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1. INTRODUCTION

Understanding the structure and dynamics of the virtual networks formed by Internet
users and applications has become a major focus of Internet-related research [Crovella
and Krishnamurthy 2006]. While these networks are of great sociological interest,
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understanding their properties is also important for research topics as varied as in-
trusion detection, application design, and network capacity planning. However, this
broad applicability creates a tension in the Internet community: researchers in many
areas want to mine network data, but the primary data sources used by most analysis
systems—captured packets and network flow data—are vast and contain personal and
sensitive information. Using these systems can require computing power and a level
of access to the network unavailable to most interested researchers. Even systems
such as BLINC [Karagiannis et al. 2005], which operate “in the dark” by using only
network flow data, still associate flow records with users’ actual IP addresses, raising
privacy concerns that limit the availability of the data. The Internet2 network, for
example, does not allow the distribution of nonanonymized network flow data outside
the organization itself.

Given that packet inspection is not computationally tractable for high-speed data
networks and that access to raw network flow data raises serious privacy concerns,
the question becomes: If we restrict our data source to anonymized network flows,
can it still yield useful insights for Internet researchers? If one takes the traditional
view of network flow records as rows in a large relational database, the answer does
not seem promising; we are left largely with information about the magnitude of flows
between two unreliably identified ports on two unknown hosts. However, this purely
relational view of flow data has been shattered by approaches that use flow data to
build a complex host-to-host network, as proposed independently by our group [Meiss
et al. 2005] and by others [Karagiannis et al. 2005]. Such approaches allow us to apply
both machine learning and data mining techniques. Their success in traffic classifica-
tion and identification of network anomalies suggests great promise in treating flow
data more as feature vectors than as simple tuples.

The analytical framework we present in this article extends these approaches
by using network flow records to build graph representations of network traffic in
which the nodes are hosts, ports, or applications. This makes flow data amenable
to both machine learning techniques and approaches from complex networks analy-
sis. We present two case studies that illustrate the utility of this graph-centric
approach, extending and integrating our preliminary findings as described in Meiss
et al. [2007, 2008b]. The first study, involving behavioral networks, extends work
described in Meiss et al. [2008b]; the second, involving application identification
and classification, is novel to this presentation. In both cases, we compare results
from a 2005 dataset and more recent data from 2008. The framework we present
offers a number of original contributions to research in Internet traffic analysis and
measurement.

— We define a general weighted directed graph representation of network flow data
that allows for several single-mode projections, defining host-to-host (behavioral),
port-to-host (functional), and port-to-port (application) networks.

— We use only anonymized network flow records, requiring no access to packet con-
tents or the actual IP addresses associated with a flow.

— We apply analysis techniques from complex networks research to these graph
structures, showing the utility of this approach in two practical applications: (i) we
characterize different classes of traffic by their distributions and scaling relations
derived from flow graphs, with implications for network modeling, capacity plan-
ning, and application design; and (ii) we demonstrate how the topological properties
of flow networks can be used to develop a taxonomy of network applications which
can then accurately identify the function of unknown applications.

— We argue for the computational tractability of our approach and its potential use in
real-time analysis.
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— We present evidence through our longitudinal analysis that the long-tailed distri-
butions, scaling relations, and other large-scale properties we describe are not par-
ticular to our measurements, but rather inherent properties of Internet traffic data.

It is important to note that the overall aim of our flow analysis is not traffic classifica-
tion. We are not concerned with what individual flows are, but rather with what they
do: how they affect the network and what they allow us to predict about future activity
on the network.

In Section 2, we introduce related research in network flow analysis and indicate
how the present work compares to these approaches. In Section 3, we offer a technical
description of our data source, placing particular emphasis on its origin, extent, and
degree of anonymity. Section 4 describes the derivation of the data structures we pro-
pose as a framework for flow analysis. In Sections 5 and 6, we present case studies
showing the utility of this framework. Finally, in Section 7, we summarize our find-
ings and discuss the broader applicability of our approach for the Internet research
community.

2. BACKGROUND

While a great deal of Internet measurement research [Claffy 2006; Krioukov et al.
2007; Shavitt et al. 2004] has focused on investigation of the structure and growth dy-
namics of the physical Internet [Alderson et al. 2005; Fabrikant et al. 2002; Jin et al.
2000; Li et al. 2004; Medina and Matta 2000; Pastor-Satorras and Vespignani 2004;
Yook et al. 2002], researchers have devoted an increasing amount of effort to analyzing
the virtual networks formed by transport-layer connections. Because these networks
reflect the actual user-to-user interactions that make up network traffic, they serve as
a primary data source for modeling user and application behavior as well as detecting
malicious network activity. Internet routers facilitate the gathering of information on
user-to-user communications by the abstraction of a network flow, which is uniquely
defined by the IP address, protocol, and port used by both nodes involved in a network
transaction during a particular period of time. The most common form of flow data,
Cisco’s NetFlow, includes a variety of attributes that describe high-level features of
each flow; it does not contain the actual contents of any network conversation. Be-
cause of the large volume of data transmitted on modern networks—a single 10-Gbps
link can transfer well over half a petabyte of information every day—routers derive
flow information from a sample of actual network packets, often at a rate of 1:100
packets.

The flow-centered view of network activity has yielded substantial benefits already.
For instance, interdomain traffic has been studied on a global level by looking
at data representing all traffic received by specific service providers [Uhlig and
Bonaventure 2001]. A similar strategy has been used by the CAIDA measurement
infrastructure, which allows for the construction of traffic matrices representing the
traffic between pairs of Autonomous Systems [Claffy 1999; Huffaker et al. 2000].
More recently, aggregated flows have been used to detect anomalies and for time
modeling of traffic [Lakhina et al. 2004c]. A variety of tools have been developed to
support these aggregation-based analysis techniques: in particular, Mark Fullmer’s
flow-tools,! CAIDA’s cflowd,? and FlowScan® have been widely recognized and used in
capacity planning and bandwidth management, as well as basic academic research.

