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The success of biological signal pattern recognition depends crucially on the

selection of relevant features. Across signal and imaging modalities, a large

number of features have been proposed, leading to feature redundancy and

the need for optimal feature set identification. A further complication is that,

due to the inherent biological variability, even the same classification problem

on different datasets can display variations in the respective optimal sets,

casting doubts on the generalizability of relevant features. Here, we approach

this problem by leveraging topological tools to create charts of features spaces.

These charts highlight feature sub-groups that encode similar information

(and their respective similarities) allowing for a principled and interpretable

choice of features for classification and analysis. Using multiple electro-

myographic (EMG) datasets as a case study, we use this feature chart

to identify functional groups among 58 state-of-the-art EMG features, and to

show that they generalize across three different forearm EMG datasets

obtained from able-bodied subjects during hand and finger contractions.

We find that these groups describe meaningful non-redundant information,

succinctly recapitulating information about different regions of feature

space. We then recommend representative features from each group based

on maximum class separability, robustness and minimum complexity.
1. Introduction
Biological pattern recognition systems are finding a growing number of appli-

cations, such as computer-aided diagnosis for breast cancer [1], prosthesis

control [2] and brain–computer interfaces [3]. Great progress has been made

using deep learning techniques when large amounts of labelled data are available

[4]. In applications for which limited data are available and full deep learning is

not yet viable, it is crucial to be able to identify optimal feature sets for classifi-

cation and analytical purposes [5]. Biological signals, however, are complex

and vary within and across subjects, making the selection of feature sets that

are reusable across subjects and tasks a highly non-trivial task. Indeed, it is

known that the feature sets yielding the best performances can change between

very similar classification problems or datasets [6]. One should therefore exercise

caution when interpreting the optimal feature set for practical use in biological

pattern recognition.

To navigate this problem in a tangible way, we focus on a specific case study,

electromyogram (EMG) signals, for which feature selection is a current and

acknowledged problem in the scientific literature. Specifically, Kamavuako

et al. [7] reported that there is no consensus on the optimum threshold value of
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the two most commonly used EMG features, zero crossings

and slope sign changes [8], leading them to investigate the

effect of threshold selection on classification performance, on

robustness over time and on the ability to generalize across

multiple datasets. The results showed that the optimum

threshold (when the minimum error rate was found for classifi-

cation of hand motions) is highlysubject and dataset dependent.

That is, each subject had a unique optimum threshold value,

and, even within the same subject, the optimum threshold

could change over time (i.e. the subject-dependent optimum

thresholds do not generalize well).

In practical use, one desires models that are trained on

data from one set of users and able to classify another [9], and

also training data recorded over a few days that can then be

used on subsequent days [10]. Therefore, Kamavuako et al. [7]

recommended a global optimum threshold value yielding

a good trade-off between classification performance and

generalization (i.e. the one that yielded the global minimum

classification error rate across subjects and datasets). In consider-

ation of the above, we propose a novel strategy to navigate this

problem by reducing the exploration of feature spaces to that

of a simplified topological chart [11], which can effectively

guide the feature selection process, avoiding redundancy in a

human-parsable and principled way. Specifically, we adopt

topological methods to determine functional groups of EMG fea-

tures across subjects and datasets, as opposed to using traditional

feature selection algorithms to automatically select a subject-and-

data-dependent optimal feature set. The resulting principled and

robust map of feature space can be used as a guideline to choose a

global optimal feature set that exhibits a good trade-off between

classification performance and generalization.

We first identify sub-groups and functional groups of 58

state-of-the-art EMG features by applying a topology-based

data analysis method called Mapper [11]. The Mapper

method can identify unique and relevant sub-groups in several

research problems that classical clustering and dimensionality

reduction methods (e.g. single-linkage hierarchical cluster

analysis (HCA) and principal component analysis (PCA))

cannot detect [12,13]. We then select representative features

for these groups based on three properties: maximum class

separability, robustness and complexity [14,15]. Based on

results from previous studies, it was hypothesized that features

selected using Mapper can achieve at least the same level of

classification accuracy as when using all features [16]. To vali-

date this hypothesis and the generality of the results, we

provide a comparison of Mapper and the commonly used fea-

ture selection algorithm, sequential forward selection (SFS), for

classification of hand and finger contractions.
2. Methodology
2.1. Electromyographic datasets
Three EMG datasets [17–19] collected independently at different

institutes were used. There was no prior coordination of data

acquisition methods and experimental protocols. The same

data preprocessing methods implemented in the original works

were reproduced. Thus between the datasets, the recorded and

preprocessed EMG data differ from one another. While perform-

ance of EMG features presumably depends on the dataset,

multiple datasets are necessary to examine the robustness and

generalization of the findings [7,20].

In the first dataset, the EMG data were recorded from four

forearm muscles in twenty normally limbed subjects, as they
performed eight motions: hand open, hand close, wrist flexion,

wrist extension, wrist radial deviation, wrist ulnar deviation,

forearm pronation and forearm supination. The subjects were

asked to perform three sessions per day for four separate days

and in each session they performed five trials (60 trials in

total). Within each trial, the subject performed each motion for

2 s in duration and separated each motion by a 2 s rest period.

