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We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale
modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric,
and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are
instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.e., continuous
or discrete, signed or unsigned, bounded or unbounded), as well as arbitrary weight transformations, and describe
an unsupervised model selection approach to choose the best network description. We illustrate the application of
our method to a variety of empirical weighted networks, such as global migrations, voting patterns in congress,

and neural connections in the human brain.
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I. INTRODUCTION

Many network systems lack a natural low-dimensional
embedding from which we can readily extract their most
prominent large-scale features. Instead, we have to infer this
information from data, typically by decomposing the observed
network into modules [1]. A principled approach to perform
this task is to formulate generative models that allow this mod-
ular decomposition to be found via statistical inference [2]. The
most fundamental model used for this purpose is the stochastic
block model (SBM) [3], which groups nodes according to their
probabilities of connection to the rest of the network. However,
a central limitation of most SBM implementations is that they
are defined strictly for simple or multigraphs. This means that
they do not incorporate extra information on the edges, which
are typically present in a variety of systems, and are required
for an accurate representation of their structure. For example,
with the existence of a route between two airports is associated
a distance, with the biomass flow between two species in a
food web is associated a flow magnitude, etc. In this work,
we develop variations of the SBM that allow for this type of
information on the edges to be incorporated into the network
model and guide the partition of the nodes into groups in a
statistically meaningful way.

We follow the same basic idea put forth by Aicher et al. [4],
who adapted the SBM to weighted networks by including
edge values as additional covariates. However, our approach
diverges from Ref. [4] in key aspects. First, here we develop a
nonparametric Bayesian approach, based on exact integrated
likelihoods, that is capable of inferring the dimension of the
model—e.g., the number of groups—from the data itself,
without requiring it to be known a priori. This is achieved
by departing from the canonical exponential family of distri-
butions, and using instead microcanonical formulations that
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are easier to compute exactly and approach the canonical
distributions asymptotically. Second, our approach also infers
the hierarchical modular structure of the network, extending
the nested SBM of Refs. [5,6] to the weighted case. The
hierarchical nature of the model is implemented via structured
Bayesian priors that have been shown to significantly decrease
the tendency of the nonparametric approach to underfit [7] and
are capable of uncovering small but statistically significant
modules in large networks [5,6]. And third, our approach is
efficient, making use of MCMC sampling that requires only
O(E) operations per sweep, where E is the number of edges
in the network, independently of the number of groups.

This paper is organized as follows. In Sec. II we present
our general approach, and in Sec. III we illustrate its use in a
variety of empirical weighted network data sets. In Sec. IV we
elaborate on the diverse models for edge weights based on basic
properties (such as whether they are discrete or continuous,
signed or unsigned, bounded or unbounded), show how these
models can be extended via weight transformations, and how
different models can be chosen via Bayesian model selection.
We finalize in Sec. V with a discussion.

II. WEIGHTED SBMs VIA EDGE COVARIATES

We consider generative models for networks that, in ad-
dition to the adjacency matrix A = {A;;}, also possess real or
discrete edge covariates x = {x;;} onthe edges. Without loss of
generality, here we assume that the networks are multigraphs,
i.e., A;; € No, such that x;; is a vector containing one weight
for each parallel edge between nodes i and j, and no weights
if A;; = 0. Furthermore, we assume that the edge existence is
decoupled from its weight; i.e., the nonexistence of an edge is
different from an edge with zero weight (the special case where
the zeros of the adjacency matrix are considered values of the
edge covariates can be recovered by using a complete graph in
place of A, and adapting x accordingly). As done in Ref. [4],
we follow the underlying assumption of the SBM that the nodes
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are divided into B groups, with b; € {1, ..., B} specifying the
group membership of node i, and where in addition to the edge
placement, the edge weights are sampled only according to the
group memberships of their end points. Concretely, this means
they are both sampled from parametric distributions that are
conditioned only on the group memberships of the nodes, i.e.,

P(A,x|0,y,b) = P(x|A,y,b)P(A|0,b), (1
with the covariates being sampled only on existing edges,
P(x|A,y.b) =[] P(xwly,). )
r<s

with x,; = {x;;|A;; > 0 A (b;,b;) = (,5)} being the covari-
ates between groups r and s, and where p . is a set of parame-
ters that govern the sampling of the weights between groups r
and s. The placement of the edges is done independently of the
weights by choosing any SBM flavor with parameters 6. For
example, with the degree-corrected SBM [8] we would have

oMb biKiK ()\b, bikik )Aif

P(AI6 = (k)b =] ] ™
ij

i<j
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where A,; controls the number of edges that are placed between
groups, and «; the expected degree of node i.

Given the generative model above, we could proceed by
estimating the parameters § and y via maximum likelihood.
However, doing so would be subject to overfitting, as the
likelihood would increase monotonically with the complexity
of the model. Instead, here we are interested in solving a more
general and arguably more well-posed problem, namely to
obtain the Bayesian posterior probability of partitions, in a
nonparametric manner, taking into account only the weighted
network,

P(b|A,x) = M 4)
P(A,x)
where the numerator contains the marginal likelihood inte-
grated over the model parameters

P(A,x|b)=/P(A,x|0,y,b)P(0)P(y)d0dy

= P(A|b)P(x|A,b), ®)

and where
P(A|b):/P(A|0,b)P(0)d0 (6)

is the marginal likelihood of the unweighted network integrated
over the relevant parameters. Integrated marginal likelihoods
of this kind were considered in numerous works for several
unweighted model variants [5-7,9-12]. In this work, our
approach is fully independent of any particular choice made
for this part of the model. However, in our experiments we
will use the nested microcanonical degree-corrected SBM
described in Refs. [5,6], due to its efficient and multiscale
nature, as well as a much reduced tendency to underfit when
used with large networks. Furthermore, its hierarchical nature
will allow us to describe summaries of the network—taking
into accounts its edge covariates—at multiple scales, providing
a bird’s eye view of large data sets. We use this model without
sacrificing generality, since the usual nonhierarchical SBM

amounts exactly to using the nested version with just one
hierarchical level.

The crucial part in Eq. (5) that completes our nonparametric
approach is the marginal likelihood of the edge weights, which
is integrated over the weight parameters y according to their
prior distribution P(y,,), which is the same for every pair of
groups r and s,

P(x|A.b) = / P(x|A.y.b)P(y)dy

11

r<s

/ PGnly, ) Py, (D)

The form of the prior distribution P(y) is usually conditioned
on hyperparameters y, which represent our a priori assump-
tions about the data. In order for our inference approach to
retain its nonparametric character, we need these hyperparam-
eters to take a single global value, ie., P(y,;) = P(¥,5In)
for all groups r and s. Alternatively, we may treat 5 as latent
variables, and sample them from their own distribution, P(n),
thereby reducing the sensitivity to our a priori assumptions.
This idea fits well with the nested version of the SBM we will
be using [5,6], which, as part of its prior probabilities, considers
the groups themselves as nodes of a smaller multigraph that
is also generated by the SBM, with its nodes put in their
own groups, forming an even smaller multigraph, and so on
recursively, following a nested hierarchy {b'} = {{6®};}, so
that b € {1, ..., By} is the group membership of group/node
r at the hierarchy level [ € {1,...,L}, with the boundary
condition that the number of groups at the topmost level [ = L
is By =1 (see Fig. 1 in Ref. [5] for an illustration of the
generative process). Therefore, the adjacency of the multigraph
at level [ is