Ihttp://www.splintered.net/sw/flow-tools/
*nttp://www.caida.org/tools/measurement/cflowd/
3http://www.caida.org/tools/utilities/flowscan/

ACM Transactions on Internet Technology, Vol. 10, No. 4, Article 15, Publication date: March 2011.



15:4 M. Meiss et al.

Commercial systems such as Arbor Networks’ Peakflow* use network flow data for
statistical trending and anomaly detection. Autofocus also allows for the discovery of
dominant and unusual traffic clusters [Estan et al. 2003].

However, these tools, and most of the research they support, consider network flows
in the context of a traditional relational model. They examine properties such as
the proportion of traffic generated by particular applications or the longevity of cer-
tain classes of connection. While this approach has merit, it does not aid in explor-
ing properties that relate to the patterns of interaction formed by network flow data.
For these reasons, researchers are increasingly turning to more sophisticated analy-
sis techniques borrowed from machine learning and data mining. We now highlight a
number of recent projects in this area and indicate how our own proposed framework
relates to each one.

Good results in detecting traffic anomalies have been obtained through principal
component analysis of flow-based time-series data [Lakhina et al. 2004a, 2004b].
While this approach does consider network flows as contributing weight to the router
graph of the network, it departs from our approach by presuming the existence of
“typical” traffic patterns along subspaces of maximal data variance. Indeed, our previ-
ous experience [Meiss et al. 2005] and the data presented here suggest that this may
be an unrealistic assumption; real-world network data can exhibit unbounded vari-
ance even under normal conditions. A more recent project has used manifold learning
algorithms instead of principal component analysis to create a system that reduces the
dimensionality of flow data for visualization [Patwari et al. 2005]. That system allows
the user to explore relationships among a variety of entities represented in flow data,
including TCP destination ports. Our second case study also regards ports as indepen-
dent entities, but takes the additional step of clustering them hierarchically and using
this hierarchy to predict the function of unknown applications.

Other recent projects extend machine learning techniques beyond anomaly detec-
tion to encompass a variety of traffic classification tasks. The previously mentioned
BLINC system uses flow data to develop “graphlets” that describe the normal usage
patterns of a variety of network applications; these structures are then used in con-
junction with host information to predict the application associated with a given flow
independently of the port numbers used [Karagiannis et al. 2005]. Our second case
study takes a related approach in that we analyze flow patterns at multiple levels of
detail, but it is focused on classifying applications themselves rather than individual
flows; moreover, we do not incorporate any prior knowledge about the application pro-
tocols concerned when constructing our taxonomy. Other projects have used Bayesian
analysis [Moore and Zuev 2005] and unsupervised clustering algorithms [Erman et al.
2006] to associate flows with applications; the latter has been extended to work in cir-
cumstances where only asymmetric flow data is available [Erman et al. 2007]. Our
framework could be used in conjunction with any of these techniques to produce a hy-
brid system for traffic classification, but such an application is beyond the scope of the
present article.

There have also been some recent projects that apply machine learning and cluster-
ing techniques to partial packet traces in order to classify flows in real time [Bernaille
et al. 2006; Zhang et al. 2004]. These systems are quite promising for security applica-
tions in that they make classification possible even while a flow is still active and are
quite scalable, but their requirement for actual packet data is incompatible with our
goal of supporting research that relies only on anonymized flow data.

There has already been some application of complex systems analysis to application
networks, mostly notably that of the Web, and it is these projects which have been

4http://www.arbor.net/products_platform.php
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the most direct inspiration for the present work. The majority of Web mining studies
focus on the social network built from the link graph, in which vertices and directed
edges identify Web pages and hyperlinks, and links are seen as endorsements among
pages. Data gathered in large-scale crawls of the Web have uncovered the presence of
a complex architecture with small-world properties and long-tailed distributions that
characterize the structure of the graph [Adamic and Huberman 2001; Barabasi and
Albert 1999; Broder et al. 2000; Kumar et al. 2000; Laura et al. 2003]. Examples of this
complexity have included navigation patterns, community structures, congestion, and
other social phenomena resulting from users’ behavior [Huberman and Lukose 1997;
Huberman et al. 1998; Adamic and Huberman 2001; Menczer 2002, 2004]. Our own
work on analysis of Web request traffic has revealed important patterns of temporal
predictability and insight for Web traffic modeling [Meiss et al. 2008a]; however, such
analysis requires access to HTTP headers and is therefore outside the scope of the
approach presented here.

Besides the Web, other overlay networks have been examined in similar fashion,
most notably email interaction and peer-to-peer networks [Ebel et al. 2002; Newman
et al. 2002; Ripeanu et al. 2002; Saroiu et al. 2002]. Other researchers in the field have
applied graph analysis to security topics, focusing on monitoring and characterization
of the spread of computer viruses on the Internet [Forrest et al. 1997; Moore et al. 2002;
Newman et al. 2002; Pastor-Satorras and Vespignani 2001; Staniford et al. 2002] and
other malicious activities [Garetto et al. 2003; Moore et al. 2001; Singh et al. 2004; Zou
et al. 2004].

A great many studies have examined the structure of the overlay networks associ-
ated with individual peer-to-peer applications (e.g., Ripeanu et al. [2002] and Li and
Chen [2007]), but the popularity of any particular peer-to-peer service has proven fleet-
ing: the heyday of Napster is gone, Gnutella is fading away, and few even remember
WinMX. Our present work avoids consideration of any particular P2P application in
favor of treating them as a general class whenever possible. While this does make
our conclusions less specific, recall that our emphasis is on the effect that flows have
rather than their technical identity. Indeed, the results of our case studies imply that
P2P applications affect the network in similar ways independently of the specific pro-
tocols they use.

3. DATA SOURCE

We now provide a technical description of the particular source of network flow data
used in the present research. This anonymized source of flow data is typical of that
available to a broad audience of interested researchers and does not provide access to
host identities or captured packets.