The order of motions was randomized in each session. All

EMG signals were amplified with a gain of 19.5 � and sampled

at 1024 Hz with a 24-bit resolution (Mobi6-6b, TMS International

B.V.). The EMG data were passed through a band-pass filter with

a cut-off frequency of 20 and 500 Hz and a notch filter with a cut-

off frequency of 50 Hz. In total, 1920 2-s EMG data (60 trials � 8

motions � 4 muscles) were collected for each subject (for more

details, see [17]).

In the second dataset, the EMG data were recorded from seven

forearm muscles in 30 normally limbed subjects, as they performed

six motions: hand open, hand close, wrist flexion, wrist extension,

forearm pronation and forearm supination. The subjects were

asked to perform four sessions and in each session they perfor-

med six trials (24 trials in total). Throughout a trial, four

repetitions of 3 s were collected for each motion, as well as four

random rest periods. All EMG signals were amplified with a

gain of 1000 � and sampled at 3000 Hz (Model 15, Grass Telefac-

tor). The EMG data were passed through a band-pass filter

(10–400 Hz) and resampled from 3000 to 1000 Hz. In total, 4032

3-s EMG data (24 trials � 4 repetitions � 6 motions � 7 muscles)

were collected for each subject (for more details, see [18]).

In the third dataset, the EMG data were recorded from two

forearm muscles in eight normally limbed subjects, as they per-

formed 10 motions: the flexion of each of the individual fingers

(i.e. thumb, index, middle, ring, little), the pinching of combined

thumb–index, thumb–middle, thumb–ring, thumb–little and

hand close. The subjects were asked to perform six trials per

motion for a period of 5 s. The order of motions was randomized

with random resting periods between motions. All EMG signals

were amplified with a gain of 1000� (Bagnoli-8, Delsys) and

sampled at 4000 Hz with a 12-bit resolution (BNC-2090, National

Instruments). The EMG data were passed through a band-pass

filter (20–450 Hz) and a notch filter (50 Hz) as well resampled

from 4000 to 1000 Hz. In total, 120 5-s EMG data (6 trials � 10

motions � 2 muscles) were collected for each subject (for more

details, see [19]).

2.2. Electromyographic pattern recognition
The EMG signals are typically used to assess muscle activation by

measuring electrical activity in muscles using multiple surface elec-

trodes. One of the most important applications is the use of forearm

EMG signals as a control signal for prosthetic hands, referred to as

‘myoelectric control’ [2]. Recent developments in low-cost commer-

cial products of wireless and wearable EMG devices (e.g. Myo

armband) have provided an opportunity to use forearm EMG

signals as inputs for ‘muscle–computer’ interfaces [21].

After preprocessing of the raw EMG signals, EMG pattern rec-

ognition systems typically include four main components: data

segmentation, feature extraction, classification and controller [2].

The procedure includes projecting the signals to a lower dimen-

sional space, where the dimensions represent features. A classifier

then recognizes signal patterns and classifies them into pre-defined

classes, i.e. hand and finger motions in this study.

Indeed, many previous studies have shown that the success of

EMG pattern recognition systems mainly depends on the selection

of high-quality features [8,10]. Importantly, in addition to maxi-

mum class separability, a high-quality feature set should also

display good robustness and minimal complexity [14,15]. For

instance, low-computational resource devices may require features

with low-computational complexity and higher degree of robust-

ness against noise. During the last three decades, a wealth of

http://rsif.royalsocietypublishing.org/
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EMG feature extraction techniques has been proposed and applied

to hand and finger motion classification (e.g. [8,20,22]). In spite of

the success achieved, however, many EMG features are highly cor-

related, raising the issue of feature set redundancy. Surprisingly,

there have been few systematic studies comparing EMG features,

especially from a redundancy viewpoint [23].

Fifty-eight feature extraction methods in both the time

and frequency domains [10,20,22] were applied to surface EMG

signals from the three datasets described above. Full names

and abbreviations are shown in table 1 with their specific par-

ameter values used for each dataset as well as the references

for mathematical definitions. It should be noted that some fea-

ture extraction techniques provided more than one feature

value. As a result, 81 individual EMG features were extracted.

Furthermore, feature scaling was performed using standardiz-

ation (per EMG channel and per subject) so that features have

zero mean and a unit variance. This preprocessing step was

used for further algorithms applied in this study, i.e. to have

features on the same scale for PCA (as it emphasizes features

on larger measurement scales), and to equalize the contribution

of all features to k-nearest neighbours analysis with a Euclidean

distance measure.

2.3. Functional groups of electromyographic features
Topological data analysis (TDA) is an approach that focuses on

extracting and understanding the ‘shape’ of data using techniques

from topology (for an introduction and a survey, see [47,48]). This

set of tools allows for extraction of relevant insights from complex

data with high-dimensionality, high-variability, low signal-to-

noise ratio, time-dependence and nonlinearity [49]. In particular,

a topological simplification method called Mapper was employed

in this work [11]. The basis of the Mapper method is to produce

controlled simplifications of the data by means of a series of

local clustering in overlapping regions of the data space and by

successively linking together clusters that share common data

points. The process to compute Mapper is composed of four steps.

(1) Transforming raw data into a point cloud: in the current study a

point cloud was a set of EMG features in the original high-

dimensional space or the reduced lower-dimensional space

(using a PCA approach). The 81 EMG features comprised

the rows of the matrix for all the datasets. For the first dataset,

the columns comprised of either the entire set of 38 400 (1920

2-s EMG data � 20 subjects) feature values or the first 28 prin-

cipal component (PC) scores (explaining 95% of the total

variance in the raw feature vector). Both were included in

this work to enable a comparison of their respective perform-

ances. Only the reduced PC-dimensional space explaining

95% of the total variance was involved for the second (the

first 29 PCs) and the third (the first 24 PCs) datasets.