-1
m Shf”,rahﬁ”,s

M=

tu

, ®)

where we assume m?j = A;;. Following the same logic, we
may consider the parameters y as edge covariates in the
multigraph of groups, which themselves are generated by
another model in a level above, and so on. We may thus let
y! =y and y? = 5 be the first two levels of a hierarchical
model, given recursively by

P(},1|A,bl+1’y1+1) — l_[ P(yiu‘A,blH’ylb?l”’byw), )

t<u

where y/H = {yl |ml > 0 A (BT bUDY = (¢,u)} are the
hyperparameters between groups (t,u) at level [ + 1, with m!
given by Eq. (8). The final model is then obtained by integrating

over the entire hierarchy,

P(x|A,{b'})

L
=/P(x|A,y1,b1>1"[P(y’|A,y’“,b’+‘)dyl, (10)
=1

assuming the boundary condition y“*! = {}, such that y is a
single set of hyperparameters that are left out of the integration
at the topmost level, reflecting only global aspects of the
covariates, without a significant effect on the model structure
and dimension. Instead of defining a unique model, we will
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FIG. 1. (a) Fit of the unweighted SBM for UN migration data, using the threshold approach described in the text. The edges are routed
according the inferred hierarchy (shown in blue), using an edge-bundling algorithm by Holten [18], and the edge sources are marked with a
green color. (b) Fit of the weighted SBM for the same data with the migrant stocks included, as shown by the edge colors and in the legend.

consider a variety of elementary choices for P(x|y) and P(y)
that reflect the precise nature of the covariates (e.g., continuous
or discrete, signed or unsigned, bounded or unbounded), and
for which Eq. (10) can be computed exactly. In particular, we
will make use of microcanonical formulations of the weight
distributions that permit the straightforward computation of
the integrals, without sacrificing descriptive power. We leave
the derivations of the likelihood expressions for Sec. IV, and we
proceed with a general outline, and an analysis of this approach
for empirical networks.

When using the nested model, we have a posterior distribu-
tion over hierarchical partitions,

P(Ax|{b')HP({D')

P({b'}|A,x) = PAD)

, an

which can be marginalized, if we so desire, to obtain only the
partition at the bottom level b = bl,
P(blAx)= ) P({b'}Ax). (12)

®'1>1

However, most typically we will want to obtain the entire
hierarchical partition, as it is useful for a multilevel description
of the data. Since the posterior in Eq. (11) involves a prior
probability of the partition P({b'}) (described in detail in
Ref. [6]), and is integrated over all remaining model param-
eters, it possesses an inherent regularization property, where
overly complicated models are penalized with a lower posterior
probability [13]. This means that, differently from maximum-
likelihood approaches, we can infer properties related to the
size of the model, such as the number of groups B and hierarchy
depth L, without danger of overfitting. Furthermore, as we
detail further in Sec. IV G, the posterior distribution gives us
a principled means of model selection according to statistical

significance, which allows us to choose the most appropriate
weight model.

Given a choice for the parametric model for weights, we
compute Eq. (10), which allows us to determine the posterior
distribution of the partitions in Eq. (11) up to the normaliz-
ing constant P(A,x) in the denominator, which is generally
intractable. But since we cannot sample from the posterior
distribution directly even if we could somehow compute this
constant, we must resort to MCMC importance sampling
methods, for which this normalizing constant is luckily not
needed. Since the values that need to be inferred are only the
hierarchical labels {bl }, we can use the exact same algorithm
developed for the unweighted case in Refs. [6,16], which we
summarize here. This is generally implemented by making
move proposals {b'} — {b'}’ with probability P({b'}'|{b'}),
and rejecting the proposal with probability 1 — a, where a is
the Metropolis-Hastings [14,15] criterion

P({b'Y1A,x) P((B'}1{8'}Y)

, 13
P({b'}|A,x) P({B'Y|{b') ()

a = min

Since the ratio in Eq. (13) does not depend on the normalization
constant P(A,x), the value of a can be computed exactly,
and—as long as the move proposals are ergodic—the algorithm
above will eventually sample partitions from the desired
posterior distribution asymptotically. We can also obtain the
most likely hierarchical partition,

{b'}* = argmax P({b'}|A,x),
[t3]

by replacing P({b'}|A,x) — P({b'}|A,x)? in Eq. (13) and
making 8 — oo in slow increments. Therefore, we can both
maximize and sample from the posterior distribution, using the
same algorithm. In this work we use the same move proposals
defined in Refs. [6,16] where we select the layer / and a node

(14)
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u in that layer, both randomly, and use the local information of
the node’s neighborhood combined with global information on
that layer to propose a plausible move candidate for its group
membership, b, — r, thereby improving equilibration speed
(see Ref. [6] for details). Additionally, in order to avoid getting
trapped in metastable states, we employ the agglomerative
initialization heuristic described in Ref. [16] and extended to
the nested model in Ref. [5]. The combination of these move
proposals with the likelihood of the microcanonical SBM of
Ref. [6], as well as any of the weight likelihoods defined in
Sec. 1V, yields an algorithm where each MCMC sweep (i.e., for
every node one move is attempted) is performed in time O(E),
independently of how many groups are occupied with nodes.
For more details of the algorithm we defer to Refs. [6,16] and
to the freely available C4+ implementation in the graph-tool
Python library [17].

II1I. EMPIRICAL NETWORKS
A. Migrations between countries

We begin with an illustration of how incorporating edge
weights with our method can have a significant effect on the
analysis of network data. We use for this purpose a data set
of global migrations between N = 232 countries, assembled
in 2015 by the United Nations [19]. This data set can be
represented as a directed network (see the Appendix), where
for a pair of countries (i, j) there is a net migrant stock x;; € Z
which is defined as the number of migrants that moved from i
to j minus the number that moved from j toi. If we only had an
unweighted SBM at our disposal, a common approach would
be to threshold this data, yielding a directed edge A;; =1 if
x;j > 0and A;; = 0 otherwise. As argued by Aicher et al. [4],
this type of data manipulation should be avoided whenever
possible, since not only does it destroy potentially valuable
information, but also it is possible to construct examples where
no single threshold can accurately reproduce the large-scale
structure in the data. In this particular case, this approach
actually does seem to yield usable information at first, as can
be seen in Fig. 1(a), which shows a fit of the unweighted
SBM. We can see that the network division obtained in this
manner essentially categorizes countries on whether they are
net sources or targets of migration, as well as the typical regions
people migrate to and from. However, a closer inspection
reveals that it is not able to distinguish between countries
such as Costa Rica, South Africa, and Finland (which end up
clustered in the same group as Austria and Ireland), which
not only are geographically far apart, but do have, in fact,
very distinct migration volumes and patterns. Since migration
volumes between countries can vary by several orders of mag-
nitude (see Fig. 2), any analysis that ignores this aspect must
be woefully incomplete. Indeed, if we include the values x;;
of the migrant stock, in addition to the same adjacency matrix
obtained with the threshold approach, and we use the weighted
SBM defined previously, with geometric distributions for the
weights as described in Sec IVC, we obtain a much more
detailed representation of the data, as shown in Fig. 1(b). Not
only do we find a larger number of groups, but now countries
such as France, Canada, and the United Kingdom appear as
members of very specific groups. The United States of America
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FIG. 2. Overall distribution of the number of migrations for the
UN data. The solid line shows the inferred distribution according to
the weighted SBM using geometric distributions. The dashed line
shows the best fit of a single geometric distribution.

gets placed in its own group, due its unique volume and pattern
of (mostly incoming) migrations. The remaining countries
end up divided in geographically meaningful categories, with
regions such as South America, the Middle East, Africa, and
Asia being easily recognizable. However, there are exceptions
to this, where geographically separated countries get clustered
together. Examples of this include Germany and India, as well
as China and South Africa. These countries are either sources
or targets of global migration which go well beyond their
immediate neighborhoods, and they possess similar overall
patterns despite geographical distance (we emphasize that due
to the degree-corrected nature of our model, countries with
distinct migration balances can be put into the same category,
if their group affinities are the same).

