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Abstract We study the problem of privacy-preserving machine learning (PPML) for ensemble methods, focusing
our effort on random forests. In collaborative analysis, PPML attempts to solve the conflict between the need for
data sharing and privacy. This is especially important in privacy sensitive applications such as learning predictive
models for clinical decision support from EHR data from different clinics, where each clinic has a responsibility for its
patients’ privacy. We propose a new approach for ensemble methods: each entity learns a model, from its own data,
and then when a client asks the prediction for a new private instance, the answers from all the locally trained models
are used to compute the prediction in such a way that no extra information is revealed. We implement this approach
for random forests and we demonstrate its high efficiency and potential accuracy benefit via experiments on real-world
datasets, including actual EHR data.

Introduction

Nowadays, machine learning (ML) models are deployed for prediction in many privacy sensitive scenarios (e.g.,
personalized medicine or genome-based prediction). A classic example is disease diagnosis, where a model predicts
the risk of a disease for a patient by simply looking at his/her health records. Such models are constructed by applying
learning methods from the literature to specific data collected for this task (the training data,—instances for which the
outcome is known—in the preceding example these are health records of patients monitored for the specific disease).
Prior experience in ML model training suggests that having access to a large and diverse training dataset is a key
ingredient in order to enhance the efficacy of the learned model1. A training dataset with these feature can be created
by merging several silos of data collected locally by different entities. Therefore, sharing and merging data can
result in mutual gain to the entities involved in the process and, finally, to the broader community. For example,
hospitals and clinics located in different cities across a country can locally collect clinical data that is then used to run
a collaborative analysis with the potential to improve the health-care system of the entire country. However, in privacy
sensitive scenarios, sharing data is hindered by significant privacy concerns and legal regulations (e.g., HIPAA laws in
the United States and GDPR for the European Union). In the example described before, sharing clinical data directly
competes with the need for healthcare providers to protect the privacy of each patient and respect current privacy
policies and laws.

Based on the preceding discussion, we often face the following dilemma: share data to improve accuracy or keep data
and information secret to protect privacy? Notice that de-identification cannot resolve this standoff: several works2, 3

demonstrated that sharing de-identified data is not a secure approach since in many contexts the potential for re-
identification is high. More sophisticated anonymization criteria (e.g., k-anonimity, l-diversity, t-closeness, etc.) were
proposed by the database community. While arguably better than de-identification, all such “syntactic” approaches
work only in presence of assumptions regarding the adversary’s background knowledge. Conversely, cryptographic
tools can guarantee perfect privacy of shared data in more general situations. For example, a number of privacy-
preserving training algorithms have been proposed since the seminal paper of Lindell and Pinkas4 introduced this
concept in 2000. These algorithms use advanced cryptographic tools in order to allow different parties to run known
learning algorithms on the merge of local datasets without revealing the actual data. This approach guarantees privacy
at the price of high communication and computation overhead. Once the model is learned, we face another privacy
problem: using the model to compute a prediction for new instances while both the model and the instances data are
sensitive information privately held by different parties. This problem can be solved using again cryptographic tools,
and an algorithm designed for this task is called privacy-preserving scoring. In conclusion, a solution that uses the
current tools to guarantee privacy at all levels (e.g., for the data providers, model providers, model users) deploys two
privacy-preserving systems, a first one for training and a second one for scoring.