(2) Segmenting the point cloud data into MI intervals overlapped with
percentage MO using one or more filter functions: in this study

the Euclidean distance to the kth nearest neighbour (k-NN dis-

tance) was used as a filter function. Note that the first nearest

neighbour (k ¼ 1) of a data point is always the point itself, so

the second nearest neighbour (k ¼ 2) was implemented to

measure the distance from any data point to the nearest data

point other than itself [50].

(3) Applying any standard clustering algorithm to create clusters from
each sub-dataset corresponding to the defined intervals: in this

study, Ward’s minimum variance method was employed as

a criterion for the HCA [51]. The clusters defined in the inter-

vals become the nodes of a topological network. The number

of features in each node is indicated using the size of the node

and the number in it.

(4) Constructing the topological network: connecting pair of nodes

that share data points across adjacent intervals of the filter

functions, i.e. the edges of a topological network.
As a result, the nodes of the topological network can be con-

sidered as sub-groups of EMG features, the edges and their

strengths represent the presence and strength of the overlap

between clusters (shown by the thickness of the edge). To

make these sub-groups more interpretable, ‘a functional group’

is defined as a collection of similar Mapper nodes belonging to

coherent sections of the topological network (e.g. long linear seg-

ments) and displaying similar mathematical definitions as well

as information contained in the features.

2.4. Selection of representative features
The topological EMG feature sub-groups can be interpreted

using the following guidelines.

(1) Features in network nodes with low k-NN distance (or low

filter values) are highly correlated to others in the same

sub-group. In other words, the cluster is ‘stronger’ and

better defined. This suggests that one should select only

one feature (or few) from each of these sub-groups.

(2) Although features with high k-NN distance (more indepen-

dent features) can be locally clustered into sub-groups

(weaker clusters), several EMG features from these sub-

groups can be selected as they should contain different types

of information.

To identify representative (or relevant) features from each

functional group, two widely used feature evaluation methods,

separability measures and classifiers, were employed for

within-subject pattern classification [14,15,33,34]. A feature

vector was created for each of the datasets, subjects and features,

and used as an input for the evaluation methods. Specifically, the

number of columns is equal to the number of muscles and the

number of rows is the number of the analysis segments. For

instance, the dimensions of the matrix for each of the subjects

and features in the first dataset with the segment length of 250

ms and the segment increment of 125 ms are 7200 � 4 (for details

on data segmentation, see [52]). The influence of the data

segmentation on classification was also investigated.

(1) Using separability measures: evaluating feature space based on

statistical criteria. In this study, the Davies–Bouldin index

(DBI) [53] and Fisher’s linear discriminant analysis index

(FLDI) were employed [54]. DBI is obtained by averaging

the worst-case separation of each class from the others.

Instead of considering only the worst situation distances,

FLDI considers all classes together which is defined as the

ratio of the within-class scatter matrix to the between-class

scatter matrix. Lower values of statistical indices (the

lowest value is 0) imply a higher degree of class separability.

(2) Classifying the feature space: imposing classification bound-

aries on features and measuring classification error rates

(or misclassification rates) using a 10-fold cross-validation

technique. In this study, linear discriminant analysis (LDA)

and support vector machine (SVM) approaches were

employed. Multiclass SVM [34] was implemented using

the one-against-one method with a linear kernel [55]. An

error rate is defined as the number of incorrect classifications

divided by the total number of test samples and then multi-

plied by 100. Lower error rates imply a higher degree of class

separability (the lowest possible rate is 0%).

2.5. Effective electromyographic feature sets
To demonstrate the power of the topological feature chart in

designing effective sparse feature sets, three well-known EMG fea-

ture sets were re-evaluated by replacing redundant features from

the same functional group with more relevant features from that

group (i.e. minimizing overlap and maximizing class separability).

http://rsif.royalsocietypublishing.org/


Table 1. A list of EMG feature extraction techniques.

full names abbreviations parameters dimensions references

amplitude of the first burst AFB wf ¼ 32 ms 1 [23]

approximate entropy, sample entropy ApEn, SampEn m ¼ 2, r ¼ s � 0.2 1, 1 [10,24]

autoregressive model and its differencing version AR, DAR order ¼ 4 4, 4 [14,22,25]

box counting dimension BC kmax ¼ blog2 (N)c � 1 1 [10,26]

cepstrum/cepstral coefficients and its differencing version CC, DCC order ¼ 4 4, 4 [22,25]

critical exponent analysis CEA a4 ¼ 0:01 1 [27,28]

difference absolute mean value DAMV — 1 [22,25,29]

difference absolute standard deviation value DASDV — 1 [22,29]

detrended fluctuation analysis DFA ni ¼ 2i, i ¼ 2 2 6, order ¼ 2 1 [17,30]

maximum-to-minimum drop in power density ratio DPR — 1 [31,32]

frequency ratio FR flb ¼ [20 45], fhb ¼ [95 fmax] 1 [23,33,34]

Higuchi’s fractal dimension HG kmax ¼ 128 1 [17,35]

histogram HIST segment ¼ 3 3 [14,23]

integrated EMG IEMG — 1 [14,23,25]