We can also assess the quality of the SBM in capturing the
overall weight distribution, computed from the model as

P(x|A,x,{b'}) = %Zm:sP(xb?}s), (15)

r<s

with E =) _ m] being the total number of edges, and
P(x|pL)is the marginal covariate distribution between groups
r and s, which in this case is given by Eq. (69). From Fig. 2, we
see that the overall inferred distribution—which is a particular
mixture of geometric distributions—is capable of providing a
very good fit of the empirical data, despite the fact it is much
broader than any single geometric distribution (a best fit of
which is shown for reference).

B. Vote correlations in congress

We move now to another example where methods for
unweighted graphs are ill suited. We consider the voting
patterns of N = 475 members of the lower house of the
Brazilian congress during 2009 [20]: Each deputy voted “yes”
or “no” on proposed laws during the legislative year, and based
on this, we computed the normalized correlation between the
votes x;; € [—1,1] of deputies i and j. Note that in this case
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FIG. 3. (a) Fit of the weighted SBM for a matrix of vote correlations between deputies of the lower house of the Brazilian congress. The
group boundaries are shown by horizontal and vertical lines. (b) Same as in (a) but using the layout of Fig. 1 that shows the entire hierarchical
division. (c) Overall distribution of vote correlations. The solid line shows the inferred distribution according to the weighted SBM using
transformed normal distributions. The dashed line shows the best fit using the same model, but on the shuffled data with the same empirical

distribution.

we have an adjacency matrix which is a complete graph, i.e.,
A;j =1 for all i,j, and any pairs with zero correlation are
considered particular values of the covariates.

This time we skip any attempt at thresholding the data, and
we move directly to the analysis using the weighted SBM. For
this, we use the version with normal distributions described
in Sec. IVB, adapted to bounded weights via the variable
transformation y;; = 2 arctanh(x;;) that maps the intervals
[—1,1] > [—00,00], as described in Sec. IVF. As shown
in Fig. 3(a), the method uncovers many groups of deputies,
which collectively can be divided into two overall groups at
the highest hierarchical level. These two large groups are more
correlated with their own members than with nonmembers.
An inspection of the known party affiliations of the deputies
reveals that these two overall groups correspond to the govern-
ment and opposition, which tend to vote together either against
or in favor of bills. If we again inspect the overall distribution
of vote correlations, we see that the weighted SBM provides
a very good fit, as seen in Fig. 3(c). The model captures the
bimodal nature of the vote correlations—with higher values
corresponding to pairs of deputies belonging both to either the
government or opposition, and lower values to pairs belonging
to different factions. It should be emphasized that the quality
of the fit is not merely an outcome of using a sufficiently large
mixture of normal distributions, as we are not modeling the
overall distribution directly. Instead, the distributions are tied
to the division of the nodes into groups, and the quality of
the overall fit shows that the distribution of weights is well
correlated with this categorization. For comparison, we show
in Fig. 3(c) the outcome of the same analysis where the exact
same weights are used, but they are randomly shuffled across
pairs of deputies, thereby destroying any group organization
but preserving the overall weight distribution. In this case, the
best SBM fit is composed of only one group, B = 1, and the
corresponding normal fit cannot capture the bimodal structure
of the weights—although it is still present in the shuffled data,
albeit in a manner which is completely uncorrelated with any
partition of the deputies. Therefore a close match between
the empirical weight distribution and the SBM fit such as
the one in Fig. 3(c)—as well as the one in Fig. 2 for the

UN migration data—is a testament to the quality of the SBM
ansatz in explaining the data, rather than of an arbitrary mix of
elementary unimodal distributions.

C. The human brain

We now analyze empirical networks of interactions between
parts of human the brain, using data from the Budapest
Reference Connectome [21] (which itself is based on primary
data from the Human Connectome Project [22]). This data set
corresponds to a consensus between 477 people, where an edge
between two of N = 1006 predefined anatomical regions is
considered to exist, i.e., A;; = 1, if neuronal fibers connecting
these two regions have been detected in at least 20% of the
individuals. In addition to this basic connectivity, we consider
two edge covariates, averaged over individuals: the “electrical
connectivity” x;; € [0,00], defined as the number of recorded
fibers divided by their length, and the fractional anisotropy [23]
vij € [0,1], which is maximal if all fibers in the affected region
go in the same direction in 3D space, or minimal if they all
go in different directions. Indeed, we use this data set as an
opportunity to highlight that our method can also be used
when there are multiple covariates available. This can be done
in an intuitive manner by assuming that their generation is
conditioned on the same network partition, but otherwise are
independent, i.e.,

P(x,y|A,{b') = P(x|A,{b')HP(yIA,{b').  (16)

We can then use the exact same algorithm to obtain the
posterior P({b'}|A,x, y) by simply combining both terms for x
and y. This approach will use the information in both covariates
simultaneously to inform the partition of the network. (This
is easily extended for an arbitrary number of covariates, and
hence yields a method that is also suitable for vector-valued
covariates, which is supported in our reference implementa-
tion [17].) In the following, we use normal models for the
transformed covariates In x;; and logit(y;;).

When applied to the brain data set, our method reveals
the structure shown in Fig. 4(a). It decomposes the network
into left and right hemispheres at the topmost hierarchical
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FIG. 4. (a) Inferred SBM for the human connectome, using electrical connectivity and fractional anisotropy as edge covariates. The text
labels show the most frequent anatomical annotation inside each group at the lowest hierarchical level. (b) Empirical and fitted distribution of
electrical connectivity of the edges. (c) Empirical and fitted distribution of fractional anisotropy of the edges.

level, and proceeds to subdivide it into smaller regions. The
subdivisions in both hemispheres are similar but not quite iden-
tical, indicating imperfect bilateral symmetry. The divisions at
the bottom level are well correlated with known anatomical
divisions, as shown by the labels in Fig. 4(a). Most often, our
method finds subdivisions of anatomical regions—i.e., a single
anatomical region is divided in one or more groups—which
are then grouped together higher in the hierarchy. But we
also find some regions that belong to the same anatomical
group that end up classified in significantly different hierarchy
branches, pointing to a further degree of heterogeneity inside
anatomical regions. Since the various traditional approaches
to determine such anatomical classification do not always take
into account the local and global connectivity patterns (i.e.,
the actual connectome), our approach suggests an alternative
or complementary method to perform such a task.

Like in the previous examples, the fit of the overall distri-
butions of edge covariates provided by the SBM is reasonably
convincing, as we see in Figs. 4(b) and 4(c), indicating
that these nontrivial distributions—which deviate significantly
from the basic distributions used in the model—can be well
explained by group-to-group mixtures.

