(a(bc)e)ƒ . . . ; JM�; where a, b, c, . . . denote generic, both incom-
ing (js’s) and intermediate (kr’s) spin quantum numbers, and the brackets
(ab) denote the coupling between a and b. A phase transform amounts in-
stead to introducing a phase factor whenever two angular momentum la-
bels are swapped P:|. . .(ab)c . . . ; JM��(�)a�b�c|. . .(ba)c . . . ; JM�.

The initial state of the automaton is a particular vector lying in the se-
lected computational graph of the spin-network. The transition rules of
the automaton—that describe the unitary processing of a word—can be
easily recast into sequences of elementary unitary gates. A projective
measurement on the ªnal state of the automaton will provide the prob-
ability of acceptance for the input word. Thus, on the spin-network graph
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a particular computation can be seen as a path (i.e., a sequence of edges)
starting from the vertex corresponding to the initial state and ending into
the vertex corresponding to the ªnal state. The crucial feature of Gn arises
from compatibility conditions satisªed by the 6j-symbols: the Racah and
the Biedenharn-Elliott identities, and the orthogonality conditions (Bie-
denharn, Louck 1981). The latter ensure that any simple path in Gn with
ªxed endpoints can be freely deformed into any other, providing identical
quantum transition amplitudes at the kinematical level. In this model, a
program is a collection of single-step transition rules, namely a family of
elementary unitary operations. Such prescriptions amount to selecting a
family of directed paths in the ªber space structure, all starting from the
same input state and ending in an admissible output state. A single path
in this family is associated with a particular algorithm supported by the
program. Those programs, which employ only gates that do not imply any
transport along the ªbre share their structural features with discretized
topological quantum ªeld theories. The combinatorial structure becomes
here prominent owing to the existence of a one-to-one correspondence be-
tween allowed elementary operations (Racah and phase tranforms) and the
edge set of Gn. When working in such purely discrete modes, the spin net-
work complies with all Feynman’s requirements for a universal simulator.

The SNQA (Marzuoli, Rasetti 2006), (Garnerone, Marzuoli, Rasetti
2006) is obtained from the SNQS, switching to the tensor (co-)algebra as-
sociated with the quantum group SUq(2), necessary as gauge group in the as-
sociated topological quantum ªeld theory. The ªbered-graph structure
which characterizes the computational space of the SNQA exhibits the
same combinatorial properties as the one related to the SNQS, because the
combinatorial features of the 6j coefªcients and the ones of their deformed
counterpart, 6jq, are the same. In addition, it proªts of the topological in-
sight provided by the deformation of the gauge group. Its computational
features derive from the rules of quantum angular-momentum addition,
enriched by the braiding structure induced by the deformation of the
gauge group. It is crucial to notice that switching to the SUq(2) represen-
tation theory induces two important properties. On the one hand, due to
the breaking of symmetry between Hilbert spaces induced by the co-
product (a deeply quantum feature, that has no counterpart at the classical
level nor in the SU(2) case), the basic element of the graph—the single
three-valent elementary vertex—is turned into a topological object, a
sphere with three holes referred to as pants, and the generation of the
full graph by gluing basic elements becomes a sequence of cobordism
operations. On the other hand, within the q-deformed counterpart of the
6j-symbol coming into play, the twist has a natural (unitary) generaliza-
tion which accounts for the two basic operations associated with over/
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under crossings of braids and link diagrams. Hence, in the SNQA the
state transformations consist of cobordism and pant decomposition, in-
stead of reducing to mere addition of quantum angular momenta (Garne-
rone, Marzuoli, and Rasetti 2007; Garnerone, Marzuoli, and Rasetti 2009)
and sum of the corresponding complex amplitudes (similar to Feynman
path sum) typical of the SNQS. In view of these topological features, the
SNQA recognizes the language of the braid group.

Notice that the structure above rests on the characteristic properties of
the building blocks of the theory: the 6j symbols. In particular, it is the
Biedenharn-Elliott identity, proper just to the 6j symbols (both conven-
tional and ‘quantum’), that leads to Pentagon relations among the sym-
bols themselves. The Racah identity instead generates Triangle relations,
while the Orthonormality Condition (Catalan trees with pairs of labels
identiªed) gives rise to Rectangle relations. This is what will allow us to
understand, in the next, conclusive section, that the global structure of the
SNQA—like that of the Mapping Class Group presentation, which is
obviousy related, through Dehn’s twists and cobordism, to the spin net-
work qwholeuantum automaton—is determined by a Closed Symmetric
Braided Monoidal Category.

6. Categories
In this ªnal section we want to show that the two sets of problems dis-
cussed previously are different—in representation, not in structure—real-
izations of the same scheme: a Closed Symmetric Braided Monoidal Category.
We proceed now to doing so, recalling ªrst very concisely the necessary
prerequisite notions of category theory (Mac Lane 1998), (Eilenberg, Kelly
1966), (Eilenberg, Mac Lane 1945).