Katz’s fractal dimension KATZ — 1 [10,36]

kurtosis, skewness KURT, SKEW — 1, 1 [37,38]

log detector and its differencing version LD, DLD — 1, 1 [14,22,23]

The second-order moment M2 — 1 [20,22]

mean absolute value MAV — 1 [8,14,39]

modified mean absolute value (type 1, type 2) MAV1, MAV2 — 1, 1 [23,34]

mean absolute value slope MAVS segment ¼ 2 1 [8,23]

maximum amplitude MAX cut-off ¼ 5 Hz, order ¼ 6 1 [10,40]

median frequency, mean frequency MDF, MNF — 1, 1 [41,42]

maximum fractal length MFL — 1 [10,35]

multiple hamming/trapezoidal windows MHW, MTW — 3, 3 [23,43]

mean power, total power MNP, TTP — 1, 1 [10,23,43]

myopulse percentage rate MYOP threshold ¼ 20/0.02/5 � 1025 1 [10,23]

power spectrum deformation OHM — 1 [31,32]

peak frequency PKF — 1 [10,23]

power spectral density fractal dimension PSDFD — 1 [10,44]

power spectrum ratio PSR n ¼ 20 1 [23,45]

root mean square RMS — 1 [23,39]

spectral moment SM order ¼ 2 1 [23,43]

signal-to-motion artefact ratio, signal-to-noise ratio SMR, SNR — 1, 1 [31,32]

slope sign change SSC threshold ¼ 16/1024/10210 1 [8,23]

simple square integral SSI — 1 [23,43]

time-dependent power spectrum descriptors TDPSD — 6 [20]

absolute temporal moment and its differencing version TM, DTM order ¼ 3 1, 1 [22,23]

variance and its differencing version VAR, DVARV — 1, 1 [14,22,23]

variance of central frequency VCF — 1 [23,43]

variance fractal dimension VFD — 1 [10,46]

v-order and its differencing version V, DV order ¼ 3 1, 1 [14,22,23]

Willison amplitude WAMP threshold ¼ 20/0.02/5 � 1025 1 [14,23]

waveform length WL — 1 [8,23]

zero crossing ZC threshold ¼ 10/0.01/1025 1 [8,14,23]
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Figure 1. The resulting topological network computed using three intervals with
a 50% overlap from the 28 PC scores extracted from the first dataset. k-NN dis-
tance was used as a filter function. The colours encode the filter values, with blue
indicative of low distance, and green of high. The number of features in each node
is indicated using the size of the node and the number in it.
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(1) TD feature set: MAV, WL, ZC, SSC and MAVS [8];

(2) AR+RMS feature set: AR and RMS [56,57];

(3) AR+CC+WL feature set: AR, CC and WL [58];

Further, to validate the effectiveness of the topological chart as

a guide for feature selection, a comparison of the Mapper approach

[11] and the more common SFS [59,60] was conducted. For

Mapper, a global optimal feature set was chosen by collecting

representative features from each of the functional groups. For

SFS, a sequential search across subjects using 10-fold cross-

validation method of within-subject misclassification rates was

performed and features were selected for each dataset using 70%

of the data (a training set). The performance of the selected features

from Mapper and SFS was then compared to the baseline perform-

ance with all features using the remaining (30%) of the data from

the same set (the test set) as well as a 10-fold cross-validation for

the other dataset. The Cohen’s d effect size [61], defined as the

difference between two group means divided by a standard devi-

ation, was used to report the meaningful differences between

classification error rates of the different feature sets [62]. For

Cohen’s d, an effect size of 0.2 equates to a small effect, 0.5 equates

to a medium effect and larger than 0.8 equates to a large effect [61].
3. Results
3.1. Functional groups of electromyographic features
The topological network computed using MI ¼ 3 intervals

overlapped with MO ¼ 50% from the 28 PC scores for the

first EMG dataset is shown in figure 1. A complete list of fea-

tures in each node can be found in figure 2. The resulting

topological network consists of 10 nodes and has a main struc-

ture shaped like the letter Y composed of three arms connected

to a central core, along with two additional components dis-

connected from the main structure. Using the network shape

together with the nature of the information contained in the

features, four functional groups were defined as follows.

(1) The lower arm consisted of features that are used to esti-

mate signal magnitude and power (e.g. MAV and RMS).
(2) The upper left arm consisted of features that contain fre-

quency information (e.g. ZC and MDF) and features that

are used to measure the nonlinearity and complexity of

time series (e.g. entropy and fractal dimensions).

(3) The upper right arm and the two disconnected nodes

consisted of time-series modelling features (e.g. AR).

(4) The central core and a single disconnected node depict a

set of features that provide unique information (e.g. HIST

and MAVS).

Figure 3 shows the results obtained by applying Mapper

to the same dataset (the first dataset), but, using different

Mapper parameters and input types. By comparing figure

3a with figure 1, we find that, while more intervals produced

more nodes (or sub-groups), the shape of the resulting topo-

logical networks is similar. EMG features conveying similar

information still cluster together. The same findings were

obtained even when the dimensions of the point cloud data

were extended from 28 to 38 400 (figure 3b), as well as in

the second (figure 4a) and third datasets (figure 4b). These

results confirm the robustness of the proposed method and

the generality of the determined groups.