Community structure?

The modular structure of the brain has been studied nu-
merous times before, using a variety of methods (e.g., [24—
26]). Most often, however, this is done by searching for
assortative modules [27], i.e., groups of nodes more connected
to themselves than with the rest of the network—a pattern

commonly called community structure [1,28]. In contrast,
the approach developed here seeks to find groups of nodes
that have similar probabilities of connection with the rest of
the network (and to generate edge covariates), regardless of
whether they form a community or not. Naturally, community
structure is a special case of the general class of patterns that
we consider, but our approach is capable of accommodating
many others, such as core-peripheries and bipartiteness—in
fact, any arbitrary kind of group affinities. This means that if
the formation of assortative communities is the main driving
mechanism responsible for the network structure, we should
be able to detect it with our method, but otherwise it will
prefer a nonassortative division. This makes it a more flexible
and potentially more informative approach in comparison to
typical community detection methods, which, by construction,
will tend to omit nonassortative divisions, however important
they may be, in favor of assortative ones. In the case of brain
networks, very often the community detection approach used
is the maximization of modularity [27], defined as

1 Zerr -

=%
where e, = m,¢(1 4+ §,5) is the number of edges between
groups r and s (or twice that if » =), and e, = ZS €.
As has been known for a long time [29], and since then has
become well understood [30-34], the direct maximization of
Q to detect communities will generically overfit, as it will
misleadingly find many spurious communities and produce
large Q values for completely random networks, as well

57 7)
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as arguably nonmodular networks such as trees. Somewhat
paradoxically, the same approach will also generically underfit,
as it is incapable of detecting a number of communities
larger than +/2E [35], even if their presence is statistically
significant. Because of these and other limitations, as well as
its nonstatistical nature, the unsupervised maximization of Q
to find communities is ill advised in most contexts [36]. In
contrast, the approach presented here is free of both these
problems: When applied to completely random networks, it
will not uncover spurious groups not sufficiently backed by
statistical evidence [7]; and it is capable of detecting up to
o« N/log N groups [5,6], whenever they are present. Since
we have principled guarantees that the modules uncovered
with our method are statistically significant, we can then use
the value of Q to characterize the degree of assortativity of
the modules found (rather than the quality of the partition).
For the result shown in Fig. 4, we obtain Q ~ 0.13, which is
typically considered a low value indicating weak community
structure. We may understand this value in more detail by
decomposing it as

0= éZq (18)

where

_ B ef (19)
=5\ " 2E

is the local assortativity of group r, with g, € [—1,1]. In
Fig. 5(a) we show the values of ¢, for the modules inferred
with our method, labeled according to the most prominent
anatomical classification. We see that while most values are
positive, g, > 0, strictly indicating a degree of assortativity,
they are distributed across a broad range—with regions such
as the caudate nucleus (associated with motor functions)
even showing dissortativity with g, < O—indicating that as-
sortativity, although it is present, is not an overwhelmingly
dominant descriptor of the large-scale structure (a similar point
has been made recently [37] using the method of Ref. [4]).
We note also that inferred groups that are associated with
the same anatomical region sometimes possess very different
assortativity, as shown in Fig. 5(b). This gives us an insight as
to why they were classified in different groups in the first place,
and further corroborating the idea that specific anatomical
regions have noticeable internal heterogeneity.

One might speculate that assortativity is just one of a
diverse set of driving forces behind the network formation,
and that inspecting a detailed model of the network might
dilute its importance. Here we can can further exploit the
multilevel nature of our inferred model to assess whether
assortativity becomes more relevant at higher levels of coarse-
graining. We can do so by computing a different value Q; for

each hierarchical level /, defined by replacing m,; — ml_in

rs
Eq. (17), where m! is the number of edges between groups r
and s atlevel [. As we can see in the inset of Fig. 5(a), the values
of Q; do significantly increase at higher levels, suggesting
that assortativity might be an important mechanism for the
most global structures of the network, but not as much for its

substructures at a smaller scale.

IV. ELEMENTARY MODELS FOR EDGE WEIGHTS

The central piece of the posterior distribution of hierarchical
partitions of Eq. (11) is the joint marginal probability of the
network adjacency and weights,

P(A.x|{b'}) = P(x|A,{b'})P(A|{b')). (20)

For the unweighted part, P(A|{b'}), we use the family of
unweighted nested SBMs developed in Refs. [5,6]. The reader
is referred to those references, as well as the more recent
overview provided in Ref. [2], for a detailed derivation of
the unweighted marginal likelihood, which we omit here for
conciseness. To complete the model, we need to determine the
placement of edge weights given the adjacency matrix and the
hierarchical partition, with probability P(x|A,{b'}) given by
Eq. (10), which depends on the nature of the edge covariates.

In this section we derive models for edge covariates based on
basic properties, such as whether they are signed or unsigned,
continuous or discrete, bounded or unbounded. In particular,
we focus on formulations that allow the integrated marginal
likelihood P(x|A,{b'}) to be computed exactly. For some of the
derivations, we will assume—for convenience of notation—
that the graphs are simple, i.e., A;; € {0,1}. We do so without
loss of generality, as the final expressions will also be valid for
multigraphs. In all cases, we begin with the simpler case of
only one hierarchical level, where {b'} is replaced by a single
node partition b, and generalize thereafter.

A. Continuous unsigned weights

If all we know about the edge weights is that they are
continuous and positive, i.e., x;; > 0, a reasonable model is
a maximum-entropy distribution with a fixed average, i.e., the
exponential distribution

P(x|X) = re ™. (21)

Using this as the basis of our weighted SBM yields

Aijdb;,rdb; s

P(xrs| ANB) = [ | Pxijlnng) ™ (22)
ij
= A g hrshrs (23)
with
Ai 'xi '3b,<,r8b,>,s
Mrs = Z e e A e 1J+ s - (24)

i

being the sum of the weights between groups r and s. Before
computing the integrated marginal likelihood of Eq. (7), we
need to select a prior for A. A natural choice that makes the
computation feasible is known as a conjugate prior, which in
this case is the gamma distribution

ut)tozfl
ﬂr(a) e B, (25)

where « and § are hyperparameters controlling its shape. Using
this prior, we can write the marginal likelihood for the network

P(Ala,B) =
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FIG. 5. (a) Group assortativity g, [Eq. (19)] for the lowest level of the hierarchy in Fig. 4(a), with groups labeled using the most frequent
anatomical annotation. Blue circle (red square) markers correspond to the left (right) hemisphere. On the right axis is shown a histogram of
the g, values, with a horizontal line marking the average Q = ), g,/B ~ 0.13. The inset shows the modularity value Q; as a function of the
hierarchy level /. (b) Dispersion of g, values for groups that share the same anatomical annotation, as labeled in the x axis.

weights by integrating over all A,,, yielding

L(m,s +a)
')

ﬁa

Gars 1y 0

P(x|Aba.p)=]]

r<s

Doing so, we have reduced the initially high number of
parameters from B(B + 1)/2 to only two, corresponding
to the hyperparameters o and f. Being global parameters,
independent of the internal dimension of the model, they can
be chosen via maximum likelihood, without significant risk of
overfitting,

&,p = argmax P(x|A.b,a.pB), 27)

a.p

which can be done efficiently with any standard optimization
method. Alternatively, we may consider the choice o = 1, for
which P(A|a,B) becomes the maximum-entropy distribution
with a fixed mean, and hence has the same shape as P(x|A).
Even with this choice, however, is difficult to incorporate this
prior in the nested SBM via Eq. (10), as the integration over
the remaining hierarchical levels is cumbersome. Instead, we
now describe a microcanonical formulation which generates

covariates in an asymptotically identical manner, but permits
the exact integration of Eq. (10).