In this work, we notice that for ensemble methods, for which the learned model is formed by a set of more basic models
and the prediction for a new instance is computed by blending together the basic predictions, there can be an easier and
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more efficient solution that needs only one system; we refer to this solution as the “locally learn then merge” approach.
Each entity with a local data silo (i.e., providers) can train its own local model Mi, and then the prediction given by
these models can be merged at the moment when the scoring for a new (eventually private) instance is computed. That
is, a user with input x gets y = Φ(M1(x), . . . ,Mt(x)) for a specific merging function Φ. Here Mi(x) indicates the
prediction of the local model Mi for the instance x. In this approach, privacy concerns coming from data sharing
in the training phase are not present since, clearly, local training does not require data sharing. Moreover, there is
no overhead for the training phase (this is run as in the standard ML scenario), while the final prediction can benefit
from merging the local predictions via the function Φ. On the other hand, accuracy loss (with respect to a model
learned from the merged data) and information leakage can happen during the merging/scoring phase. In particular,
a challenge remains with this simple and elegant approach to collaborative ML: if we want to guarantee model and
user’s input privacy (i.e., the user learns y and no other information on the models Mi, the providers learn nothing
about x), then even after the training phase each provider must maintain its own on-line server and communicate
with the client and the other providers each time a new prediction is requested. Since in a real-world scenario (i.e.,
healthcare environment), this requirement can be cumbersome to implement, we design our system in the cloud model,
where the computation of the prediction from the local models is outsourced to a central server and providers are not
required to be on-line during the scoring process (Fig. 1). Since we do not require the server to be trusted, each model
Mi is sent to the server in encrypted form (i.e., [Mi]). Once this is done, the providers (e.g., clinics) can go off-line
and when a user (e.g., medical research institution) requires access to the models to compute predictions for new data,
the server communicates with it and computes the answer from the encrypted models.

provider 1
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provider 2
data2 →M2

· · ·
provider t

datat →Mt
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server

user
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Figure 1: Overview of the new “locally learn then
merge” approach in the cloud model. The providers
upload the encrypted models to the server and then
go off-line. The server is on-line to answer to the
prediction requests of the user.

In this work, we specify and evaluate the “locally learn then
merge” paradigm in the cloud model for a widely-used en-
semble method: random forests. Random forests5 are among
the most accurate and widely-used ML ensemble models and
are employed across a variety of challenging tasks, includ-
ing predictive modeling from clinical data6, that are charac-
terized by high dimension and variable interactions, or other
non-linearities in the target concept. A random forest is a col-
lection of simple decision trees. By the use of different trees,
a random forest can capture variable interactions without the
need for the learner to know or guess all relevant interactions
ahead of time in order to represent them with new variables
(interaction terms); by their ensemble nature, random forests
effectively reduce the over-fitting often observed with ordinary
decision tree learning. A less-recognized advantage of random forests is that they can be learned in a distributed man-
ner. In this circumstance, separate random forests can easily be learned locally by entities with data silos, and then the
prediction for a new instance is computed as the arithmetic mean of the predictions of all the trees in the locally trained
random forests (i.e., the merging function Φ is the arithmetic mean). We design a system implementing this approach
for random forest using standard and fast cryptographic primitives. While our scheme is efficient even for forests of
many trees, not surprisingly its run-time and communication complexity grow exponentially with maximum tree depth
in a forest. Therefore we also provide empirical evidence that across a variety of data sets and tasks, increasing the
number of trees can effectively make up for any accuracy or AUC lost by incorporating a stringent limit on tree depth,
such as 8 or even 6.

Related Work: There is an extensive research that propose privacy-preserving training7 protocols and few of them
focus on training decision tree. After that Lindell and Pinkas4 in 2000 presented a system for two data-providers,
Xiao et al.8 and Samet and Miri9 considered the case of more than two providers. While the former works consider
horizontally partitioned data, another line of work10, 11 assumes data that are vertically partitioned among two or more
data holders. Lastly, in 2014 Vaidya et al.12 proposed a method to learn and score random trees in a privacy preserving
manner. Like our approach, their approach requires encryption-based collaboration to make predictions. Unlike our
approach, their approach also requires interaction and collaboration at training time. One party proposes a random tree
structure, and all parties must contribute information to the distributions at the leaf nodes. In our approach, learning
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is completely independent for each party, and hence training is much faster. An advantage of Vaidya et al. is the
ability to also address vertically partitioned data. Privacy-preserving scoring protocols for decision trees have been
designed using different cryptographic tools (e.g., levelled homomorphic encryption13, LHE14, secret-sharing15, OT-
channels16). In 2017, Backes et al.17 improved and extended to random forests the algorithm presented by Brickell et
al.18 Another line of research focuses on constructing differentially private decision trees, see for example the work of
Jagannathan et al.19 and Rana et al.20 Our approach is orthogonal to differential privacy since we consider a different
threat model.