3.2. Selection of representative features
The results of the feature evaluation methods are summarized in

table 2. For the signal amplitude and energy feature group, WL,

DAMV and DASDV, which are the differential versions of the

well-known time-domain features (IEMG, MAV and RMS),

could be used as representative features. Features in the non-

linear complexity and frequency information feature groups

with strong discrimination power included MFL, SampEn and

WAMP. In the time-series modelling feature group, the differen-

tial versions of the AR and CC features provided slightly better

classification performance than their original counterparts.

Although the individual predictive power of features in the

unique feature group was lower than features in other feature

groups, the classifiers performed considerably better than

chance for many features (e.g. TDPSD and HIST), suggesting

that there exists potential for improving the classification per-

formance when combined in a feature set. It is intuitive that

when the segment length was decreased, the misclassification

rate increased (see results in the electronic supplementary

material). However, due to real-time constraints (a segment

increment plus the processing time of feature extraction and

classification approaches should be less than 300 ms [52]),

short segment lengths and increments are necessary.

3.3. Effective electromyographic feature sets
To re-design effective sparse feature sets based on the

obtained topologies, the first and the third datasets were

investigated. It is important to note that the findings were

similar for both datasets.

(1) TD feature set: based on the first dataset, the best single fea-

ture was WL (16.85% error). The error rates were reduced

to 11.56%, 9.82%, 9.56% and 9.59% when adding SSC,

MAV, ZC and MAVS, respectively, into the feature set. A

meaningful improvement (d ¼ 0.71) was found when

SSC was added into the feature set but no further meaning-

ful differences (d ¼ 0.01 2 0.29) were found when adding

more features.

http://rsif.royalsocietypublishing.org/
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Figure 2. Sub-groups of EMG features (a) derived from the topological network of the first EMG dataset and their corresponding filter values (b) sorting from
smallest to largest. k-NN distance was used as a filter function. The colours encode the filter values, with blue indicative of low distance, and green of high.
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(2) AR þ RMS feature set: based on the third dataset, the best

individual feature was RMS (28.17% error). The error

rates were reduced to 18.04%, 14.23%, 11.96% and

11.28% by adding AR(1), AR(2), AR(3) and AR(4), respect-

ively. Meaningful improvements (d ¼ 0.57 2 1.72) were

found when adding AR(1), AR(2) and AR(3), but no

difference (d ¼ 0.18) was found when adding the last feature.

(3) AR þ CC þWL feature set: using this feature set as an

example to demonstrate how a feature set could be re-

designed using the context provided by the Mapper

approach, the original AR features could be replaced

with their differential version, DAR. CC (which is in

the same functional group as AR) could also be replaced

with representative features from other functional groups

(DAMV, DASDV, MFL and WAMP). With the same

number of features, the classification error rate of the

re-designed feature set using the third dataset decreased

from 10.74% to 7.38% (d ¼ 0.57).

To evaluate the effectiveness of using the topological fea-

ture chart to select an effective and generalizable feature set,
we used representative features from each of the functional

groups. A set of DAMV, DASDV, WAMP, ZC, SampEn,

MFL, DAR(1–4) and TDPSD(1–6) (16 out of 81 EMG fea-

tures) were chosen based on the extracted topologies and

the feature performances for the first dataset shown in table

2. Owing to the fact that similar topological charts and func-

tional groups were found and determined across different

datasets, this set of features could be used as a global optimal

feature set. As a comparison, SFS was constrained to using

the same number of features as found using Mapper. The fea-

tures selected using SFS for the first dataset consisted of

DAMV, DLD, V, SSC, SampEn, ApEn, MFL, BC, PSDFD,

DAR(1,2,4), AR(4), HIST(2) and SKEW. For the third dataset,

the features selected were DASDV, DVARV, DTM, DV,

WAMP, SSC, MYOP, MNF, ApEn, MFL, HG, DAR(1–4)

and SKEW. The SVM misclassification rates for the first and

the third datasets when using the Mapper selected features,

the two sets of SFS selected features and the set of all features

are presented in table 3. In addition to the classification per-

formance, the total computational time was measured.

Approximately 1 s was used by Mapper to create feature

http://rsif.royalsocietypublishing.org/
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charts of any dataset in this study while the computational

times for SFS on the first dataset (26880 2-s EMG data)

and the third dataset (672 5-s EMG data) were approximately

6 h and approximately 49 min, respectively.
4. Discussion
4.1. Functional groups of electromyographic features
The proposed method was successful in identifying four dis-

tinct functional groups of EMG features across multiple EMG

datasets with different data acquisition methods and exper-

imental protocols. These results are also consistent with a

previous study [23] that analysed a subset of the 58 features

used in the present study.

(1) The signal amplitude and power feature group: the first and

the biggest functional group determined. Features in

this group captured the same kind of information, i.e.

the signal magnitude.

(2) The nonlinear complexity and frequency information feature
group: besides two types of nonlinearity and complexity

measures of time series (e.g. SampEn, ApEn, MFL, BC),

this functional group also included frequency information

features which were composed of time-domain features

(e.g. WAMP, ZC and SSC) and frequency-domain features

(e.g. MNF, MDF and FR).
(3) The time-series modelling feature group: AR and CC. Both

methods shared the same feature spaces [23] and achieved

similar classification error rates (table 2). One should there-

fore select either AR or CC. These feature extraction

methods can also provide features that belong to different

sub-groups. For example, in the case of the AR model of

order 4, the first- and the third-order AR coefficients

were clustered into the 6- and 7-feature nodes while the

second- and the fourth-order AR coefficients were clus-

tered into the 6- and 11-feature nodes. Since these feature

nodes have moderate-to-high k-NN distances, all the

coefficients could be included in the feature vector.