The Abilene network, which is part of the Internet2 project,® provides an excellent
source of network flow data for studying properties of the traffic network formed by
interacting users. Abilene is a high-performance TCP/IP data network that spans the
United States and provides high-speed connectivity to research laboratories, colleges,
and universities throughout the nation. The backbone of the network consists of
10-Gbps fiberoptic links connecting eleven high-performance routers located in major
metropolitan areas. At the time of our initial data collection in April 2005, this net-
work nominally carried only academic and research traffic, and the several hundred
institutions that participate in the network were required to maintain their own
connections to the commodity Internet. These requirements have since been relaxed,
and at the time of our more recent connection in April 2008, the Abilene network had

http://abilene.internet2.edu/
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Fig. 1. (a) Typical activity levels between core routers in the Abilene network (sustained data rates in bits
per second). Source: loadrunner.uits.iu.edu/weathermaps/abilene; (b) illustration of a behavioral network
snapshot extracted from NetFlow data. Edge thickness represents amount of traffic. Flow records also
specify traffic direction (not shown).

peering relationships with a variety of commercial network providers and carried a
large quantity of traffic between colleges and the commodity Internet.

Among the users of the Abilene network are hundreds of thousands of undergradu-
ate students who are among the first adopters of new network applications. In addi-
tion, the network provides transit for data from dozens of international academic and
research networks, serving as a major transit path between Pacific Rim nations and
Europe and giving an international character to its traffic. Abilene also offers the valu-
able property of never being congested even during peak usage, offering a view of what
users do when the network itself does not impede their behavior. Typical levels of IPv4
traffic in the Abilene network are below 40% of capacity, as can be seen in Figure 1(a).

Current technology does not allow the collection of flow data for every single network
conversation on Abilene; each core router samples about one in a hundred packets from
their traffic load.® These packets are used to generate network flow information in
Cisco’s “netflow-v5” format,” which is sent from each of the core routers to an analysis
system at our university. In accordance with the privacy policies of Internet2, this
system removes the actual source and destination IP address of each flow, replacing
them with index values that maintain their identity only over the course of a single
day. Only this anonymized flow information is saved for analysis. On a typical day in
2005, the analysis system recorded around 700 million flow records; at 48 bytes per
flow record, a full day of data thus consumes over 30GB of disk space and arrives at
a mean rate of 3.1Mbps. By 2008, the daily number of flows had risen to nearly one
billion, with proportionally greater demands on storage and analysis.

4. CONSTRUCTING BEHAVIORAL AND APPLICATION NETWORKS FROM FLOW RECORDS

The analysis of flow records enables the construction of different networks that depend
on the way we aggregate the flow data. Each record describes the transmission of
some quantity of data from some host and port to some other host and port, without

6Information is not formally available on the exact mechanism by which packets are sampled. We have
empirically verified the sampling rate and conducted experiments to examine the effect of sampling bias on
our results. While that analysis is beyond the scope of this article, we were able to conclude that sampling
bias does not affect the reliability of the results presented here.

Twww . cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3.0/nfc_ug/nfcform.htm
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Fig. 2. The construction of behavioral, functional, and application networks from flow data. (a) Each raw
flow record describes how many bytes are exchanged between two hosts, identified by their IP addresses,
using application (TCP) ports on the sending and receiving hosts. Flows are aggregated over a day so that
we have the total amount of data exchanged by two hosts for each pair of ports; (b) by aggregating flow data
for each (anonymized) IP address across application ports, or focusing on individual standard ports, we can
build networks of hosts (clients and servers) that describe how users are connected with each other and with
services across the Internet; (c) by disregarding servers, and retaining TCP ports as entities, we can build
a functional network describing the relationships between user hosts and applications; (d) by focusing on
strength correlations among ports, we can cluster and identify application subnetworks.

identifying explicitly which host acts as a client and which acts as a server. Figure 2
illustrates different types of graphs that can be derived from the flow data, which we
refer to as behavioral, functional, and application networks.

In deriving the behavioral network associated with an application or group of appli-
cations (Figure 1(b)), we begin by recovering the roles of clients and servers. This is
done by examining the total number of flows that reference a particular port; because
clients use ephemeral port numbers and server port numbers must be known in ad-
vance, in any particular record, the server will almost always be the system with the
more frequently used port number. We can thus partition the set of all hosts into a sub-
set C = {i1, 12, - -, in,} of systems that act as clients and a subset S = {1, j2, -, jng} of
system that act as servers. Some computers on the Internet, especially those involved
in peer-to-peer networks, act as both clients and servers and are thus assigned to both
sets. Using the sets C and S, we construct a behavioral graph in which the nodes
represent individual hosts operated by users or organizations and edges represent the
directed transmission of data between a pair of hosts, aggregated over the course of
a day. Each weight w;; thus represents the total amount of sampled data sent from
a particular client to a particular server over the course of a day, and wj represents
the amount of data sent from a particular server to a particular client. This graph
representation yields a bipartite digraph between clients and servers, weighted by ag-
gregate volumes of traffic, as shown in Figure 2(b). The weighted representation of the
behavioral networks of Internet2 hosts is the basis for the analysis in the following
section.

ACM Transactions on Internet Technology, Vol. 10, No. 4, Article 15, Publication date: March 2011.
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When we retain port information and build a functional network among port num-
bers and client IP addresses, we are able to capture the variety of activities in which
each particular user engages (Figure 2(c)). Each weight in the network represents the
extent to which a host on the network has made use of a particular TCP port. (We
consider TCP data exclusively because UDP data on the Internet2 network is fairly
limited and dominated by network test traffic; there is nothing preventing the inclu-
sion of this data in principle.) Since in general each port corresponds to a specific
application, this functional network can be used to characterize applications by their
profiles, that is, by the amounts of traffic exchanged by users over the corresponding
ports. We can then study the associations among applications (ports) by comparing
their host profiles; the basic intuition is that correlated use of two applications by
users provides evidence that the applications have a similar purpose, similarly to the
way in which two papers that are consistently cocited are likely to be related. This
process allows for the construction of application networks (Figure 2(d)) having ports
as nodes and weighted edges representing the usage correlations, and therefore sim-
ilarity among ports as quantitatively detailed in Section 6. An application network
can be used to classify unknown applications based on their observed usage patterns.
In Section 6 we will present a rough taxonomy of Internet applications and include
the results of an attempt to predict the function of over a dozen unknown applications
without inspecting the content of any individual network packet.

