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Phase transitions in contagion processes
mediated by recurrent mobility patterns
Duygu Balcan1,2 and Alessandro Vespignani1,2,3*
Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases,
diffusion of rumours, and emergence of consensus. These patterns however are often dominated by specific locations and
recurrent flows and poorly modelled by the random diffusive dynamics generally used to study them. Here we develop a
theoretical framework to analyse contagion within a network of locations where individuals recall their geographic origins.
We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only
a small fraction is affected. This transition cannot be uncovered by continuous deterministic models because of the stochastic
features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance
for controlling contagion spread by constraining mobility processes. We recover the threshold behaviour by analysing diffusion
processes mediated by real human commuting data.

In recent years, reaction–diffusion processes have been used as
a successful modelling framework to approach a wide array
of systems that, along with the usual chemical and physical

phenomena1,2, includes epidemic spread3–9, human mobility5–8, in-
formation, and social contagion processes10–15. This has stimulated
the broadening of reaction–diffusion models to deal with complex
network substrates and complexmobility schemes16–20. This success
has allowed the theoretical characterization of new and interesting
dynamical behaviours and provides a rationale for the understand-
ing of the emerging critical points that underpin some of the most
interesting characteristics of techno-social systems. Those studies
however are all focused on mobility processes modelled through
simple memoryless diffusive processes. The recent accumulation
of large amounts of data on human mobility21–26 from the scale
of single individuals to the scale of entire populations presents
us with new challenges related to the high level of predictability
and recurrence27–29 found in mobility and diffusion patterns from
real data. For instance, commuting mobility denoted by recurrent
bidirectional flows among locations dominates by an order of
magnitude the human mobility network at the scale of census
areas defined by major urban areas30. However, the effect of highly
predictable or recurrent features of particle/agent mobility in the
large-scale behaviour of contagion processes cannot be studied by a
simple adaptation of previous theoretical frameworks31–36 and calls
for specific methodologies and approximations capable of coping
with non-Markovian diffusive processes in complex networks.

Modelling commuting networks
To begin investigating the effect of regular mobility patterns in
reaction–diffusion systems we have considered the prototypical
example of the spread of biological agents and information
processes in populations characterized by bidirectional commuting
patterns. In this case we consider a system made of V distinct
subpopulations. The V subpopulations form a network in which
each subpopulation i has a population made of Ni individuals
and is connected to a set of other subpopulations υ(i). The edge
connecting two subpopulations i and j indicates the presence
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of a flux of commuters. We assume that individuals in the
subpopulation i will visit anyone of the connected subpopulations
with a per capita diffusion rate σi. As we aim at modelling
commuting processes in which individuals have a memory of their
location of origin, displaced individuals return to their original
subpopulation with rate τ−1.

Real data from commuting networks add an extra layer of
complexity to the problem. In Fig. 1 we display the cumulative
distributions of the number of commuting connections per admin-
istrative unit and the daily flux of commuters on each connection
in the United States and France. The networks exhibit important
variability in the number of connections per geographic area.
Analogously, the daily number of commuters on each connection
is highly heterogeneous, distributed in a wide range of four to
six orders of magnitude. These properties, often mathematically
encoded in a heavy-tailed probability distribution, have been
shown to have important consequences for dynamical processes,
altering the threshold behaviour and the associated dynamical phase
transition31–33,37–40. To take into account the effect of the network
topologywe use a particle-network framework inwhichwe consider
a random subpopulation network with given degree distribution
P(k) and denote the number of subpopulations with k connections
by Vk . Furthermore, we assume statistical equivalence for subpop-
ulations of similar degree. This is a mean-field approximation that
considers all subpopulations with a given degree k as statistically
equivalent, thus allowing the introduction of degree-block variables
that depend only on the subpopulation degree33. Although this is
an obvious approximation of the system description, it has been
successfully applied to many dynamical processes on complex
networks and it is rooted in the empirical evidence gathered in
previous works21–23,33. To simplify the analysis we will assume
that the average population in each node of degree k follows the
functional formNk =Nk/〈k〉, whereN =

∑
kNkP(k) is the average

number of individuals per node in the subpopulation network. This
expression represents the stationary population distribution in the
case of a simple random diffusive process in which the diffusion
rate of individuals along each link leaving a node of degree k has the
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Figure 1 | Statistical properties of commuting networks in the United States and France. a, Commuting network in the United States at the county level
(http://www.census.gov/). b, Commuting network in France at the municipality level (http://www.insee.fr/). Cumulative distributions of the number of
connections (left) and the number of daily commuters (centre) per administrative unit, as well as the number of daily commuters on each connection
(right) are displayed. The networks are highly heterogeneous in the number of connections as well as in the commuting fluxes.

form 1/k (refs 32,33). Moreover, the empirical data from various
sources indicate similar population scaling arises as a function of
their connectivity to other populations19,22,23.