(4) The unique feature group: features in this group captured

different kinds of information from the EMG data. Most

of the features in this group are an extension of features

in other groups. For example, MAVS is the difference

between two consecutive MAV features [8] and HIST is

an extension of the ZC and WAMP features [14]. A

number of relevant features from this group can be chosen.

Based on the current findings (which are consistent with

previous multi-dataset studies) together with the strong theor-

etical foundation of TDA (which is a coordinate free approach

[12]), it is reasonable to expect that these four functional groups

of EMG features should be able to be applied to new EMG data.

It is also important to note that to make it simple for interpret-

ation, in this study the four functional groups were defined

using topological feature charts with low-resolution par-

ameters (figure 1). However, if the problem of interest is very

complex and needs a high-dimensional feature set to achieve

an acceptable classification accuracy, we can use a topological

feature chart with a higher resolution (figure 3) and then select

representative features from more feature sub-groups ident-

ified by Mapper without a pre-existing knowledge of the

information in the features.
4.2. Selection of representative features
The results of the present investigation are in support of [22]

and suggest that the classification performance of features

extracted from the first difference of EMG time series (referred

to here as differential versions) was better than their original

counterparts derived directly from the windowed raw EMG.

This is due to the fact that time-domain and frequency-

domain feature methods are not designed to reliably quantify

a non-stationary signal while EMG signal stationarity varies

depending on the data segmentation and types of muscle con-

tractions [63]. A differencing technique can be used to

transform surface EMG signals such that they become more

stationary. As a result, the within-class variation of features

extracted from the transformed EMG signal decreases while

the distance of clusters between motions is preserved [22].

These features existed in the signal amplitude and power

feature group as well as the time-series modelling feature

group, and thus could be used as the representative features

in a configuration such as WL, DAMV, DASDV, DAR or

DCC. It can also be observed that the classification accuracies

achieved by DAMV (a differencing version of MAV) were

often slightly higher than DASDV (a differencing version of

RMS). This is likely due to the fact that, on average, the prob-

ability density function (PDF) of forearm EMG signals during

upper-limb motions is closer to a Laplacian density, and

both theory and experiment indicate that an optimal EMG
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amplitude estimator based on the Laplacian model is MAV

[39]. Since the EMG PDF is dependent on many factors

involving muscle locations, muscle contraction levels and

types of motion, one can evaluate the correct identification

of PDF shape of EMG using the robust measures of kurtosis

[37]. In general, however, the selection of the differencing

version of well-known EMG features should provide a

better classification performance.

An interesting point for the nonlinear complexity and fre-

quency information feature group is that it contains many

robust EMG features. Specifically, WAMP can preserve the

cluster separability in a noisy environment, both power line

interference [64] and random noise [65]. WAMP also showed

the best discriminant power among the frequency information

features (i.e. ZC, SSC and MYOP). These features use a

threshold to reduce the effect of background noise. The selec-

tion of the optimum threshold values is thus important not

only for the classification performance [7] but also for the

robustness [64,65]. Next, among 50 feature extraction methods

proposed in Phinyomark et al. [10], SampEn is the most

robust to systemic EMG signals changes over time (or the

effect of between-day variation), followed by ApEn and MFL.

These three features are all from the nonlinear complexity fea-

ture group. It should be noted that although it is possible to

compute SampEn and ApEn on a digital signal processor

chip embedded in the prosthetic hand palm [66], the compu-

tational complexity of the entropy methods is higher than

other time-domain features proposed in this study.

Lastly, the most interesting feature in the non-redundant

feature group is TDPSD. This feature set can reduce the
impact of force level variations [20]. In support of their find-

ings, although the individual discriminant power of each

feature in the TDPSD feature set does not solely describe all

the characteristics of the targeted motions (table 2), these fea-

tures were found to have minimal redundancy. Thus, when

these features are combined in one set, they should maximally

cover the entire space of EMG signals associated with motions

and improve robustness.
4.3. Effective electromyographic feature sets
It can be clearly observed from the TD and the ARþRMS fea-

ture sets that when the number of features fed into the classifier

increased, the misclassification rate decreased. However, when

the number of selected features from the TD feature set was

more than two and more than four for the ARþRMS feature

set, the misclassification rate showed a slight decrease. This is

because features from similar groups provide insufficient

novel information to overcome the added dimensionality that

they impose (the curse of dimensionality).