5. CASE STUDY 1: BEHAVIORAL NETWORK ANALYSIS

We now present the results of a case study that shows how analysis of behavioral
networks derived from flow data can yield insight into network capacity planning and
application design.

5.1 Findings

This analysis is based on two sets of 24 hours of Internet2 flow data, the first gathered
starting at midnight EST on April 14, 2005, and the second gathered starting at
midnight EST on April 22, 2008. These were typical days in the life of the network,
with no known major outages or disruptions of service, and our findings are consistent
with those of earlier studies [Meiss et al. 2005].

For the 2005 dataset, in the course of the day, the flow collector received over 600
million flows involving almost 15 million hosts. Of these flows, 258 million (41.3%)
were Web-related and 82 million (13.1%) were associated with known P2P applica-
tions. While these classifications are based on TCP port numbers and are thus indi-
vidually suspect, the large and varied user population of Abilene strongly implies that
a majority of flows are correctly identified by port. The remaining 285 million (45.6%)
flows describe all other traffic, which includes network performance tests, pings, email,
interactive logins, and a wide variety of miscellaneous and unidentified applications.

The 2008 dataset is larger, comprising over 980 million flows and involving just
over 18 million hosts. The proportion of flows and edges associated with our cate-
gories changed somewhat, as shown in Figure 3. In particular, the proportion of traffic
associated with the Web has grown, and that associated with P2P applications has
apparently shrunk. However, this does not indicate an actual decline in the popu-
larity of P2P applications, but rather evolution in the relative popularity of different
applications and the ports they use. In Section 6, we describe how our application clas-
sification technique allowed us to identify new ports that have become associated with
BitTorrent; with the addition of these ports, the volume of traffic we can associate with
P2P networks is much greater in 2008 than in 2005. With the exception of Figure 3, all
of the analysis we describe includes these ports, which carry a relatively small number
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Fig. 3. Top: Proportion of collected flows generated by each category of traffic in 2005 (left) and in 2008
(right). Bottom: Relative sizes of bipartite graphs for each category of traffic as measured by number of edges
in 2005 (left) and in 2008 (right). As explained in Section 6, these charts underestimate the contribution of
P2P applications in 2008.

of very large flows that substantially increase the proportion of traffic associated with
P2P applications.

In 2005, of the total number of hosts, 5.82 million were observed behaving as clients
and nearly twice as many, 11.1 million, behaving as servers. Such a high proportion
of servers to clients indicates the presence of scanning traffic on the network: rogue
clients search for vulnerable servers. We find that the opposite is the case for Web
and P2P applications. When we examine just Web flows, we find 3.97 million hosts
behaving as clients and 0.68 million (less than one-fifth as many) behaving as servers.
Similarly, for P2P traffic, there were 0.71 million clients and only 0.14 million servers.
The remaining traffic shows 2.48 million clients and 10.6 million servers. The bipartite
behavioral graph that includes all hosts and applications contains 131 million edges.
If we examine subgraphs related only to particular classes of application, we find that
the Web graph contains 50.1 million edges (38.0% as many as the full graph), the
P2P graph contains 7.89 million edges (6.0%), and remaining TCP traffic contains 54.9
million edges (41.6%). (See Figure 3.)

For each category of traffic (Web, P2P, and the remainder), it is also instructive to
examine the degree of overlap between C and S, which we represent with the quantity

O =(ICINISp/qC|uU|S).

When O = 0, no host acts as both client and server; when O = 1, every host does so.
We would expect O to be lower for traditional client-server applications than modern
P2P applications, and indeed, we find that O = 0.013 for Web traffic, compared to
0.097 for P2P traffic. This is a strong indication that hosting content for the Web
is much less of a participant sport than sharing personal files, in that relatively few
users run both Web clients and servers. However, we also note that O = 0.15 for other
traffic, which suggests the presence of significant amounts of covert P2P traffic within
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Table I. Volume of TCP Traffic Observed for Major Classes of Network Application as
Determined by TCP Port Number
Web pP2p Other
2005 2008 2005 2008 2005 2008
Proportion of traffic 17.4% 28.5% 4.0% 7.1% 78.6% 64.4%

Mean data (client) 81 kB 146 kB 105 kB 395kB | 586 kB | 250 kB
Mean data (server) 471 kB | 936 kB | 515kB | 1270kB | 137kB | 243 kB

As discussed in Section 6, the port assignments for P2P applications were updated for
the 2008 dataset.

P2P, 4.0% P2P, 7.1%

/ Web, 28.5%\‘
\
\

\

| Other, 78.6%
A\ .

\ i
~

—~

Fig. 4. Proportion of traffic volume consumed by each category of traffic in 2005 (left) and in 2008 (right).
As discussed in the text, the set of ports associated with P2P applications has been revised for the 2008
dataset.

the unclassified data. In the next section, we expand on this by classifying traffic
irrespective of TCP port numbers.

The 2008 dataset indicates less scanning traffic, with clients outnumbering servers
by a healthy margin (12.8 million to 9.0 million). However, it duplicates the over-
whelming margin of clients over server in the categories of Web and P2P traffic (6.0
million to 940 thousand and 540 thousand to 160 thousand, respectively). Further-
more, the small degree of overlap between C and S is still present: O is again close to
0.01 for Web traffic. Surprisingly, we observe a large decrease in the amount of overlap
for P2P traffic, which has fallen by more than half, amounting to only 0.04. This low
degree of overlap may be the result of many participants in P2P networks operating in
bad faith: the ratio of clients to servers is over three to one, making it clear that many
prefer downloading files to providing them to others. Other possible causes include
the rise of projects monitoring the content of P2P networks and apparent asymme-
tries introduced by failed connections to servers that are no longer participating in file
swarms.