Microcanonical distribution

Instead of generating each covariate independently, we
consider the uniform joint distribution of N positive real values

x = {xy, ...,xy} conditioned on their total sum p = Zi Xi,
WS — Y xi), ifu>0
P — | T\ i) M ’ 28
(x|w) {FL» S, a0 @

where the normalization constant (N — 1)!/uN —1 above ac-
counts for the volume of a scaled simplex of dimension N — 1.
Although the covariates are not generated independently in
Eq. (28), the marginal distribution of the individual values x;
can be obtained as

P
P(x;|N,u) = % (29)
N = D) — xi)V2
= o -, G0
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FIG. 6. The marginal distribution of each individual covariate x
in the unsigned microcanonical model, given by Eq. (30), approaches
asymptotically the exponential distribution as the number of values
N increases, and if the mean ¥ = /N is kept fixed.

using Eq. (28) both in the numerator and denominator of
Eq. (29), and ®(x) is the Heaviside step function. Taking
the limit N — oo while keeping the mean ¥ = u/N fixed,
P(x;|N,n) becomes Eq. (21) with A = 1/x (see Fig. 6). Since
in the limit of sufficient data both models become identical, the
microcanonical model enables us to have an exact hierarchical
SBM, as we will now show, without sacrificing descriptive
power.

Incorporating the microcanonical model of Eq. (28) in the
SBM amounts simply to

P(xrs|AvA-»b) = P(x,s|tars), (31

where, as before, w,, is the sum of covariates between groups
r and s. To generate the parameters u,,—which are also non-
negative real numbers—we can use the exact same distribution
again at a higher hierarchical level, by treating them as edge
covariates of the graph of groups, as described in Eq. (10). The
microcanonical nature of this model makes the integration over
all parameters {g. } trivial due to the hard constraints, i.e.,

L
Paia e = [ Paiant sH]]]]

=1 r<s

[ (I'l’rs|:ub(l+l) b(l+l)) d/,L”]l 8l 0 (32)

L 1) 1— 5#1” 0
=11 : (33)
r<s )

=1
l—ﬁmguyo
) (34

is the sum of covariates between groups r and s at level
[ > 1, and with [L}X = u,s given by Eq. (24) at the lowest
level. Recall that the boundary condition used in Eq. (10) is
that at the topmost level there is only one group, and hence
mk = E§, 18,1 and ik, = 08,1851, where 0 = Y, . Ajjxi;

where

—1—1

o Oyt 1 Opl
-1 _ tu s e
Hrs Z( 1+ 8,5

tu

I<j

is the total sum of edge weights, and the sole remaining
parameter of the model. The marginal likelihood of Eq. (33)
is a simple term that can be computed easily by obtaining
the covariate summaries at each level, and amounts to a
straightforward modification of the algorithm of Ref. [6] to
obtain the posterior distribution of hierarchical partitions. In
particular, this additional term does not affect its algorithm
complexity, since changes in a lower hierarchical level that are
compatible with the partition at a higher level do not alter the
likelihoods in the upper levels, as the covariate sums remain
unchanged.

B. Continuous signed weights

For weights that can be either positive or negative, we
require a maximum-entropy distribution with fixed average and
variance, which is the normal distribution

1 =12
e 27, (35)
V2mo?

Incorporating this in the SBM, we obtain

P(x|%,0%) =

) ) AijOb; rob; s
P(x,s |A,x”,ors) = 1_[ P(x,-j |xm,a”) I43rs (36)
ij

- 22
_ Vrs=2ptrs s +imrs Xy

e 202
= (37)
(2roz)" "
with
Alj-x 8b rab ,8
rs = 38
v Z e (38)

being the sum of squares of covariates between groups r and
s. The conjugate prior for ¥ and o' is the normal-inverse-chi-
squared distribution [38]

= N(X|po.0°/K0)x > (0 |v0.0¢).
(39

P(i,02|//,0,/co,vo,002)

where N (X|a,b) is a normal distribution with mean a and
variance b, and the variance is sampled from an inverse-chi-
squared distribution

(t2v/2)v/? et

-2
(0*v. %) = T(v/2) o2

(40)

Using this prior, after the integration over ¥ and o2, the
marginal likelihood becomes

P(x,SIA,,uo,KO,VO,Uoz)

— F(v;v/z) v (UOOO) e (41)
T W0/2) V Krs (V] Sys)re/2 e/
with auxiliary quantities
Krs = Ko + My, V;S =V + My, (42)
Zrs = Vrs — M%y/mma (43)
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The  normalization  constant is  computed  as

1 2 mysko Mrs :
Sps = Z Yooy + Zrs + P (Ho - mm) .44 Q= /5(M -y, xi)(g(v -y, xf) dx (46)
This leaves us with four global dog v =3 x(»))
global parameters, (o, ko, Vo, and oy, - / dy(x) (47)
that we have to determine either with maximum-likelihood H VN
or maximum-entropy arguments. However, like the unsigned do (x)
case previously, the shape of the marginal likelihood leaves = / T (48)
little chance of building a hierarchical model in closed form. § 2y Nv —p
Luckily, we can once more construct a microcanonical model aN=D2(y — 2y N)(N —3/2
that allows us do precisely that. = ) (49)
(N2 —1/2v'N
Microcanonical distribution where H in Eq. (47) is the hyperplane given by }; x; = p,

parametrized by N — 1 coordinates y(x), and S in Eq. (48)
is the intersection of an N-sphere of radius /v and the
hyperplane H, which corresponds to the surface of an (N — 1)-
sphere of radius /v — u?/N, with surface element do(x),

The corresponding microcanonical maximum-entropy for-
mulation for signed covariates is the uniform distribution of N
values x conditioned in the total sum u and sum of squares v,

5(,U« -y, xA) B(v -y xZ) leading to Eq. (49). Therefore, we have for the complete
P(x|u,v) = ! lQ Lt (45)  microcanonical distribution
|
I(N/2 —1/2)vN N ,
P(x|p,v) = { 70072, Z 12/ NYN=72 (k=2 xi)8(v =3, x7), if v > u?/N, (50)
[1; 6(u/N = x;), ifv=pu?/N.