Methods: decision trees (DTs) and random forests (RFs)
N1

N2

`1 `2

N3

`3 `4

P2,1(x1, x2) = (x1 − 1)(x2 − 1)

P2,2(x1, x2) = (x1 − 1)(x2 + 1)

P2,3(x1, x3) = (x1 + 1)(x3 − 1)

P2,4(x1, x3) = (x1 + 1)(x3 + 1)

Figure 2: Polynomial represen-
tation of a depth 2 complete DT.

Decision trees (DTs) are a nonparametric ML model used for both classification
and regression problems. While there are a myriad of algorithms for construct-
ing DTs, we focus here on describing the model representation of the scoring
procedure. A decision tree (DT), T , can be viewed as mapping a column vector
x = (x[1], . . . ,x[n])> of features to a prediction value y. In practice, we assume
that T is represented as a directed acyclic graph with two types of nodes: splitting
nodes which have children, and leaf nodes which have no children. Moreover, T
has a single root node, which is also a splitting node, that has no parents. For an
input x ∈ Rn, we traverse the tree T starting from the root and reach a leaf. Each
splitting node Ni is defined by a pair (ji, ti) where ji is an index in {1, . . . , n}
and ti ∈ R is a threshold value. In the root-leaf path, at node i we take the right
branch if x[ji] ≥ ti. Otherwise, we take the left one. Thus, each splitting node Ni is associated with the function
Ni(x) = e>ji · x − ti and the value ni = sign(Ni(x)) (where · is the standard row-by-column multiplication). Here
the vector ei is the column vector in Rn with all zeros except for a 1 in position i and e>i is its transpose. Moreover,
if x ∈ R, then sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise. In this way we traverse the tree and we reach a leaf
node. The i-th leaf node is associated with the label `i, which is defined to be the prediction of the query x that reaches
the i-th leaf (i.e., y = T (x) = `i). The format of the labels {`i}i depends on the specific ML problem (regression,
multiclass classification or binary classification). In this work, we assume `i ∈ [0, 1] representing the probability of
x being classified as + in a binary classification problems with labels {+,−}. The depth of a tree is the maximum
number of splitting nodes visited before reaching a leaf. In general, DTs need not be binary or complete. However,
all DTs can be transformed into a complete binary tree by increasing the depth of the tree and introducing “dummy”
splitting nodes. Without loss of generality, here we only consider complete binary DTs. A complete binary tree of
depth d has 2d leaves and 2d − 1 splitting nodes. Random forests (RFs), proposed by Leo Breiman5, are an ensemble
learning algorithm that are based on DTs. An ensemble learner incorporates the predictions of multiple models to
yield a final consensus prediction. More precisely, a random forest RF consists of m trees, T1, . . . , Tm, and scoring
RF on input x means computing y = 1

m

∑m
i=1 Ti(x). Let d be the maximum of the depths of the trees in RF , we

refer to d and m as the hyperparameters of the forest.

Polynomial representation: We can represent a tree using polynomials. Let T be a complete binary tree of depth d,
then we associate each leaf with the product of d binomials of the form (xi−1) or (xi +1) using the following rule: in
the root-leaf path, if at the node Ni left turn is taken, choose (xi−1) otherwise choose (xi + 1). We indicate with Pd,i

the polynomial of degree d corresponding to the i-th leaf. Notice that Pd,i contains only d variables, out of the 2d − 1
total possible variables (one for each splitting node). We call Id,i the set of indices of the variables that appears in Pd,i

and we write Pd,i((xj)j∈Ii) to indicate this; in Fig. 2, I2,1 = I2,2 = {1, 2} and I2,3 = I2,4 = {1, 3}. Now T (x) can
be computed by evaluating the polynomials {Pd,i((xj)j∈Ii)}i=1,...,2d on the values {nj}j=1,...,2d−1. Indeed, if i∗ is
the unique value for the index i for which Pd,i((nj)j∈Ii)) 6= 0, then T (x) = `i∗ .