The total volume of traffic recorded in 2005 was approximately 1.85 trillion bytes,
with a mean of 124kB per host. In 2008 it had risen to 6.18 trillion bytes, with a
mean of 343kB per host. However, because of the sampling involved in constructing
the flow data at the routers, the true amount of traffic was actually about 100 times
greater than these values. In Table I, we break this traffic down into the same broad
application classes as before. We also note that values for “other” traffic are influenced
by large volumes of iperf test traffic generated by the Abilene network operations
center, which may exaggerate this category relative to other major data networks. This
test traffic is difficult to separate from the rest of the data because the port numbers
used are common to a number of applications in active use on the Abilene network. In
Figure 4, we provide a visual comparison of the proportions of traffic by category in
2005 and 2008.
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Unfortunately, the statistics just described provide little insight into the actual be-
havior of the user community; they tell us little about the role a typical user plays in
the network. We thus turn our attention to the structure of the subsets of the behav-
ioral network corresponding to the Web, P2P applications, and everything else.

We begin by considering the distributions of degree and strength for the nodes in the
behavioral network. Given a node i with £9* outbound edges and % inbound edges,
we define the degree as

ki = kO + k;"
and the strength as

out in
ki ki

S = E Wi + E W ji,
J=1 J=1

where w; ; denotes the weight of the edge between nodes i and j. In other words, the
degree of a node in the behavioral network reflects the total number of users with
which it has exchanged data, and the strength reflects the total amount of data it has
exchanged. In addition, by aggregating traffic by specific ports, it becomes possible to
inspect the behavioral subnetworks concerning individual applications.

Because both the degree and strength distributions reflect the decisions made by
a large population of individual users, it might seem plausible for their form to
be roughly normal. This turns out to be far from the case, however, as shown in
Figure 5. The extreme length of the tails of all of the degree and strength distributions,
some spanning almost ten orders of magnitude, necessitates plotting their probability
distributions on double logarithmic axes. As an example of this extreme diversity, the
mean strength of a client in 2005 was approximately 318kB, but the standard deviation
of the distribution was 72.6MB; the level of statistical fluctuation is over two orders of
magnitude larger than the mean value. Indeed, the distributions are so skewed that
in the case of all traffic and the Web behavioral network, we are able to approximate
both the degree and strength distributions with a power-law approximation P(n) ~ n™’
over several orders of magnitude. In particular, for the Web behavioral network, we
find that y is roughly 2.4 for client degree, 2.1 for client strength, 1.8 for server degree,
and 1.7 for server strength. These properties are consistent between the datasets, with
little change in the exponents even after three years of rapid chance in the network
itself.

The slope of these power-law approximations is of great significance in analyzing
user behavior. When y < 3, the second moment of a quantity n

(n?) = / n?P(n)dn

diverges; the standard deviation is not an intrinsic value of the distribution and is
bounded only by the size of the data sample. In such a case, the average value (n)
is no longer typical, and we lack any characteristic mean for the system; this is the
often-mentioned “scale-free” behavior. We have an appreciable probability of finding a
client that has contacted any arbitrary number of servers or downloaded any arbitrary
amount of data, without any bound other than the size of our sample. The averages
appear to be of no value in predicting the behavior of users.

When y < 2, as is the case for both the degree and strength distributions of Web
servers, we have an even more dramatic situation. In this case, even the first moment

(n) = / nP(n)dn
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Fig. 5. Probability distributions for degree (left) and strength (right) in the Internet2 behavioral network
in 2005 and 2008, shown for all data (top), the Web (middle), and peer-to-peer applications (bottom). The
data are grouped into logarithmically-sized histogram bins normalized by the width of the bin and size of
the distribution, so that we are estimating a probability density function. The annotated lines in the Web
plots show statistically significant best-fit power-law approximations to the actual data, with R > 0.995.
Reference power-law fits are also included for P2P applications, together with a visual indication of the onset
of exponential decay for the 2005 data.

diverges and is bounded only by the size of the sample. Neither the mean num-
ber of connections nor the mean amount of data transmitted are intrinsic to the
system.

In the case of P2P networks, we do observe heavy-tailed distributions, but there
is evidence of an exponential cutoff, after which the probability function decays more
quickly than a power-law fit would predict. This effect is more evident in the 2005 data,
which leads us to conjecture that the cutoff may be due to the limited computing and
network capacity of most individual computers participating in peer-to-peer networks.
As the resources available to individual users increase over time, so do the widths of
the degree and strength distributions, and the cutoffs move to the right.

The interaction between degree and strength, which describes the relationship
between the number of hosts contacted and the amount of data exchanged, is also
of considerable interest in understanding user behavior. Because of the power-law
nature of distributions of degree and strength considered separately, it is unsurprising
for strength to increase as a function of degree, again following a power law, as shown
in Figure 6, which again uses a double logarithmic scale.

Basic power-law behavior (s(k)) ~ k# may be expected of the interaction between
degree and strength; it is the value of the exponent f that is of critical interest. If it
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Fig. 6. Behavior of strength (total data) s as a function of degree (number of hosts contacted) £ for Web,
P2P, and other traffic, in 2005 (top) and in 2008 (bottom). The tones represent the frequencies of strength
values, normalized within each degree bin, on a log scale. The plotted points show the mean strength for
each degree bin, and the lines serve as a reference to power-law approximations to the actual data. For both
datasets, the behavior of Web traffic is roughly linear on a double logarithm scale, with R > 0.999 over the
full dataset.

is the case that (s(k)) ~ k#, then f < 1 implies a sublinear relationship, in which case
a diminishing amount of traffic is induced by each additional contact; f = 1, a triv-
ial linear relationship, in which the magnitude of each contact is independent of the
number of contacts; and f > 1, a superlinear relationship, in which case every addi-
tional contact tends to generate even more traffic—a statistically explosive situation.
In the case of server behavior we find a linear or sublinear relationship (4 < 1), but in
the case of Web clients we see evidence that f = 1.2 £+ 0.1, giving clear indication of a
superlinear relationship. This finding remains consistent between the 2005 and 2008
datasets even though the 2008 dataset includes a greater proportion of Web traffic,
much of it commercial rather than academic.