In support of our hypothesis, the Mapper selected feature

set achieved the same level of classification error rate as the

exhaustive set of features. Similar performance was also

found using the SFS approach on the first dataset, however,

this came at a tremendous computational cost of approxi-

mately 21 600 times greater based on ranking 81 features

across 20 subjects. More importantly, while the performance

of this feature set generalized to the third dataset, the opposite

case was did not. The SFS feature set selected using the third

dataset failed to provide the same classification performance

http://rsif.royalsocietypublishing.org/


Table 2. The classification performance of 81 features using different evaluation methods: DBI, FLDI, SVM and LDA for the three EMG datasets.

data 1 data 2 data 3 data 1 data 2 data 3

feature DBI FLDI SVM LDA SVM LDA feature DBI FLDI SVM LDA SVM LDA

AFB 3.42 9.92 42.7 50.6 54.3 43.1 MAX 3.08 8.07 31.3 40.0 42.5 30.6

ApEn 1.63 1.74 11.7 15.8 38.8 23.1 MDF 2.66 4.73 33.2 36.0 20.8 31.7

SampEn 1.79 1.82 14.7 17.2 39.9 26.9 MNF 2.37 4.21 27.0 31.0 18.0 26.5

AR(1) 2.34 4.75 28.4 32.2 15.4 22.7 MFL 1.69 1.86 10.6 14.2 2.7 12.9

AR(2) 2.55 6.01 34.6 37.7 15.6 22.3 MHW(1) 2.51 4.66 22.5 33.7 27.9 29.6

AR(3) 2.70 6.43 40.0 40.6 21.3 28.1 MHW(2) 2.50 4.74 23.6 36.5 13.1 31.5

AR(4) 3.31 8.77 48.1 48.5 33.5 32.3 MHW(3) 2.69 6.72 26.6 38.2 13.0 30.0

DAR(1) 2.34 4.44 28.2 31.9 13.0 22.1 MTW(1) 2.18 3.58 19.1 29.5 27.2 25.4

DAR(2) 2.75 7.18 39.9 40.8 19.5 26.9 MTW(2) 2.39 4.19 21.7 33.7 12.8 25.4

DAR(3) 2.46 4.13 33.7 35.6 16.1 25.2 MTW(3) 2.56 5.36 24.6 36.4 13.5 31.0

DAR(4) 2.94 7.20 45.2 45.3 22.3 35.2 MNP 2.18 3.43 18.8 29.4 21.9 25.2

BC 1.83 2.32 18.4 21.2 43.0 36.9 TTP 2.18 3.43 19.1 29.2 21.9 26.2

CC(1) 2.34 4.75 28.6 31.9 15.1 22.3 MYOP 1.94 2.87 15.8 20.5 8.2 13.1

CC(2) 2.53 5.66 33.1 36.1 14.8 23.1 OHM 3.00 8.35 39.8 44.3 22.6 27.3

CC(3) 2.90 8.33 37.7 42.0 17.1 19.8 PKF 5.65 21.31 66.2 66.5 46.2 62.3

CC(4) 3.22 11.96 44.6 47.4 32.4 21.0 PSDFD 3.48 9.67 48.2 49.5 29.3 62.5

DCC(1) 2.34 4.44 28.4 32.0 12.7 22.7 PSR 4.78 16.93 59.1 60.2 40.8 52.5

DCC(2) 2.64 6.02 37.2 38.3 15.5 22.9 RMS 2.03 2.60 15.6 21.5 16.6 19.2

DCC(3) 2.52 4.16 33.8 36.0 16.3 32.1 SM 1.93 2.43 16.0 26.5 9.9 26.9

DCC(4) 2.94 7.02 44.2 44.7 21.4 34.6 SMR 15.83 218.21 86.8 83.6 36.9 66.5

CEA 4.05 10.21 54.0 54.7 76.0 65.2 SNR 3.12 10.87 39.9 45.1 30.9 22.5

DAMV 1.87 1.89 11.9 18.7 4.1 20.6 SSC 1.82 2.46 17.9 21.7 3.6 30.2

DASDV 1.80 1.88 11.9 18.0 5.0 22.9 SSI 2.18 3.43 18.6 29.3 21.7 25.0

DFA 2.28 4.25 27.9 30.4 17.4 26.9 TDPSD(1) 3.61 3.27 39.9 39.0 15.3 27.1

DPR 12.13 184.14 81.7 83.0 79.2 60.6 TDPSD(2) 2.48 3.07 27.2 29.0 13.7 17.1

FR 2.72 4.56 36.0 39.4 17.1 36.2 TDPSD(3) 2.54 2.67 31.8 36.3 18.2 38.1

HG 4.29 14.19 48.3 52.4 33.2 39.6 TDPSD(4) 2.17 4.81 25.9 29.5 15.7 27.5

HIST(1) 6.32 35.20 40.5 50.5 39.1 51.2 TDPSD(5) 2.84 3.37 35.1 35.6 18.8 26.0

HIST(2) 4.42 19.28 32.0 39.0 31.9 48.3 TDPSD(6) 2.38 4.99 29.1 31.2 13.6 16.0

HIST(3) 6.28 40.45 40.7 50.4 40.2 48.5 TM 4.85 31.73 50.4 58.3 50.1 33.3

IEMG 2.03 2.53 14.7 21.4 10.8 18.5 DTM 3.64 11.32 38.0 48.6 30.4 40.4

KATZ 4.03 9.41 54.2 54.6 44.0 47.9 VAR 2.18 3.43 19.0 29.6 22.2 26.0

KURT 5.97 31.76 62.1 66.1 53.0 46.9 DVARV 1.95 2.48 16.2 26.5 9.8 26.5

SKEW 11.00 212.11 80.0 78.7 62.8 30.8 VCF 18.25 340.56 87.8 87.6 82.2 67.9

LD 2.47 3.08 19.6 24.8 8.2 20.0 VFD 13.08 156.55 83.4 83.0 71.5 65.8

DLD 2.26 2.59 19.2 23.9 3.7 20.2 V 2.00 2.85 17.4 22.8 20.7 19.8

M2 1.95 2.48 16.1 26.8 9.9 26.2 DV 1.81 1.97 13.1 18.5 6.5 20.6

MAV 2.03 2.53 14.6 21.2 10.9 17.9 WAMP 1.77 2.12 12.4 17.3 4.3 15.2

MAV1 2.05 2.61 14.9 21.7 9.6 18.3 WL 1.87 1.89 11.9 18.7 4.2 21.0

MAV2 2.11 2.69 15.6 22.4 8.4 19.6 ZC 1.77 1.89 17.6 20.9 5.1 27.5

MAVS 3.37 9.95 39.1 42.1 34.9 45.6
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when it was tested using the first dataset (11.01% error rate

instead of 4.61%) while the Mapper selected feature set pro-

vided the same classification performance across datasets.