Methods: cryptographic tools

A linearly-homomorphic encryption (LHE) scheme is defined by three algorithms: The key-generation algorithm Gen
takes as input a security parameter and outputs the pair of secret and public key, (sk,pk). The encryption algorithm
Enc is a randomized algorithm that takes pk and an input x, and outputs a ciphertext, c← Encpk(x). The decryption
algorithm Dec is a deterministic function that takes sk and c, and recovers the original input x with probability 1
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over Enc’s random choice. The standard security property (semantic security) states that it is infeasible to gain extra
information about an input when given only its ciphertext c and the public key. Moreover, we have the homomorphic
property: informally, linear functions of encrypted data can be computed without decrypting (e.g., from Encpk(x1)
and Encpk(x2) we can compute Encpk(x1+x2) without knowing x1 and x2). Efficient instantiations of this primitive
are known21. In the design of the privacy-preserving system presented later on in this work, we will deploy the secure
comparison protocol ΠSC. The latter22 is a modification of the protocol presented by Kerschbaum and Terzidis23 and
has the following structure: party 1 has an encryption of an integer a, while party 2 knows the corresponding secret key.
They run the protocol and the output is a multiplicative sharing of the sign of a and no extra information about a. In
particular, party 1 receives a share α ∈ {−1,+1} and party 2 receives a share β ∈ {−1,+1} such that αβ = sign(a)
and the knowledge of only one share gives no information on sign(a).

Results: the proposed system

In this section we describe our system, where the prediction for a new instance is computed using the RFs trained by
different and mutually distrustful parties on their local data silos. We start by describing the role of the parties involved
and the security model.

Providers: There are t providers, the k-th one, Pk, has a forest RFk = {T k
1 , . . . , T

k
mk
} with mk DTs; we assume that

the forest hyperparameters (mk and maximum tree depth dk) are public values, while the description of the trees is the
secret input of Pk to the system. The providers have no output.

Server: The server has no input and no output; it is not trusted to handle private data neither proprietary models.
Its function is providing reliable software and hardware to store encrypted version of the models RFk and handling
prediction request from the user in real-time.

User: Its secret input is an instance x ∈ Rn and the output is the prediction for x according to all the trees T k
j (n is

public); more precisely, the user’s output from the system is y = 1
m

∑t
k=1

∑mk

j=1 T
k
j (x) with m = m1 + · · ·+mk.

We assume that all the parties involved are honest-but-curious (i.e., they always follow the specifications of the protocol
but try to learn extra information about other parties secret input from the messages received during the execution of
the protocol) and non-colluding (e.g., in real world applications, physical restrictions or economic incentives can be
used to assure that the server has no interest in colluding with another party). Using the cryptographic tools described
before and other standard tools, we design a system where only the user gets to know y and it gets no other information
about the private models held by the providers. Moreover, the providers and the server gain no information about the
input x. The system we present has two phases: an off-line phase, during which each provider uploads an encrypted
form of its forest to the server, and an on-line phase, during which the prediction for a specific input x is computed
by the server and the user. Notice that the off-line phase is independent of the actual input of the user and needs to
be executed only once (i.e., when the providers join the system). After that, the providers can leave the system and
the server will manage each prediction request. In particular, for each request, a new on-line phase is executed by the
server together with the user making the request (it is possible to have more than one user requesting predictions).
Each phase is described below:

Off-line Phase: The goal of this phase is to transmit all the trees to the server, but in encrypted form. That is, the
server will know the public hyperparameters of each locally learned forest but have no knowledge about the specific
structure of the trees in the forests (i.e., it does not know the indices ij , the thresholds ti, or the leaf values `i). This is
achieved by having each provider execute a new model-encryption procedure we design22. Using this, the Pk encrypts
the thresholds and leaf values and hides the vectors eji using a standard PRF (pseudorandom function); then it sends
the encrypted forest to the server; after this Pk can leave the system. We indicate the encrypted forest, which is a
collection of encrypted trees, with the notation {[T k

j ]}j=1...,mk
.

On-line Phase: For each prediction request, this phase is executed. A user with input x joins the system sending
Encpk(x) to the server. Now, the user and the server run the tree evaluation protocol ΠTE for each encrypted tree
[T k

j ] of the forests that were uploaded to the server. This protocol returns an additive sharing of T k
j (x) (i.e., the server

gets the share rkj ∈ [0, 1] and the user gets the share skj ∈ [0, 1] such that T k
j (x) = skj + rkj and the knowledge of

only one share does not reveal T k
j (x)). Finally, the server sends the sum r =

∑t
k=1

∑mk

j=1 r
k
j of its shares (one for
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each tree) to the user, which computes y as (s + r)/m, where s =
∑t

k=1

∑mk

j=1 s
k
j is the sum of the user’s shares.