5.2 Implications

The heterogeneity seen in the degree and strength distributions of Web servers, fitting
a power-law distribution with y < 2, is so extreme as to make their mean values no
longer well-defined. We can infer no global average quantity for either the number of
clients or the amount of data transmitted for a Web server, implying that no single
scale is most appropriate for the design of general-purpose Web server software.

As mentioned previously, the existence of an exponential cutoff in the same distri-
butions for the P2P networks may be a result of the limited processing power and
network capacity of individual workstations. If these are the limiting factors in these
distributions, we can expect the tails of the distributions to lengthen over time as the
average computer continues to become more powerful and have access to greater net-
work resources. This indeed seems to be the case; the distribution of P2P traffic for
2008 is over half an order of magnitude longer than it was in 2005.
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The superlinear relationship observed between strength and degree for Web clients
implies that the amount of data exchanged with each Web server tends to increase as
a user contacts more servers: the more sites surfed, the more data is received from
each of these sites. Such a nonlinear growth mechanism may assist in techniques for
disambiguating the behavior of individual Web surfers and large-scale crawlers. Indi-
vidual users clearly lack the ability to digest an even larger body of information from
each site as they surf the Web, whereas Web crawlers are designed to do exactly that.
Crawlers can thus be expected to appear toward the upper-right of the degree-strength
plot. We can obtain additional evidence to support such a classification can by examin-
ing whether the servers contacted are generally high or low in traffic: actual humans
will tend to visit popular Web servers, while crawlers will visit a preponderance of
obscure servers for the sake of completeness.

The relationship between the in- and out-distributions of strength may also facili-
tate the discovery of unrestricted proxy servers that are the launch points for a wide
variety of security attacks on the Internet. Most of the traffic associated with a proxy
for an application will be repeated: requests from a client to the proxy are retransmit-
ted from the proxy to a server, and the server response is likewise retransmitted by
the proxy back to the client. We would thus expect a proxy to exhibit an unusually
high level of symmetry in its role in a behavioral network; not only would it func-
tion as both client and server, but its in-strength and out-strength would be nearly
equal to one another. Unfortunately, the effects of sampling make this an unsuit-
able technique for early detection of open proxies: it is only substantial use that is
likely to make their anomalously symmetric traffic distinguishable from other network
servers.

6. CASE STUDY 2: APPLICATION NETWORK ANALYSIS

We now present the results of a second case study in which we aggregate flows across
server hosts and project them onto ports. We then construct an application network in
which the nodes are applications and the edges are measures of behavioral similarity
between the applications. We perform hierarchical clustering on the nodes of this net-
work to yield a taxonomy that is able to predict the function of a collection of unknown
network applications.

The large volume of data in the “everything else” subgraph of the behavioral net-
work serves as a strong example of how nonstandard applications comprise much of
Internet traffic: none of the applications included in this category is an individually
large contributor to overall traffic, but the cumulative weight of this long tail is a
significant portion of the total. As discussed before, researchers and system adminis-
trators have in many cases a very incomplete knowledge of what is “out there” in the
cyberworld, even in the face of increasing legal and ethical demands for reliable cat-
egorization of application traffic. The central problem is that in general, applications
are simply identified by their port, which is a numeric label used by Internet protocols
to multiplex communications; we ourselves have taken this approach in the analysis
of the previous section. This yields accurate classification for a large portion of user
interactions, but we must consider the growing proportion of Internet traffic generated
by applications running on nonstandard ports or covert channels; for example, many
users evade local firewall policies by running peer-to-peer applications on the port
normally associated with the Web. Users may thus disguise their activities, for exam-
ple, exchange email using the port of another application or an “ephemeral” port that
Internet standards do not associate with any particular application. They can also
evade most network security systems through encryption, packet fragmentation,
and a variety of other techniques. The consequence is that while we can monitor
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and be aware of the existence of applications that act as an interaction mechanism
among users, we often do not know what kind of communication and function they
support.

6.1 Findings

To approach the problem of identifying applications, we investigate the relationship
between application and hosts by considering only the behavior of clients, as servers
are likely to be devoted to hosting a single application and are much less likely to
represent the actions of a single user. To describe the behavior of a client node, let us
define the port strength of a client node i € C as

sp@) = > wpi, ),

jeCus

where p is an application port. In other words, the port strength of a node reflects the
total amount of data it has exchanged using the associated application. We thus find a
strength vector for each application, whose elements correspond to the amount of data
exchanged in that application by each host.

f) = (Sp(l), ey Sp(|C|))

We can then measure the correlation of use between two applications p and ¢ by cal-
culating, for instance, the cosine similarity of their vectors.

a(p,@)=(p-)/Upl-lql)

This quantity ranges from zero in the case of completely orthogonal use, to one in
the case in which every host uses the applications with proportional strength. The
resulting application network is a connected graph (Figure 2(d)) having ports as nodes
and strength correlations (as measured by cosine similarity) as the weights of their
associations.

We used a standard clustering algorithm to group the 38 most highly used TCP
ports in the 2005 dataset according to their strength correlations; the results can be
seen in Figure 7 together with the correlations between applications. The Web is so
pervasive among users so as to be strongly correlated with virtually every application,
though the different ports associated with the Web form a very strong cluster among
one another. The groupings of the remaining applications also capture their functions.
BitTorrent, the most popular P2P network, uses a variety of different ports, but we
can clearly see that they form a tight cluster (A). Another strong cluster (B) identifies
the Gnutella network, the next most popular file sharing application. Standard client-
server applications also form clusters. One (C) includes ports used by email, chat, and
file transfer protocols; another (E) includes applications for listening to streaming mu-
sic and logging into work from home. Several other P2P applications are also clustered
together (D).