A category consists of two classes, one whose elements are ‘objects’, the
other whose elements are ‘arrows’ (morphisms) between objects. The arrows
are composable: if ƒ:A →B and g:B →C, there is a composite arrow g • ƒ:a
→C. The composition has two properties: 1. Associativity: for all ƒ:A →B,
g:B → C, h:C → D, (h • g) • ƒ � h • (g • ƒ); 2. Identity. For all objects A in
the category there is an ‘identity’ arrow �A such that for all ƒ:A →B, ƒ • �A

� ƒ � �Bƒ.
Hence, a category can also be thought of as a directed graph G whose

vertices are all mathematical structures of the same kind (e.g., vector
spaces, sets, topological spaces) and whose edges correspond to morphisms
between such structures. Its toolkit of composition rules is deªned in such
a way that, for any two directed bonds in G (arrows) that form a path of
(chemical) length two from A to C via B, there is an arrow closing the tri-
angle ABC. In analogy with how one deªnes morphisms between struc-
tures in the same category, one deªnes functors: a functor is a map be-
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tween categories which sends objects and morphisms of a category to
objects and morphisms of another preserving the composition rules.

Category theory is the ultimate abstraction of the (arrow) relation oc-
curring diffusely in set theory, algebra, topology and logic, ƒ:a →b, were a
and b are the entities we attributed to the vertices of G, and ƒ is an arrow
whose source is object a and target is object b. A straightforward example
is: a and b are sets, and ƒ may then denote a total function from a to b, or
may be a partial function from set a to set b; or a and b are algebras of the
same type, and ƒ is a homomorphism between them; or a and b are topo-
logical spaces and ƒ a may be a continuous map between them; or a and b
may be propositions and ƒ a proof of a b (a entails b). It was just to support
such general deªnitions in terms of arrows, that Eilenberg and Mac Lane
introduced the structures named categories.

Indeed, it is by representing structures in terms of the existence and
properties of arrows and functors that category theory achieves its wide
applicability and its tremendous strength in generality and abstraction.
The typical representation mode of mathematics is by reference to the in-
ternal structure of objects. The applicability of the related description is
then limited to objects supporting such structure. Categorical descrip-
tions make no assumption about the internal structure of objects; they are
concerned exclusively with the ‘transfer’ of whatever structure is preserved
by the arrows. They are, in this sense, data-independent descriptions, i.e.,
one may expect that the same description applies to sets, graphs, algebras
and whatever else can be considered as objects in a category.

A very efªcient way to look at algebra is to consider not only the ele-
ments at issue (sets, groups, rings) but also at the mappings between them
(functions between sets, homomorphisms between groups or rings). In
general, “objects” and “arrows” connecting them. Generality comes from
the fact that a similar approach efªciently ªts topology (where arrows are
continuous maps and objects are spaces), geometry (here arrows are
smooth maps and objects are manifolds), and in general the entire body of
mathematics (including logic and the theory of formal languages) that can
ultimately—and universally—be connected with set theory.

Particularly amenable to description in terms of arrows are those con-
structions which are ‘canonical’. For example, in algebra, free and gen-
erated algebras are quite common canonical structures. An intriguing
‘circular’ feature here is that the arrow-theoretical description of such con-
structions captures all the basic structural features of the construct, in-
cluding the sense in which it can be considered to be canonical itself.

A monoidal category C is a category characterized by four speciªc basic
ingredients:
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i) a bifunctor �:C � C → C;
ii) an associator �, i.e., a natural isomorphism �:X�(Y � Z) ≅

(X � Y) � Z, for X,Y,Z ∈ C;
iii) a unit object E with two associated natural isomorphisms �, r; �:

E � X ≅ X; r:X � E ≅ X;
iv) a symmetry �, i.e., an involutive natural isomorphism �:X � Y ≅

Y � X.

The associator implies a pentagonal condition, which in turn implies asso-
ciativity at the level of objects:

Notice that in the frame of the category of sets, Set, on the contrary, it is
true in general that (X � Y) � Z � X � (Y � Z).

For M a monoid in a monoidal category, automata (Buchholz 2008)
can be viewed as objects of a category of representations of M, possibly
equipped with a start state and an observation function. If M is a monoid in
Set, this naturally yields a generalization of the standard notion of deter-
ministic automaton, in which the inputs to the automaton are elements of
an arbitrary monoid. Dropping the requirement that such generalized au-
tomata have start states gives rise to categories whose ªnal objects can be
utilized to deal with deterministic automata.

In order to implement this and to express non-determinism within this
new framework, so as to be able to incorporate quantum mechanics in the
picture, we need a number of auxiliary algebraic tools.