The security of our system against a honest-but-curious server follows from the security of the encryption scheme: all
the messages received by the server are ciphertexts. Moreover, the user does not learn any extra information about the
local models since it does not see the individual predictions (i.e., for each tree the user only see the share skj ).

High level description of protocol ΠTE (more details in the full version22): Recall that, given a tree T and an input
x, finding the index i∗ such that the polynomial Pd,i∗ evaluates 0 on the values {nj}j is equivalent to compute T (x)
(i.e., T (x) = `i∗ ). Therefore, finding i∗ is sufficient in order to then compute an additive sharing of T (x). In the
privacy-preserving scenario, the main challenges in doing this are: 1) First of all, notice that neither the server or the
user can see i∗ in the clear, indeed knowing the index of the reached leaf can leak information about the inputs and
the tree structure (when more than a request is made). We solve this using a simple tree randomization stratagem that
hides i∗ for the user (i.e., the user gets to know i∗ for an tree T ′ equivalent to T but with nodes randomly permuted
by the server) and a standard cryptographic tool called oblivious transfer that hides i∗ for the server (i.e., once that the
user gets i∗ for T ′, the oblivious transfer protocols allows it to receive `i∗ without revealing i∗ to the server); 2) Then
observe that neither the server or the user can see the {nj}j in the clear, indeed also these values can leak information
about x or T . To solve this we use the homomorphic property of the underlying LHE a, the secure comparison protocol
ΠSC and an algebraic property of the polynomials {Pd,i}i. Since each nj = Nj(x) is a linear function of x, the server
can compute Encpk(Nj(x)) from Encpk(x) (assuming that the underlying scheme is an LHE scheme); then the server
and the user run protocol ΠSC: the server is party 1 with a = Nj(x) and the user is party 2; at the end they know αj

and βj , respectively and such that αjβj = nj . However, the value nj is kept secret. Finally, notice the following: for
each i = 1, . . . , 2d we have Pd,i((βj)j∈Ii)

∏
j∈Ii

αj = Pd,i((nj)j∈Ii) and therefore Pd,i((nj)j∈Ii) = 0 if and only if

Pd,i((βj)j∈Ii) = 0. This implies that i∗ can be computed locally by the user that knows {βj}j .

Complexity of the system in terms of cryptographic operations: During the off-line phase, the providers run the model-
encryption procedure to encrypt their models RF1, · · · , RFt. Assume that RFk has hyperparameters dk and mk,
then for Pk the model-encryption procedure costs Θ(mk 2dk) encryptions. Moreover, Pk sends to the server mk 2dk+1

ciphertexts. The complexity of the on-line phase is dominated by them repetitions of protocol ΠTE. The latter requires
Θ(n 2d) operations (Θ(2d) for the user and Θ(n 2d) for the server) and generates Θ(2d) ciphertexts exchanged among
the server and the user to score a tree of depth d on an instance with n features. Therefore, the on-line phase has
complexity proportional to nm 2d, where d = maxk dk. Finally, notice that many steps of our system can be easily
run in parallel. For example, the m needed instances of protocol ΠTE can be executed concurrently.

Discussion: random forest (RF) hyperparameters

Since the depth and number of trees (i.e. model hyperparameters) affect the efficiency of our system, we provide here
an empirical demonstration that bounding them can be done without adversely the prediction efficacy.

Bounded depth: Typically, during the training phase a RF is grown such that each tree may split in a greedy fashion
without concern for the depth of the trees. We provide here an empirical inspection of the effect of bounding the
depth to a maximum value d on the efficacy (AUC value) of the learned forest. We utilize the public Kent Ridge
Colon-cancer dataset from the UCI repository (reference in Table 2) and we looked at various combinations of d and
the number of trees in the forest,m. Specifically, we consider values of d in {1, 2, . . . , 28, 30} and 25 different choices
of m in {1, 5, 10, 25, 50, 100, 200, 300, . . . , 1900, 2000}. For each pair of values, we performed 30 replicates of a RF
model construction and evaluation process. For each model, the construction began with choosing a random 70% of
the data to serve as training data and the remaining 30% as testing data. A model was then built with the specified
hyperparamters and AUC was measured on the testing data. In Fig. 3 we present the results of this investigation
as a heatmap. For this task even a maximum depth of 6 was competitive with larger depth choices if 300 trees are
considered. This suggests that while the standard learning algorithm may greedily grow trees very deeply, the overall
performance is not substantially impacted by bounding the maximum depth.

