
jHoles: A Tool for Understanding Biological
Complex Networks via Clique Weight Rank

Persistent Homology

Jacopo Binchia, Emanuela Merellia, Matteo Ruccoa 1

aSchool of Science and Technology, Computer Science Division, University of Camerino,
Camerino, Italy

Giovanni Petrib, Francesco Vaccarinob,c

bISI Foundation, Torino, Italy. cDipartimento di Scienze Matematiche, Politecnico di Torino, Torino,
Italy

Abstract

Complex networks equipped with topological data analysis are one of the promising tools in the study of
biological systems (e.g. evolution dynamics, brain correlation, breast cancer diagnosis, etc. . .). In this
paper, we propose jHoles, a new version of Holes, an algorithms based on persistent homology for studying
the connectivity features of complex networks. jHoles fills the lack of an efficient implementation of the
filtering process for clique weight rank homology. We will give a brief overview of Holes, a more detailed
description of jHoles algorithm, its implementation and the problem of clique weight rank homology. We
present a biological case study showing how the connectivity of epidermal cells changes in response to a
tumor presence. The biological network has been derived from the proliferative, differentiated and stratum
corneum compartments, and jHoles used for studying variation of the connectivity.

Keywords: Complex networks, Biological networks, Tumor diagnosys, Computational topology, Betti
number

1 Introduction

Complex networks are one of the most used tool for studying complex systems. In

particular, weighted networks are becoming a more and more important tool to

detect either the presence and the intensity of relations among groups of nodes in

a network. Topological data analysis (TDA for short) is a subarea of computa-

tional topology that develops topological techniques for robust analysis of scientific

data. Topology is the branch of geometry that studies shapes, it classifies objects

1 Email: matteo.rucco@unicam.it - Corresponding author

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 306 (2014) 5–18

1571-0661/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.06.011

mailto:matteo.rucco@unicam.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.06.011
http://dx.doi.org/10.1016/j.entcs.2014.06.011
http://www.sciencedirect.com

according to properties that do not change under certain feasible transformations

to capture more qualitative information about shapes. In mathematics (especially

algebraic topology and abstract algebra), in algebraic topology homology is a gen-

eral procedure to associate a sequence of abelian groups to build a topological space

while in computationa topology persistent homology introduce the concept of fil-

tration of simplicial complexes [3].

Recently, TDA has been applied in several studies of biological systems, for ex-

ample Nicolau et al. [9], have defined a method that extracts information from

high-throughput microarray data, the use of topology derive a more qualitative in-

formation than current analytic techniques. This identified a unique subgroup of

Estrogen Receptor-positive (ER+) breast cancers that express high levels of c-MYB

and low levels of innate inflammatory genes. In [4], Chan et al., have applied topo-

logical methods to extend the limits of the phylogenetic tree for understanding the

viral evolution.

Weight clique rank homology is a recent TDA technique, proposed by [11], meant to

study complex networks, that allows to recover complete and accurate long-range

information from noisy redundant network, by building on persistent homology.

This first implementation of this technique has been proposed in Holes. In this

work we implemented this new technique in a Java software suite named jHoles and

available at [12]. Its core is a Java API efficiently implementing some algorithms to

compute weighted clique rank homology. jHoles is the natural evolution of Holes, a

Python package developed by Giovanni Petri within the EU funded project ”Top-

drim” [10]. jHoles is based on javaPlex [13,15,5]. jHoles fills the lack of an efficient

implementation of the filtering process for clique weight rank homology. The main

purpose of this paper is to give an overview of jHoles features, starting with a short

introduction to the Clique Weight Rank Persistent Homology problem, discussing

the algorithms and its implementation. We conclude with a biological case study

showing how change the local connectivity of epidermal cells in response to a tumor

presence. In appendix are given some useful definitions for graph theory, algebraic

and computational topology.

2 Clique Weight Rank Persistent Homology

Clique weight rank persistent homology, sometimes referred as clique weight rank

homology (CWRH or CWRPH for short), is a recent development in TDA, providing

a new approach to the study of weighted networks. One of the main advantages of

this approach is that it preserves the complete topological and weight information,

allowing us to focus on special mesoscopic structures: weighted network holes, that

connect the network’s weight-degree structure to its homological backbone [11].

2.1 Holes Algorithm

Holes is the first implementation of the clique weight rank persistent homology.