We can now proceed to an operation that generates in the frame of cate-
gories the analogue of what (quantum) deformation and the notion of co-
algebra, i.e., the deªnition of associated Hopf algebras, give rise to with
respect to Lie algebras. The construction is a bit formal, but easy to be un-
derstood if one keeps such analogy in mind.

Let K be a commutative semi-ring and consider the category whose
objects are K-semi-modules and whose arrows are K-linear maps. Such
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category turns out to be a monoidal category in which one can assume
K-algebras as monoids of the category. The corresponding automata are re-
ferred to as K-linear automata. K-linear automata are such that with input
K-algebra A they generate the category, whose elements correspond to
K-linear extensions of formal power series (Worthington 2009).

In such case of K-linear extension, one can deªne a notion of addition of
states, which is essentially identical with the superposition of states of
quantum mechanics, holding in fact for both states and inputs. It is this
addition that can be used to represent non-determinism. Moreover, addi-
tion of inputs allows us to deªne co-multiplication, which in turn endows
the category with a K-algebra structure. Co-multiplication of inputs cor-
responds essentially to “multiplication of languages.” If multiplication
and co-multiplication satisfy the necessary compatibility conditions, the
input elements generate ªnally the structure of a K-bi-algebra. This raises
numerous parallels between the theory of bi-algebras and the theory of au-
tomata and formal languages, which prove that co-multiplication is in-
deed a sort of hidden structural element in many standard constructions
involving automata and formal languages.

Let now Cm � �C, �, E� be a monoidal category. A monoid m in Cm is a
triple m � �M, �, �� that consists of an object M of C and two morph-
isms �:M � M →M (associative multiplication) and �:E →M such that
for the associative multiplication � the diagram

is commutative, and for the unit map � the diagram
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(recall that (M � E) ≅ (E � M) ≅ M) commutes. In other words, we have
here the fundamental characteristic building blocks, realizing the basic
pentagonal, square and triangular relations.

Notice that, in a perfectly analogous way, we can deªne a co-monoid in a
monoidal category C simply resorting to the notion of opposite. To each cat-
egory C one can formally associate an opposite category Cop which has the
same objects and for each arrow ƒ:A →B has an arrow ƒop:B →A, with the
composition ƒop • gop � (g • ƒ)op. A contravariant functor F on category C to
category D is just an ordinary (covariant) functor Cop →D. Manifestly, Cd �
�Cop, �

op, E� is a monoidal category if C is monoidal.
A comonoid d in Cd is a triple d � �C, �, �� that consists of an object

C ∈ C and two morphisms �:C →C � C. (coassociative comultiplication)
and �:E → C such that comultiplication � is coassociative:

(1P � �P) � �P(W) � (1P � �P)(W � W) � W � (W � W),

(�P � 1P) � �P(W) � (�P � 1P)(W � W) � (W � W) � W.

Notice that �P:P → P � P is an element in the category of monoids. One
could actually think of a category which is the monoid category extended
K-linearly, where K is a two-element idempotent semiring.

An important theorem, which provides a powerful working tool in the
frame of the scenario described, is the theorem stating that for m a monoid
and c a comonoid of a given monoidal category C in general hom(c,m) is a
monoid in the category of sets. This allows us to deªne the action of
monoids: for m � �M, �, �� in C a right action of M on X ∈ C is the arrow
�:X � M → X satisfying the commutative diagram, representation of M:

Since a bimonoid B is nothing but a monoid in the category of comonoids,
or—equivalently, a comonoid in the category of monoids, a bimonoid in
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K-linear monoid category is indeed a K-biagebra. This closes our circular
identiªcation process.

Conclusions
The construction of previous section completes the proof of the statement
given in the introduction. Category theory provides a unifying frame-
work, where the following fundamental problems belonging to apparently
from unrelated areas of science are found to be equivalent: i) Topology; the
presentation of the the mapping class group MCG(S) for a Riemann sur-
face S, namely of the group of diffeomorphisms in the topology of mani-
folds, consisting in a discrete group of symmetries of S generated by
isotopy-classes of the automorphisms of S; ii) the composition of quantum
angular momenta with ªxed sum J, basic tool for the construction of the
ªnite dimensional Hilbert space in which quantum computation is per-
formed by unitary evolution operators, i.e., the graph Gn, with a ªnite
number of vertices, basis for the construction of the quantum ªnite state
automaton known as Spin Network Quantum Automaton (SNQA); [and
two others, not discussed here: iii) � calculus and � calculus in the
theory of computation and programming in symbolic manipulation
schemes; iv) proof theory in linear logic]. These problems, when formu-
lated in the language of category theory exhibit a substantial formal iden-
tity, as they are but equivalent schemes in the frame of braided, symmetric
K-monoidal category, K being a commutative semiring.

This ªts pretty well into the global vision of mathematics which con-
sistently and constantly characterized Hilbert’s work: an inextricable mix-
ture of rigor and elegance, universality, deep unity in spite of the apparent
diversiªcation of objectives and techniques.
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