Tuning methodology: Common practice for training ML algorithms involves some selection method for determining
a A party (different form the server) runs Gen(κ), makes pk public and safely stores sk. The user needs to authenticate itself with this party in

order to get the secret key sk. Notice that the role of this party can be assumed by the user itself or by one or more of the providers.
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a choice for the hyperparameters. One standard selection method is a grid-based search wherein a researcher will
predefine some set of choices for each hyperparameter and then compute the cross product of these sets and choose
the combination that maximized the AUC of the model. For example, for RF, we pick the hyperparameters as d∗,m∗ =
argmax(d,m)∈D×MAUC(RF (d,m)), where RF (d,m) is a RF trained with hyperparameters d and m, AUC(·) is
the AUC of a given RF on some held aside validation data and D,M are fixed sets. However, this procedure searches
all combinations of d and m, whereas we are interested in controlling the value m 2d because the overhead of our
system its directly proportional to it. Therefore, between two hyperparameters choices giving the same efficacy,
we are interested to choose the one that produces smaller overhead. In other words, our approach for tuning is the
following: we fix a value s and then we maximize the model efficacy constrained to choosing the hyperparameters d
and m in the set Qs = {(m, d) ∈ Z+ × Z+ | m 2d ≤ s}. The gray line in Fig. 3 depicts the boundary of Qs when
s = 215 and dictates that choices above it are too large, and choices below are of acceptable overhead. Even if the
number of acceptable choices is relatively small compared to the total number of combinations, it is worth noting that
we saw competitive performance as both depth and number of trees exceeded some minimum choices. This suggests
that we may be able to achieve both good performance and small overhead.

Figure 3: Heatmap of mean AUC values for various combina-
tions of d and m. The gray line indicates m 2d = 215. The
gold star indicates the best overall combination of d and m
(AUC=0.823), the silver diamond indicates the best overall com-
bination constrained bym 2d ≤ 215 (AUC=0.809). The silver di-
amond is also on the colorbar indicating the corresponding AUC.

Performance: efficacy

To conclude our work, we want to experimentally
validate our system. First, we study the effect of
the “locally learn then merge” approach on the pre-
diction accuracy. In particular, we want to com-
pare the accuracy of the proposed method with the
one of the standard “merge then learn” approachb.
We provide an empirical investigation of this in
two fashions: across three disease prediction tasks
using EHR data from the Marshfield Clinic in Marsh-
field, WI, and across five predictions tasks from the
UCI database.

Real EHR Data. We consider the tasks of predict-
ing three diseases 1 month in advance: Influenza
(ICD-9 487.1), Acute Myocardial Infarction (ICD-
9 410.4), and Lung Cancer (ICD-9 162.9). Each
dataset was comprised of up to 10,000 randomly
selected case-control matched patients on age and
date of birth (within 30 days), with cases having 2
or more positive entries of the target diagnosis on
their record and the control having no entries (rule
of 2). Data for each case-control pair were trun-
cated following 30-days prior to the case patient’s
first diagnosis entry to control for class-label leak-
age. Features were comprised of patient demographics, diagnoses, procedures, laboratory values and vitals. Unsu-
pervised feature selection was performed on a per-disease basis first with a 1% frequency-based filter to remove very
uncommon features and then followed up with principal component analysis to reduce the overall dimension of the
data to 1,000 (this was done to improve the performance speed of our algorithm). For each of the 3 diseases, we
constructed, as a performance baseline, a RF model with 500 trees, a maximum depth of 8, and 10% of features
considered at each split in the tree. Models were trained on 90% of the data and tested on a held aside 10%. We
compared these baseline models (i.e., “merge then learn” approach) with our “locally learn then merge” approach
by again constructing a forest with the same hyperparameters except the training data were partitioned between two
simulated providers each with 45% of the original data that were used to train two smaller forests of 250 trees each

bIf there are no privacy concerns, parties can simply share their data with one another and learn a single model. Otherwise a privacy-preserving
training algorithm can be used to achieve the same result.
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ICD-9 Disease Samples Features Base AUC LLM AUC Prediction Time (s)
487.1 Influenza 10,000 8,211 0.8011 0.7640 105.37±14.70
410.4 Acute MI 9,284 9,136 0.6797 0.6658 121.75±9.43
162.9 Lung Cancer 10,000 9,021 0.6313 0.5786 125.94±8.19