To approach the spreading process in the subpopulation
network analytically, we define mixing subpopulations6,8 that
identify the number of individuals Nkk ′(t ) of the subpopulation
k present in subpopulation k ′ at time t (see Fig. 2). We consider
that the diffusion rate σkk ′ is a function of the degrees k and k ′
of the origin and destination subpopulations, respectively, with
σk =

∑
k ′∈υ(k)σkk ′ and τk depending only on the degree of the origin

subpopulation. In particular, if σk� τk
−1 and we study the system

on a timescale larger than the timescale of the commuting process
τk , one can consider a quasi-stationary approximation in which the
mixed subpopulations assume their stationary values:

Nkk =
Nk

〈k〉(1+σkτk)
(1)

Nkk ′ =
Nkσkk ′τk
〈k〉(1+σkτk)

(2)

These expressions (see Methods) allow us to consider the
subpopulation k as if it had an effective number of individuals
Nkk ′ � Nkk in contact with the individuals of the neighbouring
subpopulation k ′ in a quasi-stationary state reached whenever the
timescale of the dynamical process we are studying is larger than
τk . To simplify the analytical treatment in the following we will
consider in the commuting rates only the dependence on the degree
classes. More complicated functional forms including explicitly the
spatial distance may be considered, and we will analyse this case by
performing data-driven simulations.

Contagion processes and the invasion threshold
In analysing contagion processes in this system we consider
the usual susceptible–infected–recovered (SIR) contagion model41.
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Figure 2 | Illustration of the subpopulation invasion dynamics. a, Mixing of
two subpopulations and contagion dynamics due to commuting at the
microscopic level. At any time, subpopulation i is occupied by a fraction of
its own population Nii and a fraction of individuals Nji whose origin is in the
neighbouring subpopulation j. The figure depicts the flux of individuals back
and forth between the two subpopulations due to the commuting process.
This exchange of individuals is the origin of the transmission of the
contagion process from subpopulation i to subpopulation j. The contagion
process is mediated by contacts between infectious (red particles) and
susceptible (yellow particles) individuals. b, Macroscopic representation of
invasion dynamics. Nodes are organized from left to right according to their
generation index n. Arrows indicate the transmission of the contagion
process from a diseased subpopulation at the n− 1th generation to a
subpopulation at the nth generation.

Within each subpopulation the total number of individuals is
partitioned into the compartments S(t ), I (t ) andR(t ), denoting the
number of susceptible, infected, and recovered individuals at time t ,
respectively. The basic SIR rules thus define a reaction scheme of the
type S+I→2I with reaction rate β and I→Rwith reaction rateµ,
which represent the contagion and recovery processes, respectively.
The SIR epidemic model conserves the number of individuals and
is characterized by the reproductive number R0 = β/µ, which
determines the average number of infectious individuals generated
by one infected individual in a fully susceptible population. The
epidemic is able to generate a number of infected individuals larger
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Figure 3 | Phase diagrams separating the global invasion regime from the extinction regime. a, Plot of equation (4) in σ–τ space. The red and black lines
identify the R∗= 1 relation for the homogeneous and heterogeneous uncorrelated random networks, respectively. The global spreading regime is in the
region of parameters indicated by the shaded areas. The networks are made up of V= 104 subpopulations, each of which accommodates a degree
dependent population of Nk =Nk/〈k〉 individuals, with N= 104. Both networks have the same average degree, in which the heterogeneous network has
degree distribution P(k)∼ k−2.1 and the homogeneous network has Poissonian degree distribution. The SIR dynamics is characterized by R0= 1.25 and
µ−1
= 15 d. b, Numerical simulations on heterogeneous networks. The system assumes the same parameter values as a. The colour scale from black to

yellow is linearly proportional to the number of infected subpopulations. Black indicates an invasion of less than 0.1% of the subpopulations and yellow
indicates an invasion of more than 10% of the subpopulations.

than those who recover only if R0> 1, yielding the classic result for
the epidemic threshold41; if the spreading rate is not large enough
to allow a reproductive number larger than one (that is, β > µ),
the epidemic outbreak will affect only a negligible portion of the
population andwill die out in a finite amount of time.