The Internet is a rapidly changing environment, and the popularity of network ap-
plications can change drastically in a brief period of time. The purpose of applications
is likewise dynamic: at one time, Usenet (NNTP) was used primarily for the exchange
of news and personal communication, but now its traffic is overwhelmingly dominated
by people broadcasting media files. Similarly, IRC was developed as a chat protocol,
but is now used just as frequently for peer-to-peer file transfers. To understand the
pace and structure of this evolution in applications, we repeated our clustering analy-
sis on the 2008 dataset, again using the ports with the highest traffic; the results are
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Fig. 7. Correlation of client use of network application as measured by cosine similarity of strength vectors
in the 2005 dataset. We show the 38 ports with highest traffic, two of which are used by unknown applica-
tions (see text). The symmetric matrix shows the correlation between each pair of ports (with a threshold
of 10~%). The dendrogram used to sort the ports is obtained by applying Ward’s hierarchical clustering algo-
rithm [Ward 1963] after converting cosine similarity to a distance measure (1/0) — 1. Alternative clustering
algorithms, such as k-means, yield similar groupings. The ports have been manually labeled and shaded
according to two broad classes: P2P (lighter) and traditional client-server (darker) applications. We use a
third shade for ports associated with the Web (HTTP/HTTPS), since the use of the Web is so pervasive as
to be almost synonymous with computer use in general. Furthermore, these ports are often used by other
applications, for example, file transfers in Gnutella. The labeled boxes within the matrix highlight clusters
of related applications as described in the text.

shown in Figure 8. It was immediately clear from this analysis that between 2005 and
2008, several new BitTorrent clients had become popular—even more so than the orig-
inal client—and that these clients used a different set of default ports (20000-20029
and 40000-40007). We therefore adjusted the set of ports which we associate with
P2P applications in the 2008 dataset, as mentioned earlier. This results in a larger
collection of ports that nevertheless comprise a comparable portion of overall traffic as
in 2005. Also included in the 2008 clustering are 14 unknown applications; we discuss
how we may deduce their function in the following section.

6.2 Implications
The clustering of P2P applications based on correlation of use suggests that a signifi-

cant body of users employ more than one file-sharing application over the course of the
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Fig. 8. Clustering based on correlation of client use of network application for the 2008 dataset. The
methodology and labeling are the same as in Figure 7. Also included are 14 unknown applications with
no formal port assignment, whose purpose we deduce from their correlation of use to other applications.

day. Not only are these users likely to be conduits of material from one P2P network
to another, but any institutional attempts to manage P2P networks focus on a single
application at their own peril.

Although this clustering mirrors our previous understanding of network applica-
tions, it is of little practical value unless it can be used to predict the nature of pre-
viously unknown applications. To explore the usefulness of our analysis, we used the
2005 application correlation data to classify the ports associated with 16 applications
unknown to us at that time, either because of their obscurity or because their ports
had not been formally assigned. Two such applications are included in Figure 7, repre-
sented by a “?” next to their port numbers. Port 388 is coupled most strongly with FTP
and Hotline (an older P2P file-sharing application); subsequent investigation showed
it to be assigned to “Unidata/LDM,” a file transfer application used for moving large
sets of meteorological data between research centers. Port 19101 was grouped with
both instant messaging and P2P applications, suggesting that it might be a P2P ap-
plication that relies on individual contact to initiate file transfers. This prediction
allowed us to construct search engine queries to discover that this port is used by
“Clubbox,” a Korean file-sharing program that allows users to trade entire seasons of
television programs on large virtual hard drives. In this case, sniffing the applica-
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Table II. Predicted Uses of High-Traffic TCP Ports in the 2005 Dataset Running
Lesser-Known Applications, Based on the Hierarchical Clustering Data; and
Their Actual Uses, as Derived from Security Bulletins, Web Searches, Application
Homepages, etc

Port | Predicted Actual Match?
388 | traditional file transfer weather data transfer yes
19101 | P2P chat or file transfer individual file shares yes
9080 | P2P with central index team collaboration yes
8090 | Windows P2P w/ Web sve. | Weblog server yes
5020 | Windows P2P file transfer | BBFTP file transfer partial
42899 | P2P file sharing or trojan (unknown) unknown
8301 | P2P file sharing or trojan several trojans partial
1025 | trojan many different trojans yes
20000 | P2P, probably BitTorrent BitTorrent yes
59174 | P2P file sharing or trojan (unknown) unknown
20001 | P2P file sharing or trojan several trojans partial
15002 | P2P file sharing or trojan biology collab. tool partial
16881 | P2P, probably BitTorrent BitTorrent yes
9000 | P2P file sharing or trojan several trojans partial
3124 | Windows P2P file transfer | Web proxy (Windows) yes
39281 | P2P file sharing or trojan grid-based computing partial

The ports marked as “unknown” were in use only transiently and did not carry
appreciable traffic on other days.

tion data would have been of little use to a network engineer unfamiliar with the Ko-
rean language; the application network gave us information that packet analysis alone
would not.

The predictions based on clustering and the actual identities of the applications
for all sixteen unknown applications in 2005 are shown in Table II. To verify or dis-
prove these predictions, we consulted security bulletins, search engines, application
homepages, and other related resources, in some cases locating information that would
have been difficult to discover without the initial prediction. There were eight success-
ful predictions, six partial predictions, and two predictions that cannot be verified.
The partial predictions result from applications that were clustered with both P2P
file-sharing applications and applications strongly associated with malicious activity
(IRC and SQL Server). In these cases, we lacked sufficient data to make a judgment as
to which purpose was more likely. In a practical application, network administrators
would be advised to examine such cases closely. This ambiguity is also an indication
that systems involved with P2P applications may be more likely to be compromised by
malicious software, possibly through the P2P applications themselves. We could not
verify our predictions for two of the ports because they were in use only transiently
during our data collection period and no longer carry more traffic than any other ran-
domly selected port.