The marginal distribution of the individual covariates x; can be obtained as

P(x|p,v)
P(x \xi}pL — X,V — xf)

T(N/2—1/2) N [v—x—u-x2/N -]V
T TWN2-D (V- 1) (v — 2/ N)N=3)/2 O —x:)0(v —x7). (52)

using Eq. (50) both in the numerator and denominator of Eq. (51). Taking the limit N — oo while keeping both the mean

% = j/N and variance 0> = v/N — X2 fixed, P(x;|N,u,v) becomes the normal distribution of Eq. (45) (see Fig. 7). Therefore,

like with the unsigned case, the microcanonical model yields an easy-to-integrate model, without sacrificing descriptive power.
Incorporating the above distribution into the SBM yields

P(xrslAa,"’vab) = P(xr.rlu/mavrs)a (53)

P(xi|N,p,v) = 61V

where, as before, u,, is the sum of covariates between groups r and s, and v, is the sum of squares of the same covariates.
To generate the parameters u,;, we can use the exact same distribution again at a higher hierarchical level. The parameters v,,
however, are strictly positive, and hence require a different model. Furthermore, 1,; and v, are not independent parameters, as
they must satisfy the inequality v, > p? /m,. Therefore, we re-parametrize the model using the auxiliary quantity of Eq. (43)

Zrs = Vps — l’l/f_y/mrj" (54)

which is simply the scaled variance of the covariates, and thus is strictly non-negative and can be chosen independently from p,.
We can then generate z,; from the unsigned microcanonical model of Eq. (28). Although we can easily write the final marginal
likelihood of the model if we propagate the hyperpriors of z,; upwards in the hierarchy of the nested SBM, we would have
the following problems: Not only would this increase the total number of edge covariates at the highest levels (and hence it is
unclear a priori whether it is the most parsimonious approach), since each signed parameter requires two hyperparameters, but
also it leads to a model that is cumbersome computationally, as changes in a lower level would always propagate through the
whole hierarchy. Instead, here we opt to propagate only i, upwards in the hierarchy, whereas we generate all z,; from the same
distribution at each level. More concretely, we write

L
P(x|A.{b'}) = / PeelAp' 2 BYP ) [T P ) TTIP (it o2ty )]0 Azl (55)

=1 r<s

- L I _ =550 /2 — L]
(L —1)! n(m,z)l_s,,,gyo[u} l—l[r(mrs/z 1/2)\/'7”] , (56)

Sk L ()" /(3] )

,
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FIG. 7. The marginal distribution of each individual covariate x
in the signed microcanonical model, given by Eq. (52), approaches
asymptotically the normal distribution as the number of values N
increases, and if the mean ¥ = /N and variance 6> = v/N — ¥°
are kept fixed.

where z. = vl — (@l )*/m! , with i’ given by Eq. (34), and

—1—1\2 1_5m1m,0
_] (/’Lzu ) Shf,rabft,s
v, = —_— 57
= [ e (57)
tu
corresponds to the scaled variance of the values of /! at a
lower level [assuming the boundary conditions ﬁ}s = W,y and

1

., = v, given by Eqgs. (24) and (38), respectively], and where
ml =" H(ml, — (58)

r<s
= Y& Hnl, 1) 59

r<s

are the sum and scaled average 7. of m. > 1 entries at level
I, with H(x) = 1if x > 0, otherwise H(x) = 0, and P(z'|ul)
is given by Eq. (28). The above means that when computing
P(Z| ,uz) we must only consider values of zl for which m >
1. Otherwise, if mrs =1, the correspondlng parameter must
always be v/ = (ul )%, and hence z/, = 0, which does not
need to be sampled from a prior. Finally, the values of u, =
{ulz} across all levels are also sampled from their own model

as
L

P(p) = P({mpl}| iy miul) [T (m

=1

m‘ 0
b

(60)

using again Eq. (28), and where the trailing product is a
derivative term that accounts for the scaling of the variables
in the argument of the first term, and with

L= ()

being the number of levels with nonzero values of mlz The
boundary condition in Egs. (10) and (55), i.e., that the last level
of the hierarchy has only one group, means that the two remain-
ing parameters are [L,LS = [16,.105,1, where i = ij Ajjxijis
the total sum of edge weights, and i, =), mé /12, which is
the sum of scaled variances across the hierarchy levels.

Like with the unsigned model, Eq. (56) amounts to a
straightforward modification of the algorithm of Ref. [6],
requiring only an additional bookkeeping of the values of z.
for which mﬁs is larger than 1, and their respective sums,
which can be done without altering the overall algorithmic
complexity. We remark also that, unlike maximum-likelihood
approaches applied directly to Eq. (45), the resulting marginal
likelihood of the microcanonical model is well defined and
yields nondegenerate results for any possible set of covariates,
even those yielding zero variance or populations with single
elements.

(61)

C. Geometric discrete weights

For discrete non-negative weights, i.e., x € Ny, the
maximum-entropy distribution with a fixed average is the
geometric distribution

P(xlp)y=0—-p)p. (62)
Using it for the SBM, we have
P(x,5|A.b,prs) = (1 — prs) pry. (63)
The conjugate prior for p is the beta distribution
pi(1 —p)!
P(pla.p) = : (64)
B(a,p)
with  B(x,y) =T(x)I'(y)/T(x + y), which yields the
marginal distribution
B rs s TS
P(x|Abap) = D0 L D) )

B(a.p)
Unlike the continuous case, we can make a fully “uninforma-
tive” choice « = B = 1 that reflects our maximum ignorance
about the parameter p, as in this case it is uniformly sampled
in the interval p € [0,1]. This yields simply

Mps! !
(mes + s + D!

However, this kind of uninformative assumption rarely
matches what we end up finding in the data, which tends to
be significantly more structured. A more robust approach is to
construct a hierarchical model, which can be more easily done
with a microcanonical description.

P(x,s|A,b) = (66)
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FIG. 8. The marginal distribution of each individual covariate x
in the discrete microcanonical model, given by Eq. (69), approaches
asymptotically the geometric distribution as the number of values N
increases, and the mean value p/N is kept fixed.

Microcanonical distribution

The microcanonical analog of the geometric distribution is
the uniform distribution of N non-negative discrete real values
x conditioned on their total sum p, given by

N —1
P(x|n) = (( . )) 8% (67)

where (2’ y=(" +l’: ') counts the number of ways to distribute
a total of u values into N distinguishable parts. The marginal
distribution of the individual covariates x; can be obtained as
P(x|w)
P(xiIN,u) = —F7 (68)
P\ xi|lp —x;)
_ (NHp—x— D!
TN+ — DI —xp)!

Like with the continuous model, for sufficiently large N
and with the mean u/N fixed, the marginal distribution of
individual values x; will follow asymptotically a geometric
distribution with p = N/(u + N) (see Fig. 8).

Since the value of the parameter  is also non-negative, we
can sample it from the same distribution as a prior. Putting this
in the SBM yields

Px|A.p' ") =[P (xylnsy) (70)

r<s

H(p — xi). (69)

and the final marginal distribution
P(x|A,(b'Y) =) P(x|A.p'b")

(s}

L
X 1_[ [P(IL£S’Mlb?ll)’bgm))]l_a'n’u-ﬂ

1-8_;

Ars:0

mb N\
Gy o
=1 r<s rs

with ﬁl” given by Eq. (34). Like with the continuous models,
the use of Eq. (71) requires only a simple modification of
the algorithm of Ref. [6], that does not alter its algorithmic
complexity.

D. Binomial discrete weights

Often, discrete covariates are bounded in a finite range x €
{0, ..., M} (a common example is ratings in recommendation
systems [39]). In this case, the appropriate distribution is the
binomial,

M X M—x
P(x|p,M) = M p (1 —=p)y—, (72)

where the value x is commonly interpreted as the sum of M
independent Bernoulli outcomes with a probability p € [0,1]
of success. Incorporating it in the SBM yields

P(xrslAabvpaN)

A/’j‘sbi.r"gbi.r
=[] P@ijlps, N) "5

i

Aijﬁbi.r'gb,'.r

M (T+3r5)
- H( ) P (L = peg)Mmein . (73)

X
ij g

The conjugate prior is the beta distribution of Eq. (64) again,
yielding the marginal after integration over all p,,,

P(x|A,b,a,f)
M B(urs +a,Mm,g — s + B)
= . (74
[ () I B ) 7

Once more, we can make the uninformative choicea = = 1,
which yields

M H/rs!(Mmrs - Mrs)!
P(x|A,b) = . (75
But as for the other cases, the best path for a hierarchical
model is through a microcanonical model, as described in the
following.