Although this result is valid at the level of each subpopulation,
each subpopulation may or may not transmit the infection or
contagion process to another subpopulation it is in contact with,
depending on the level of mixing among the subpopulations. In
other words, the mobility parameters σk and τk influence the
probability that individuals carrying infection or information will
export the contagion process to nearby subpopulations. If the
diffusion rate approaches zero, the probability of the contagion
entering neighbouring subpopulations goes to zero, as there are no
occasions for the carriers of the process to visit them. On the other
hand if the return rate is very high, then the visit time of individuals
in neighbouring populations is so short that they do not have time
to spread the contagion in the visited subpopulations. This implies
the presence of a transition32,33,42–44 between a regime in which
the contagion process may invade a macroscopic fraction of the
network and a regime in which it is limited to a few subpopulations
(see Fig. 2 for a pictorial illustration). In this perspective we can
consider the subpopulation network in a coarse-grained view and
provide a characterization of the invasion dynamics at the level
of subpopulations, translating epidemiological and demographic
parameters into Levins-type parameters of extinction and invasion
rates. Let us define Dk

0 as the number of subpopulations of
degree k affected by the contagion at generation 0, that is those
which are experiencing the outbreak at the beginning of the
process. Each subpopulation invaded by the contagion process will
seed—during the course of the outbreak—the contagion process
in neighbouring subpopulations, defining the set Dk

1 of invaded
subpopulations at generation 1, and so on. This corresponds to
a basic branching process32,33,42,45,46 where the nth generation of
infected subpopulations of degree k is denoted by Dk

n. To describe
the early stage of the subpopulation invasion dynamics we assume
that the number of subpopulations affected by a contagion outbreak
(with R0 > 1) is small and we can therefore study the evolution of
the number of subpopulations affected by the contagion process by

using a tree-like approximation relating Dk
n to Dk

n−1. As is shown
in the Methods section, in the case of R0' 1, it is possible to derive
the following recursive equation

Dk
n
= (R0−1)

kP(k)
〈k〉

∑
k ′

Dk ′
n−1(k ′−1)λk ′k (3)

This relation has an explicit dependence on the network topology
through the degree distribution P(k) and the factor λk ′k , which is
the number of contagious seeds that are introduced into a fully-
susceptible population of degree k from a neighbouring population
of degree k ′. If the timescale of the disease is considerably larger
than the commuting timescale, which is in our case µ−1� τ , we
can consider the infectious individuals in themixing subpopulation
to assume their stationary values according to equation (2). The
quantity λk ′k can therefore be expressed as the total number of
infected individuals in the mixing subpopulation using λk ′k =

(Nk ′k+Nkk ′)α, whereα is the fraction of individuals that are affected
by the contagion by the end of the SIR epidemic. The first term on
the right of the expression accounts for the total visits of infectious
people from source subpopulation k ′ to target subpopulation k.
The second term accounts for the visits of individuals from the
target subpopulation to the source subpopulation, during which
they acquire infection and carry the contagion back to their origin.
If we use the steady state expression in equation (2) and consider
that α for the SIR dynamics can be explicitly written for R0 ' 1, it
is possible to write an explicit form of the iterative equation (3), the
dynamical behaviour ofwhich is determined by the branching ratio

R∗=
2N (R0−1)2ρ

R0
2(1+〈k〉/〈k2〉+ρ)