We also note that while Web proxies predate the P2P file-sharing networks, their
function is essentially that of a moderator between peers. A Web proxy draws data
from a collection of information providers and then shares that same content with
a community of users, making its traffic not only somewhat symmetric, but directly
analogous to that of P2P applications that download a file (or parts of a file) and then
share them with other users. Though they are not usually described as such, they are
thus actually an early form of P2P application, so we do count this as a match for our
prediction.

Because our technique met with substantial success in the 2005 dataset, we ap-
plied it to the 2008 dataset as well, selecting 14 more unknown applications and at-
tempting to classify them based on their roles in the application network. These 14
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Table Ill. Predicted Uses of High-Traffic TCP Ports in the 2008 Dataset, Using the Same
Methodology as in 2005

Port | Predicted Actual Match?
50000 | P2P, probably BitTorrent | BitTorrent yes
16881 | P2P, probably BitTorrent | BitTorrent yes
51413 | P2P, probably BitTorrent | BitTorrent yes
5001 | traditional file transfer iperf and several trojans partial
6714 | traditional client/server Internet Backplane Protocol yes
36598 | traditional client/server (unknown) unknown
6000 | traditional client/server X Window System yes
19101 | centralized file xfer svc. file sharing (still ClubBox) yes
9001 | centralized file xfer svc. Tor network partial
2128 | Web-related service Net Steward dist. firewall partial
3128 | Web-related service Squid Web cache yes
3124 | Web-related service PlanetLab Web proxy network yes
554 | Web-related service real-time streaming protocol yes
1935 | Web-related service Macromedia Flash yes

applications include port numbers that were also among the unknown applications
in the 2005 dataset. We felt this to be appropriate because of the even greater rate
of change for informally allocated ports: the 2005 guesses might no longer be valid
in 2008. The results, shown in Table III, reflect a similar level of success: we had
ten successful matches, three partial matches, and another instance of a port that
was in transient use only. The partial match for port 5001 results from the dual
use of this port for both iperf test traffic and several well-known backdoor applica-
tions. We regard the Tor network as only a partial match because it is a general-
purpose network application that provides anonymous transit for any kind of data;
while it is likely that much of this traffic involves sharing copyrighted media files,
we cannot prove this. Our guess that the Net Steward distributed firewall system
was a Web-related service provided the final partial match: while the firewall itself is
not necessarily Web-related, the application includes a popular Web content filtering
system.

We must caution not every network application is amenable to detection and classifi-
cation through straightforward application of the techniques described in this section.
A particular vulnerability lies in the assumption that port numbers remain stable
during the execution of an application, whereas some modern peer-to-peer applica-
tions now migrate from port to port in order to evade traffic shaping and firewalls.
One promising avenue of future research is to mitigate this vulnerability through link
analysis: even if only a small proportion of the users participating in a BitTorrent
swarm are using a common port number, it may be possible to infer the participation
of the others from the overall pattern of connections.

7. CONCLUSIONS

Our first case study shows that a graph-centered view of network flow data reveals
properties of user behavior that are essential for agent-based modeling of user popula-
tions. These properties affect applications such as Internet epidemiology, where highly
nonuniform contact patterns among hosts affect the rate at which worms and viruses
spread and which methods are most effective in combating them. Network design and
capacity planning are also greatly affected: if there is no well-defined mean for the
amount of traffic introduced by the users of the network, a service provider cannot
easily estimate the incremental cost of each new customer. Broad-tailed distributions
of traffic make it difficult to draw a line above which consumption of network resources
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is excessive; when the standard deviation is two orders of magnitude greater than the
mean, what behavior is truly aberrant?

This pervasive presence of distributions with extremely long tails implies that user
behavior rarely follows the normal distributions that might be expected, but is actually
so diverse as to defy characterization with a mean value. Superlinear behavior in Web
clients especially demands that any behavioral models be able to account for nontriv-
ial coupling of degree and strength. Furthermore, the differences observed between
the Web and P2P application groups imply that behavioral analysis can yield statisti-
cal signatures for different types of application, allowing network managers to iden-
tify applications being run covertly on nonstandard ports. As mentioned previously,
current network security products commonly employ rate-based thresholds to detect
traffic anomalies. However, our results show that “normal” traffic would cause many
false alarms, no matter what the threshold. We also demonstrate through our compar-
ison of the two datasets that these statistics are consistent across a three-year time
period, even as the character of the traffic on the network has changed from purely
academic to substantially commercial. The analysis of behavioral networks may thus
offer more effective methods of detecting malicious or otherwise anomalous behavior
on the Internet.

The application clusters identified by the technique presented in our second study
show that system administrators or network managers can easily infer traits of the
activity carried out on a particular port, even if the application for that port is un-
known or the port is being used covertly. They also give us an opportunity to group
applications together by the way they affect the network rather than the origin of their
codebase or even their nominal purpose. The potential of this approach becomes clear
when we consider how these clusters evolve over time as people use the same appli-
cations and the same protocols in radically different ways. For example, because our
clustering is based on aggregate behavior rather than pattern-matching against cap-
tured data, we were able to recognize the ports associated with new BitTorrent clients
without ever examining the payload of a single packet.

The framework we present here offers a practical way of understanding the collec-
tive behavior of individual Internet users through analysis of the behavioral and appli-
cation networks implicitly formed by their actions. Because we avoid any reliance on
captured packets or nonanonymized flow data, a much wider audience of network re-
searchers are able to test these techniques for themselves than has been the case with
previous studies. Of course, network administrators can use the scalable techniques
presented here in conjunction with more resource-intensive packet analysis applica-
tions, which could confirm suspicious activity suggested by network-based analysis of
flow data.

None of the processing steps we describe requires extensive computing resources;
a single high-end workstation can perform the analysis described in the first case
study in less than half an hour. The analysis we describe in the second case study
is quadratic in the number of applications considered, but even it can be performed in
a fraction of the data collection time window.

Finally, we are working with the technology transfer office of our university to make
our analysis tools publicly available.
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