Table 1: Efficacy testing results for 3 EHR datasets. Number of features are calculated before applying PCA (post-
PCA selected the top 1,000 components). Base AUC refers to a forest learned on the whole dataset (“merge then
learn” approach) and LLM AUC refers to a forest learned in our “locally learn then merge” fashion. Prediction Time
refers to the mean±std time required for our system to return a prediction for a single patient query.

and then merged together. Model performance was measured using the area under the receiver operating characteristic
curve (AUC), a common ML accuracy metric. We present in Table 1 both the dataset information and results of our
experimentation. We find that the AUC achieved on partitioned data for these three tasks are less than the shared data.
While this efficacy loss is meaningful, it is possible that with the additional data providers it may be mitigated.

Figure 4: Effect of locally learning then merging compared to learn-
ing from a merged dataset. Subfigures B-F shows on the datasets
of Table 2 how AUC is impacted by the number of providers. The
dashed, solid and dotted lines shows AUC values for the locally learn
then merge, the zero-sharing and the merge then learn approach, re-
spectively. Subfigure A shows the AUC difference between the lo-
cally learn then merge and merge then learn (positive values indicate
an improvement using our approach).

UCI Datasets. We use five UCI datasets (ref-
erences in Table 2) to investigate the effect of
the number of providers sharing data on the
performance of a RF. To simulate a dataset be-
ing shared amongst t providers, we randomly
split each UCI dataset into t equal sized and
unique chunks, D1, . . . , Dt, with each chunk
belonging to a single provider. Each chunk
was then split into a training (70% of the
data) and testing set (30% of the data), i.e.
Di = Traini ∪ Testi. We then learned models
in three different ways. To simulate the ef-
fect of “zero sharing” (i.e., providers with silo
data do not share data or models), provider
i learns a forest on Traini and tests on Testi
achieving AUCi with the average silo AUC
taken as the mean across all t providers. Each
forest was learned with 50 trees of maximum
depth 8. To simulate the effect of “locally
learn then merge”, each provider learns a RF
on their own training data, the forests are
merged together, and the AUC is calculated
on the merged testing data, ∪iTesti. Again,
each provider learned 50 trees of maximum
depth 8 and the final merged forest being of
size 50 t trees. To simulate the effect of a
merged dataset (“merge the learn”) we learn
a single forest with 50 t trees and maximum
depth 8 from ∪iTraini and then evaluate the
AUC on ∪iTesti. This process was repeated
50 times to produce confidence intervals and
performed for each of the five datasets in Ta-
ble 2 across five choices of t ∈ {2, 3, 4, 5, 6}. We present the results of these experiments in Fig. 4. We see from it that
the effect of locally learning the merging has neither a strictly positive or negative effect on the quality of the model.
Indeed, our results indicate that the effect is dataset dependent. Therefore, we believe that it would be critical for a
provider to investigate how the quality of their predictions are impacted by merging their learned models with another
hospital system as compared to using their own data.
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Figure 5: Performance of protocol ΠTE on (50×# of Providers) trees of depth 8 for the datasets of Table 2.

Performance: efficiency size n Model-encryption
Time (s) Size (MB)

Australian 609 14 0.84 7.96
Breast cancer 569 30 0.90 9.6
Spambase 4601 57 1.01 12.35
Colon cancer 62 2000 10.57 210.54
Leukemia 72 7129 41.7 733.69

Table 2: References for the UCI datasets (n = num-
ber of features). The last two columns show the over-
head of the off-line phase of our system.