F(〈k〉,〈k2〉,〈k3〉,〈k4〉) (4)

where ρ ≡ στ is the ratio of commuting to return rate and for the
sake of simplicity we have considered that the per capita commuting
rate σ and return rate τ−1 are the same for all subpopulations. In
the above expression F is a function only of the moments of the
degree distribution of the subpopulation network. R∗ is therefore
equivalent to a basic reproductive number at the subpopulation
level, defining the average number of supopulations to which each
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Figure 4 |Dynamical behaviour of an SIR epidemic on the real US commuting network data. a, Average fraction of infected subpopulation as a function of
commuting rates in networks with the same statistical properties as the heterogeneous network in Fig. 3a. The visit time in this case is fixed at τ = 1 d.
b, Average fraction of infected subpopulations as a function of the intensity of commuting fluxes in the US. We study the system behaviour by varying all
commuting rates σij between county pairs by a factor ω as σij→ωσij. The visit time assumes a realistic value of τ =8 h. The infection is initially seeded in
Los Angeles. The data considers only real commuting flows up to 125 miles and the actual county populations (see text). c, Temporal progression of
average cumulative number of infected cases in the subcritical and supercritical regimes of the invasion dynamics. The rescaling factors used in these
simulations are marked in b. The SIR dynamics assumes R0= 1.25 and µ−1

= 3.6 d in both cases.

infected subpopulation will spread the contagion process. R∗ thus
defines the invasion threshold, as any contagion process will spread
globally in the network system only if R∗ > 1. The subpopulation
branching process inherently considers the stochastic effects of
the epidemic dynamics in the probability of contagion from one
subpopulation to the other. It is interesting to note that the invasion
threshold cannot indeed be derived in continuous deterministic
models where stochastic effects are neglected.

Phase diagram and the network structure
For fixed disease and network parameters, the condition R∗ = 1
of equation (4) defines the critical value for ρ that allows the
spreading of the contagion process. Thus there are two parameters
underlying the mobility dynamics that we can either keep fixed
or make variable. In Fig. 3 we show the phase diagram in the
σ–τ space separating the global invasion from the extinction
regime. The phase diagram tells us that, all parameters being equal,
the rate of diffusion to nearby subpopulations has to be larger
than σc to guarantee the spread of the contagion. Analogously,
if we allow τ to vary, we observe that the global spread of the
contagion process can be achieved by extending the visit times τ
of individuals in nearby subpopulations above a definite threshold

τc. The explicit expressions of the threshold values can be found in
the Supplementary Information.

Another very interesting feature of the above threshold con-
dition is the explicit effect of the network topology encoded in
the moments of the degree distribution. Indeed, the heterogene-
ity of the network favours the global spread of the contagion
process by lowering the threshold value. In the Supplementary
Information we show that in the case of a heavy-tailed degree
distribution the threshold virtually reduces to zero for infinitely
large system sizes. Even at finite size, however, the threshold
value is generally smaller for networks with greater heterogeneity,
as is shown in Fig. 3, which compares the phase diagrams of
heterogeneous and homogeneous networks of the same size. To
test the validity of the analytical picture obtained here, we have
performed an extensive set of Monte Carlo numerical simulations
of the contagion process in large subpopulation networks. The
simulations are individual based and consider the commuting and
contagion dynamics microscopically with no approximations, as
detailed in the Supplementary Information. The substrate net-
work is given by an uncorrelated random complex network47
generated with the uncorrelated configuration model48 to avoid
inherent structural correlations. In Fig. 3 we report the results
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for a network with Poissonian degree distribution and a network
with power-law degree distribution P(k) ∼ k−2.1. Individuals are
distributed heterogeneously in each subpopulation according to
the relation Nk =Nk/〈k〉, where N = 104. Although the analytical
phase diagram has been derived using several approximations, it
matches the numerical simulations qualitatively and quantitatively,
as shown by the good agreement of the analytical phase boundary
and the numerical simulations in Fig. 3b. We also report in Fig. 4a
the behaviour of the number of invaded populations as a function
of commuting rates. The phase transition between the invasion and
extinction regimes at a specific value of ρ = στ is clearly observed
in the microscopic simulations.