Microcanonical distribution

A microcanonical version of the binomial distribution—i.e.,
the uniform distribution of N non-negative discrete values x,
where each value is bounded in the range x; € {0, ... ,M},
conditioned in the total sum p—can be obtained by randomly
sampling exactly p positive outcomes from a total of N M
trials. The joint probability for x = {xi, ..., xy} is therefore

M\ | (MN\!
P(xm,M):[]"[ (xﬂ( M) 8uyx.  (76)

where (AfLN ) counts the possible distributions of  positive
outcomes of M N distinguishable trials, and the remaining
terms discount all outcomes that lead to the same value of
x. The marginal distribution of the individual covariates x; can
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FIG. 9. The marginal distribution of each individual covariate x
in the discrete microcanonical model, given by Eq. (77), approaches
asymptotically the binomial distribution as the number of values N
increases, and the mean X = u/N is kept fixed.

J

be obtained as

P(xi|N’M7M)
_ P(x|pu,M)
Px \ x|y — x;, M)

<M> [M(N — DI'[M(N — 1) — 4+ x;]!!
MN)! (e — x)(MN — w)! '

Like with the previous models, for sufficiently large N and
with /N fixed, the marginal distribution of individual values
x; will follow asymptotically a binomial distribution with p =
w/(NM) (see Fig. 9).

The parameter p is anon-negative integer that can be chosen
arbitrarily, as long as the inequality M > /N is satisfied.
Therefore, we may sample p from the distribution of Eq. (67)
in an unconstrained manner, and then sample the parameter M
from a constrained distribution P(M|u, N). Incorporating this
into the SBM yields

P(x|A.p'.b") =[] P (x|l M) (78)

r<s

(77)

Xi

and the overall marginal distribution

1-6

L
Px.MIAB'Y) = ) PeelApn' bHPM It AN [T TIP (i iyt )] et (79)

{nls}

= P(M|ii',A,bY H(i‘/[) [

i<j Y

where P(M|i',A,b")isa prior distribution for M that respects
the constraint M > fi! /m! . Thus, given any arbitrary value
M*, we can choose

P(M|i',A,b")

_ {1, if M = max (M*,[max,, ii},/m}1),

0, otherwise, 1)

such that if M* is compatible with the observed covariates,
ie., M* > x;;, we have P(M*|;11,A,b1) = 1 for any possible
value of ! and b' encountered in the posterior, as long
as M = M*, thereby effectively removing it from Eq. (80).
A completely nonparametric approach would require us to
include a prior P(M*), but since it is a single global number,
we can safely omit it, as it cannot influence the posterior
distribution of partitions. In most practical scenarios, the
bound M* is known a priori; otherwise it can be chosen as
M* = max;; X;;.

E. Poisson discrete weights

A natural extension of the binomial weights is the situation
where M — oo with the mean A = pM kept fixed, which
yields the Poisson distribution

Are ™

x!

P(x|)) = (82)

=1 r<s

1_8/1{_) 0

nee) oGy )

r<s

(
Using this in the SBM gives us

P(x|A.bM) = [T P(xij|hs,) ™ (83)
lj‘;
= [[Txit* | J]ree. (84)
i<j r<s

Once more, the conjugate prior is the gamma distribution of
Eq. (25), which after integrating over A, yields the marginal
distribution

P(x|A,b,a,B) =
-1
A ﬁar(ﬂrs + C()
Lot i, e ®

The uninformative maximum-entropy choice is o = 1, yield-
ing
-1

1_[ L (86)

— 1A
P(x|A.b.p) = | [ ]! e 4 Byt

i<j r<s

But once more, we can obtain a deeper hierarchical model
by formulating an asymptotically equivalent microcanonical
model.
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FIG. 10. The marginal distribution of each individual covariate x
in the discrete microcanonical model, given by Eq. (90), approaches
asymptotically the Poisson distribution as the number of values N
increases, and the mean X = u/N is kept fixed.

Microcanonical distribution

The joint distribution of N Poisson variables x =
{x1,...,xy} can be decomposed into a Poisson distribution
for the total sum u with mean N A and a uniform multinomial

J

P(x|A(b') = ) P(x|A.n'.b )HH

{;/,lm} =1 r<s

-1

distribution for x conditioned on the total sum, i.e.,

P(x|A) = P(x|n)P(|N2). (87)
The microcanonical version, therefore, is given simply by
replacing P(u|NA) — 8, v, yielding

w! o1 s

l_[i Xi!m IO WEN
The marginal distribution of the individual covariates x; can
be obtained again as

P(x|pn) = (88)

_ P(x|p)
P(x;|N,n) = o\l — ) (39)
_ WV - DT (90)
(u—x)IN#x;!

The global constraint on the total sum has a vanishing effect
for sufficiently large N, as long as the mean u/N is kept
fixed, as the marginal distribution of individual values x; will
follow asymptotically a Poisson distribution with A = /N
(see Fig. 10).

The parameter u is a non-negative integer that can be chosen
arbitrarily. Therefore, we may sample p from the distribution
of Eq. (67). Incorporating this into the SBM yields

P(x|A.p'b") =T P(x)|u)) 1)
r<s

and the overall marginal distribution

1-6 1

”’rs b"*” b(m))] s 0 (92)

1_[ A H( ﬂl | )1 8uly0 ﬁ |: m! -1
X 1A st <( o >> :| . 93)
i<j ! r<s (mis)“lx 1=2 r<s iy

F. Transformed weights

The models above can be easily modified to accommodate a
much wider class of covariates, without any substantial change
to the likelihoods, via variable transformations of the type y;; =
f(xij), according to some function f(x). For the continuous
models in particular, such variable transformations yield the
scaled marginal likelihoods

A-
P(x|A,{b') = P(y(x)|A, {b’})]‘[[ (x,])] N

i<j

The product of derivatives in the equation above is a multiplica-
tive constant that does not depend on the hierarchical partition
{b'}, and hence does not affect the posterior distribution (al-
though it is relevant for model selection; see Sec. IV G below).
We are thus free to choose any weight transformation f(x),
and use the previously defined distributions and associated
algorithms on the transformed weights, without any other
alteration. This gives us a wider class of covariate models
that may be better suitable for specific data sets, and can be

(

developed in an ad hoc manner. In the following, we cover
some typical examples, nonexhaustively.

1. Broadly distributed weights

If the observed weights are positive and broadly distributed,
a possibly better model is the Pareto distribution,

o

I I
P(xla,xy) = { xort® DT (95)
0, otherwise.

Instead of computing the integrated likelihood from scratch,
we use the fact that the variable transformation y = In(x/x,,)
yields

P(yla) = ae™™, (96)

which is the exponential distribution we used before. So
when dealing with broad weights, we can just make this
transformation on the weights and use the exponential model.

Alternatively, we may use the normal model for y = Inx,
which assumes that x is distributed according to a log-normal.
In our experience, we found that this choice also typically
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yields better results when the positive weights are peaked
around a typical value, in a manner that is difficult to represent
with a mixture of exponential distributions.