Implementation details. To test efficiency (i.e., bandwidth
and running time) we implemented our proposed system
in Python3.5.2. As underlying LHE we use Joye-Libert’s
scheme21 with M = Z264 and 100-bit security. We assume
all inputs are real number with absolute value less or equal to
2 · 103 and at most 3 digits in the fractional part. To convert
them into values inM, we multiply each value by 103. This
allows to represent all inputs with 21-bits values (we represent
negative values using the upper half of Z221 ) and avoid over-
flow in the secure comparison protocol. The

(
2d

1

)
-OT protocol

for 20148-bit strings is implemented24 using d calls to a standard
(
2
1

)
-OT protocol (i.e., emp-toolkit) for 100-bit strings

and 2d calls to a PRF (i.e., AES128). We provide an empirical investigation of the efficiency in two fashions: using a
commodity machine and using the HTCondor system.

Commodity machine. We report the performance of our system executed on a commodity machine (60GB memory
and 48core CPU, Intel Xeon CPU E5-2680 v3) for the UCI datasets of Table 2 in the setting described before (i.e.
each provider knows a RF with 50 trees of maximum depth 8). Several tasks in the implementation were parallelized
by multi-threading; all the timing values are averaged on five repetitions of the same experiment. Table 2 (last two
columns on the right) reports the running time of the model-encryption procedure executed by one provider during the
off-line phase; it also reports the size of the encrypted model obtained via this procedure. The number n of features
influences both results, however even for the high dimensional cases (i.e., thousands of features) the encrypted model
has size less than 1 GB and is produced in less than a minute. The on-line phase of our system consists of three steps:
first, the user submits its encrypted input to the server. Clearly, the performance of this step is influenced only by
the encryption scheme used and by the dimension of the input (i.e., number of features n). In our experiments, even
for the largest value of n, this step takes less than a second (e.g., 0.17 seconds for n = 7129). Then, the server and
the user execute m times the protocol ΠTE to evaluate each tree in the merge of all the forests. Fig. 5 illustrates the
performance of this part (the most expensive one in the on-line phase): The two graphs on the left depict the running
time of the protocol ΠTE run on 50 t trees as function of the parameter t, number of providers; the results are dataset
dependent since the server executes Θ(n 2d) cryptographic operations. The graph on the right of Fig. 5 reports the size
of the messages exchanged by the server and the user as function of t. This value is not influenced by n (dataset size)
and it only increases linearly with the number of trees; in our experiment, even for 300 trees the bandwidth required is
always less than 60 MB. In the last step of the on-line phase, the server and the user sum their shares; the overhead of
this step is independent of n and influenced only by the total number of trees (e.g., in our experiment this needs less
than 8 ms for 300 trees).

HTCondor. The experiments for the real EHR data were executed using the HTCondor system, a high-throughput
computing architecture that we utilized in a “master-worker” fashion. For each forest, one tree was learned as a
separate “job” exploiting the heavy parallelization available to RFs. Thus, both training and prediction were performed
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in a high-throughput manner. We report the running time of the on-line phase in this setting in the last column on the
right of Table 1. We find that this parallelized version of our algorithm allows us to provide near real-time interactions
as predictions are returned on average within two minutes of providing a query to the system. We believe that this
would be reasonably fast enough to support the workflow of a physician who wishes to query the model for a patient.

Conclusion

We propose a new approach for computing privacy-preserving collaborative predictions using random forests. Instead
of a system composed by a training algorithm, which usually has high overhead in the privacy-preserving setting,
followed by a scoring algorithm, we propose a system based on locally learning and then privacy-preserving merging.
To avoid the need for providers to be on-line for each prediction request, we instantiate the new approach in the cloud
model. That is, an untrusted server collects the locally trained models in encrypted form and takes care of scoring them
on a new private instance held by the user. Our system is secure in the honest-but-curious security model and extending
it to the malicious model, especially for a corrupted server, is an interesting direction for future work. We evaluate
the performance of our system on real-world datasets, the experiments we conducted show that (1) the efficacy of the
new approach is dataset dependent; this opens to future works that aim to characterize this dependency in terms of the
dataset parameters and distribution, (2) the efficiency is influenced by the forest hyperparameters, which we showed
we can control, and by the number of features n, which is given by the specific application; avoiding the dependency
on n is another interesting direction that may lead more efficient implementation of this new approach.
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