Data-driven simulations
As a further confirmation of the validity of the theoretical results we
have tested our results in a real-world setting. We have considered
the commuting network of all counties in the continental US
as obtained by the US Census 2000 data49. In this dataset each
subpopulation represents a county and a connection the presence
of commuting flow between two counties. In the simulation each
county is associated with its actual population and each link with
a specific commuting rate from the real data. We have considered
only short-range commuting flows up to 125 miles. The visit time
has been considered to be of the order of a working day (8 h).
On this real data layer we have simulated the spreading of an SIR
contagion process and studied the number of infected counties as
a function of the global rescaling factor of the commuting rates.
It is remarkable to observe that in the case of the real data a clear
phase transition exists between the two regimes at a critical value
of the global rescaling factor of the commuting rates. In Fig. 4 we
also illustrate the different behaviour of the contagion process in
the two regimes by mapping the number of infected counties in the
US as a function of time.

Conclusions
Although the presented results are anchored on the example of
disease spread, the metapopulation approach can be abstracted to
the phenomena of knowledge diffusion, online community forma-
tion, information spread, and technology. In all these examples,
we have individuals stationed primarily in well-defined subpop-
ulations, with occasional interactions with other subpopulations
governed by interaction rates similar in scheme to those presented
here. Whereas most of the studies defining an epidemic threshold
have focused on single populations, it is clear that more attention
must be devoted to the study of the spread in structured popu-
lations. In this case, the understanding of the invasion threshold
is crucial to the analysis of large-scale spread across communities
and subpopulations. The theoretical approach presented in this
paper opens the path to the inclusion of a more complicated
mobility or interaction scheme and at the same time provides a
general framework which could be used not just as an interpretative
framework but a quantitative and predictive framework as well.
Understanding the effect ofmobility and interaction patterns on the
global spread of contagion processes can indeed be used to devise
methods to enhance or suppress their spread by acting on the basic
parameters of the system in an appropriate way, which might find
applications ranging from protection against emerging infectious
diseases to viral marketing.

Methods
Stationary populations. Rate equations characterizing the commuting dynamics
among subpopulations can be defined by using the variablesNkk(t ) andNkk ′ (t ) as

∂tNkk(t )=−σkNkk(t )+τ−1k
∑
k ′

Nkk ′ (t )P(k ′|k)

∂tNkk ′ (t )= σkk ′Nkk(t )−τ−1Nkk ′ (t )

where σkk ′ is the rate at which an individual of subpopulation k commutes to
neighbouring subpopulation k ′. Then, considering the statistical equivalence of
subpopulations with the same degree and the mean-field assumption, we have
σk = k

∑
k ′ σkk ′P(k

′
|k), where P(k ′|k) is the conditional probability of having a

subpopulation k ′ in the neighbourhood of a subpopulation k. Equilibrium is given
by the condition ∂tNkk =∂tNkk ′ =0 and yields the relation

Nkk ′ =Nkkσkk ′ τ

Using the expression Nk =Nkk(t )+ k
∑

k ′Nkk ′ (t )P(k ′|k) for the total number
of individuals of subpopulation k, one can obtain the stationary populations in
equations (1) and (2).

Branching process. Each subpopulation of degree k ′ invaded by the contagion
process at the n−1th generation may seed at most its k ′−1 neighbours (all
of its neighbours, minus the one from which was infected). The probability of
finding a subpopulation of degree k in the neighbourhood is P(k|k ′). For each
neighbouring subpopulation, the probability that it has not already been invaded
by the contagion process in an earlier generation is

∏n−1
m=0(1−Dk

m/Vk). If λk ′k
infectious seeds are sent to the neighbour, the outbreak occurs with probability
1−R0

−λk′ k (ref. 50). We can then relate the number of diseased subpopulations at
the nth generation to that at the n−1th generation as the simultaneous realization
of all these above conditions,

Dk
n
=

∑
k ′

Dk ′
n−1(k ′−1)[1−R0

−λk′ k ]P(k|k ′)
n−1∏
m=0

1−
Dk

m

Vk


In the early stage of the contagion process we can assume that∏n−1

m=0(1−Dk
m/Vk)' 1. We will also consider the case that we are just

above the local epidemic threshold, R0−1� 1, so that the outbreak probability
can be approximated by 1−R0

−λk′ k ' (R0− 1)λk ′k . If we also ignore degree
correlations between neighbouring subpopulations, P(k|k ′)= kP(k)/〈k〉 (ref. 40),
we obtain equation (3).