2. Bounded weights

If the weights are bounded in an interval x € [a,b], we
can adapt it to an unbounded distribution by first uniformly
mapping the weights to the unit interval x” € [0,1], via

, XxX—a
= , 97
X=a— €0

and then using a logit transformation

y=1n< x ) (98)
1 —x’

or, equivalently, first mapping to the symmetric interval x” €
[—1,1], via

-1, 99
Py 99)

and using the inverse hyperbolic tangent

1+x
1—x')

both of which yield the same signed unbounded weight y €
[—00,00], which can be fitted using the normal distribution.
Alternatively, the negative logarithm can be used with Eq. (97),

(101)

y = 2arctanh(x’) = In < (100)

i
z=—Inx’,

which yields a positive unbounded weight z € [0,00] that can
be used with the exponential distribution. Which approach is
most suitable depends on the actual shape of the data, and can
be determined a posteriori via model selection, as described
in Sec. IVG.

3. Decomposing covariates

We can also obtain more elaborate models by decomposing
asingle covariate into multiple ones. Consider, for example, the
case of signed discrete weightsx € [..., —2, — 1,0,1,2,...],
which was not considered directly by any of the models so far.
This can be done in a straightforward manner by decomposing
the numbers into a sign and magnitude, i.e.,

xij = (2si; — Dyij, (102)

where
sij = (sgn(xij) +1)/2, (103)
Yij = abs(xij) (104)

is areversible transformation that extracts the sign and absolute
values of x;;. We may then use a binomial distribution with
M =1 (i.e., Bernoulli) for s;; € {0,1}, and any non-negative
distribution for y;; € {0,1,2, ...}, and obtain the posterior
using the joint marginal likelihood

P(x|A,{b'}) = P(y,s|A,(b'})
= P(y|A,{b')P(s|A,{b')).

(105)
(106)

TABLEL Jointlog-likelihoodIn P(A,x, {b'}) for the human brain
datain Sec. III C using the electrical connectivity as the edge covariate,
for two model variations according to weight transformations.

Transformation Derivatives Weight model  In P(A,x,{b'})
Vij = Xij 1 Exponential —56512
yij = Inx; [, l/xi/;i/ Normal —52054

G. Model selection

Given any two models M and M, for the same weighted
network with edge covariates x, for which we obtain the
partitions {b'}, and {b'}, from their respective posterior dis-
tributions, we can perform model selection as described in
Ref. [6], by computing the posterior odds ratio

[
A P({bl}l,MnA,x) a0
P({b'}2, M3]A,x)
_ P} M) P(x| AL (B}, M) P({B}1) P(M)
P(A|{b' )2, M) P(x|A,{b'}2, Mo) P({b'}2) P(M>)’
(108)

where P (M) is the prior preference for either model [typically,
we are agnostic with P(M) = P(M,)]. For valuesof A > 1,
the choice ({b'};,.M) is preferred over ({b'},. M) according
to the data, and the magnitude of A yields the degree of
statistical significance.

Using this criterion we can select between unweighted
variations of the SBM (e.g., degree-corrected or not) [6], but
also between different models of the weights. This is particu-
larly useful when using weight transformations as described
in Sec. IVF. For example, when considering two different
transformations y;; = f(x;;) and z;; = g(x;;), using different
models M, and M, for the transformed covariates, the
posterior odds ratio [with agnostic priors P(M,) = P(M,)]
becomes

o PAY®IABYM)PADTT; /0™
P(A,z(x)|A,{b'}2, M) P ) [T, &' (ki)™
(109)

The approach is entirely analogous for transformations on
discrete weights, where one simply omits the derivative terms.

We illustrate the use of this criterion on the human brain
data analyzed in Sec. IIIC. We consider here only the electric
connectivity covariate, which is non-negative and unbounded
in the range [0,00]. We consider two models for the weights:
The first is the exponential model of Sec. IV A applied directly
to the original covariates, and the second is the normal model
of Sec. IV B, applied to the transformed weights y;; = Inx;;,
which results in a log-normal model for x;;. As the results
of Table I show, we obtain for this data set a posterior odds
ratio of In A & 4,458 favoring the log-normal model, despite
the fact that it contains more internal parameters. As we see in
Fig. 11, indeed the log-normal model is better suited to capture
the peaked nature of the overall distribution. It should be noted
that while it is a trivial feat to obtain better fits with more
complicated models, the Bayesian criterion above takes into
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FIG. 11. Overall distribution of the electrical connectivity of the
human brain data. The solid line shows the inferred distribution
according to the weighted SBM using two models for the edge
covariates, as shown in the legend.

account the complexity of the model, and will point towards
a more complicated one only if the statistical evidence in the
data supports it.

V. CONCLUSION

The weighted extensions of the SBM presented in this
work allow for a principled inference of large-scale modular
structure of weighted networks, in a manner that is fully
nonparametric, and algorithmically efficient. As they include
a hierarchical description of the network—taking into account
both the node adjacency as well as the edge weights—our SBM
implementations enable the detection of modular structures at
multiple scales, without being biased towards any specific kind
of mixing pattern (such as assortativity) in any of them.

The nonparametric nature of our approach means that it
can be used to detect the most appropriate model dimension,
including the number of groups as well as size and shape of
the hierarchical division, directly from data, in a parsimonious
way, without requiring any prior input. This comes with the
guarantee that the inferred hierarchy is statistically significant,

and hence is not the result of statistical fluctuations of a simpler
model (such as a completely random graph).

The edge weights are included in the model description as
additional covariates, and thus require specific models that re-
flect their nature. The explicit variations presented in this work
cover a broad range of possible types of covariates, that can
be either continuous or discrete, signed or unsigned, bounded
or unbounded. Furthermore, all these particular variations can
be arbitrarily extended to accommodate a much wider class
of weight models via variable transformations, which incur
no modification to the algorithms. Such transformations can
be performed in an ad hoc manner, reflecting the specificity
of the data at hand, and the best choice can be evaluated
a posteriori using Bayesian model selection, simultaneously
taking into account the quality of fit, the model complexity,
and the statistical evidence available from the data.

Although we do not describe this in detail here, it is
easy to see that the exact same approach we present can be
used for other variations of the SBM, such as with over-
lapping groups [40,41], edge layers [42-44], and dynamic
networks [42,45,46].

Despite its advantages, our approach inherits the limitations
of the underlying SBM ansatz. In particular, it assumes that
the weights are distributed on the edges in a manner that
is (asymptotically, in the microcanonical case) conditionally
independent. Hence, in the same manner that the unweighted
SBM does not include the often realistic propensity of the net-
work to form triangles and other local structures, the weighted
extensions preclude the existence of certain kinds of weight
correlations that are known to exist in key cases [47]. The
development of tractable and versatile models that incorporate
such higher-order aspects remains an open challenge.

APPENDIX: DIRECTED NETWORKS

Although we focused on undirected networks in the main
text, our methods can be easily adapted to directed networks.
The models for directed adjacency matrices P(A|{b'}) are
described in detail in Ref. [6]. For the edge covariates, the
modifications are straightforward yielding expressions for
P(x|A,{b'}) that are identical, but with products going over
directed pairs of groups and nodes, ie., [].o, — [],, and
[1ic i~ I ;- Our reference implementation supports these
variations [17].
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