These results suggest that the more generative understanding
of feature types obtained from topological feature charts

could lead to a better design of a globally generalizable feature

set, and be less prone to over-tuning than purely data-driven

methods such as SFS.
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Table 3. The classification performance of the Mapper selected features, the SFS selected features and all features using the SVM classifier for the first and the
third EMG datasets.

feature set data 1: test set data 3 feature set data 3: test set data 1

Mapper 4.95 7.62 Mapper 7.07a 4.70a

SFS (data 1: training set) 4.61 6.62 SFS (data 3: training set) 15.03b 11.01b

all features 5.24 6.15 all features 5.66 4.76
aMeaningful difference between Mapper and SFS (d . 0.8).
bMeaningful difference between SFS and all features (d . 0.8).
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In summary, the benefits of using the determined func-

tional groups for feature selection can be realized in three

ways: (i) with the same number of features, we can replace fea-

tures that have low discriminant power with ones from the

same group, which may provide similar types of information

but better discrimination. We can expect the new feature set

to be more representative of the targeted motions, therefore

leading to better classification performance; (ii) equivalently,

we can use a smaller feature set to effectively cover the same

space that a larger feature set does (such as reduce the 81

feature set to the selected 16 feature set). In this case, 65 redun-

dant and/or irrelevant features were removed without

reducing the classification performance; and (iii) the under-

standing provided by the topologies can enable pattern

recognition system designers to incorporate additional prior

knowledge, leading to more robust and generalizable feature

selection. Furthermore, the design of novel features could be

informed by these topologies. New features should ideally

cluster into the unique feature group, or even lead to the

creation of new groupings.
4.4. Limitations and future studies
A first limitation is that time-frequency or time-scale trans-

formations (e.g. discrete wavelet transform) were not

included, as their derived values have not directly been

used as EMG features [67,68]. Dimensionality reduction

(e.g. MAV [15,69] or PCA [67,70]) methods are necessary to

apply to them, making their interpretation less intuitive.

Their performance also depends on many factors such as

mother wavelet and decomposition level. For this reason, in

this study we chose to investigate only time and frequency

domain features to simplify the interpretation of the results.

Future studies investigating the range of time-frequency

analysis features would be a valuable additional to the litera-

ture. Second, we did not investigate the effect of feature

parameters such as the threshold values of ZC, SSC,

WAMP and MYOP or the order of AR and CC. In the present

investigation, feature parameters were determined based on

previous recommendation in the literature and/or prelimi-

nary studies. The effect of feature parameter selection on

the feature space and classification performance should be

investigated further. Third, we did not include EMG data

recorded from amputees in the analysis. Although the

relationship between surface EMG signals acquired from

intact-limbed subjects and amputees has not been clearly

defined yet, Hargrove et al. [71] evaluated the effects of the

seven feature sets for able-bodied and amputee subjects,

and found that the same trend appeared between them.

Together with the generalization of the current findings
across multi-EMG datasets from normal subjects, it is reason-

able to expect that the functional groups of EMG features

defined should be able to be applied to EMG pattern recog-

nition control of multi-functional prostheses by amputees.

Fourth, in this study, we focus on investigating EMG features

for myoelectric prostheses and muscle–computer interface.

Thus, only forearm surface EMG signals acquired from

sparse multi-EMG channels during hand and finger contrac-

tions were investigated. Future research should consider

applying the proposed techniques in other EMG-related

research problems such as high-density EMG, gait analysis,

speech recognition or detecting neuromuscular abnormalities.

Finally, we acknowledge that there will be new feature extrac-

tion methods proposed in the research community, and thus

the re-evaluation of new EMG features and of their position

in the topological feature map will be necessary.
5. Conclusion
In this work, we presented an application of topological simpli-

fication techniques to explore multi-dimensional feature space

and provide a topological chart able to identify four functional

groups of EMG features and the relationships between them.

Representative features from each group were selected based

on their classification ability, enabling the intuitive and genera-

tive design of effective sparse feature sets. We further showed

that the proposed topological chart is robust and generalizes

well across multiple datasets, when compared with purely

data-driven feature selection techniques such as SFS. These

results support the usefulness of clustering- and feature selec-

tion-based topological networks for improving both the

performance and understanding of EMG-based pattern recog-

nition. In this contribution, we focused on a specific type of

biological signals. However, the approach described here can

be directly generalized to any other type of biological signals

displaying complex patterns of correlations among features,

such as electroencephalogram data [72], functional magnetic

resonance imaging data [73] or biomechanical data [74], in

which the dimensionality of the data space is typically much

larger than the volume of the data itself.
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