Invasion threshold. To obtain the explicit expression for the subpopulation
reproductive number in equation (4) we need to derive an expression for
λk ′k = (Nk ′k +Nkk ′ )α. This expression depends on the form of commuting rates
among subpopulations. We consider the case in which

σkk ′ = σ
Nk ′

Nk+Nk
nn

whereNk
nn
= k

∑
k ′Nk ′P(k ′|k) is the average total population in the neighbourhood

of subpopulation k. The above expression assumes that the per capita mobility rate
is rescaled by the number of individuals in the subpopulation8, thus leading to a
σk decreases as Nk increases. This behaviour accounts for the effect introduced
by large subpopulation sizes; the overall per capita commuting rate outside of
the subpopulation generally decreases in large populations, as individuals tend to
commute internally. In this case we obtain

σkk ′ = σ
〈k〉k ′

(〈k〉+〈k2〉)k

This expression allows the calculation of Nkk ′ , and using the approximate relation
for the fraction of infected cases generated by the end of the SIR epidemic41
introduced into a fully susceptible population α ' 2(R0−1)/R0

2, we obtain
the expression for λk ′k :

λk ′k =
2N (R0−1)ρ

R0
2〈k2〉(1+〈k〉/〈k2〉+ρ)

(k ′+k)

If we substitute the above relation into equation (3) we get

Dk
n
=

2N (R0−1)2ρ
R0

2〈k2〉〈k〉(1+〈k〉/〈k2〉+ρ)
kP(k)

∑
k ′

Dk ′
n−1(k ′−1)(k+k ′)

To write a closed form of the above iterative process we introduce the definitions
20

n
≡
∑

k(k−1)Dk
n and 21

n
≡
∑

k k(k−1)Dk
n for which the next generation

equations are defined as

2n
=G2n−1 with2n

=

(
20

n

21
n

)
where G is a 2×2 matrix,

G=
2N (R0−1)2ρ

R0
2〈k2〉〈k〉(1+〈k〉/〈k2〉+ρ)

(
〈k3〉−〈k2〉 〈k2〉−〈k〉
〈k4〉−〈k3〉 〈k3〉−〈k2〉

)
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The global behaviour of the contagion process across the network of subpopulations
is determined by the largest eigenvalue R∗ of G as expressed in equation (4), where
F is a function of the moments of the degree distribution

F(〈k〉,〈k2〉,〈k3〉,〈k4〉)≡
1

〈k〉〈k2〉
[〈k3〉−〈k2〉+ (〈k4〉−〈k3〉)1/2(〈k2〉−〈k〉)1/2]
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	Figure 3 Phase diagrams separating the global invasion regime from the extinction regime. a, Plot of equation (4) in σ--τ space. The red and black lines identify the R* =1 relation for the homogeneous and heterogeneous uncorrelated random networks, respectively. The global spreading regime is in the region of parameters indicated by the shaded areas. The networks are made up of V=104 subpopulations, each of which accommodates a degree dependent population of Nk=N k / < k >  individuals, with N=104. Both networks have the same average degree, in which the heterogeneous network has degree distribution P(k)~ k-2.1 and the homogeneous network has Poissonian degree distribution. The SIR dynamics is characterized by R0=1.25 and μ-1=15  d . b, Numerical simulations on heterogeneous networks. The system assumes the same parameter values as a. The colour scale from black to yellow is linearly proportional to the number of infected subpopulations. Black indicates an invasion of less than 0.1% of the subpopulations and yellow indicates an invasion of more than 10% of the subpopulations.
	Figure 4 Dynamical behaviour of an SIR epidemic on the real US commuting network data. a, Average fraction of infected subpopulation as a function of commuting rates in networks with the same statistical properties as the heterogeneous network in Fig. 3a. The visit time in this case is fixed at τ =1   d . b, Average fraction of infected subpopulations as a function of the intensity of commuting fluxes in the US. We study the system behaviour by varying all commuting rates σijbetween county pairs by a factor ω as σij-> ω σij. The visit time assumes a realistic value of τ = 8 h . The infection is initially seeded in Los Angeles. The data considers only real commuting flows up to 125 miles and the actual county populations (see text). c, Temporal progression of average cumulative number of infected cases in the subcritical and supercritical regimes of the invasion dynamics. The rescaling factors used in these simulations are marked in b. The SIR dynamics assumes R0=1.25 and μ-1=3.6  d  in both cases.
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