The algorithm is based on the construction of a filtered simplicial complex, starting

from all the maximal cliques of a network. The algorithm is structured as it follows:

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–186

- By varying the discrete parameter t scanning the sorted list of weight wt of edges,

build the subgraph with only edge-weights bigger than wt. The sorting order is

not relevant, it could be either descending or ascending; in this paper we will

always refer to the standard descending CWRH.

- For each subgraph, find its maximal cliques.

- For each clique found, mark its rank t and its threshold wt, then add it to the

complex if not present yet (i.e. a clique should be added only the first time that

it is found).

- For each element of the complex of size n, compute every combination from 0 to

n of its elements to find missed faces.

Now we have a filtered simplicial complex that we may study with the preferred

tool (for Holes it is javaPlex).

Even if this technique is really strong for weighted networks analysis, it has some

open issues from a computational point of view. We realized by empirical measures

that the 90% of Holes execution time is spent loading the graph (5-10%) and in

the filtration process, while the rest (usually less than 10%) is spent calculating

persistent homology. This is caused mostly by the clique finding problem; we recall

that a clique is a complete subgraph of a graph (i.e. each node of the subgraph is

connected with all the other nodes). The clique finding problem is a NP-Complete

problem, and it is commonly assumed to run in O(3
n
3), since this is the maximum

number of possible cliques in a graph [8]. At each index t, Holes recomputes the

list of maximal cliques for the subgraph. Thus, it is recomputing the same thing

for all the time, since maximal cliques of a graph contains every other possible

clique [14]. Moreover, this approach depends both on the density of the graph

and on the number of different weights assigned to edges: for large networks this

becomes a problem.

2.2 jHoles

jHoles is the main outcome of this study. It is a Java API implementing the same

functionalities of Holes but using efficient, fast algorithms. It is thought to be as

fast as possible, it solves many of the problems related to memory management

and it adapts to the computer on which it is running (i.e. according the number of

threads that are executed at the same time with the number of processors). jHoles

is available at [12]. jHoles is written in Java as it is a powerful, flexible language

that is widely used by the scientific community 2 . Moreover, Java is free and comes

with a complete framework. As jHoles is developed in Java, it is compatible with

every operating system that supports a JVM, but it requires Java 1.7. jHoles

persistent homology engine is javaP lex, a Java library that offers all the needed

methods to compute persistent homology (for more information refer to [13]). We

choose javaPlex as it is one of the best software for computing persistent homology

2 The syntax for the jar-file execution is: java -jar jHoles path to input edge list path to summarized output
path to extendend output - For technical issues about the execution, the JVM configuration, etc. . . please
refer to jacopo.binchi@studenti.unicam.it

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 7

and, most important, it is far far better documented than the others. We choose

JGraphT as data structure to handle graphs [1].

jHoles is designed to be easily used even by non computer scientists. Its main

point of access is jHoles, a class offering all the methods to process a graph. This

architectural choice was made to keep it simple to use, grouping in a single class its

core functions. This interface comes with some pre-made, multi-threaded parsers

for files, supporting GEXF files, ”edge list” files (sometimes referred as ”sparse

matrix representation” i.e. in Matlab) or a plain text file representing a matrix.

It offers different methods to filter the network: one, marked as deprecated, uses

Holes original algorithm; the others are various implementations of the improved

algorithm: the difference is mainly in the optimization, e.g. how many threads the

library should use, where to use caching technologies or to thread pooling to reduce

the overhead. It is currently under active development a paged data structure to

store the simplicial complex, as its dimensions may grow up easily: its aim is to

avoid computational limits (i.e. the computer which it is running on has not enough

RAM) at the price of some speed. The result of the filtration is stored in a Hash

Map provided by the Java Runtime Environment.

jHoles maintains compatibility with Python, providing some methods to:

- Store the output of the computation maintaining compatibility with Holes.

- Serialize the simplicial complex in the form of a dictionary to be reloaded later

with Pickle or cPickle.

It offers some basic analysis tools too, like some measurements of the graph (i.e.

density, local density, average degree...) and some statistical analysis of the output

(i.e. network hollowness).

jHoles main difference with Holes is its filtration algorithm. We may start from

two observations about graphs and clique to improve Holes algorithm.

Let G be a graph and v a vertex:

1 For every maximal clique C of G\v, either C continues to form a maximal clique

in G, or C ∪ v forms a maximal clique in G. Therefore, G has at least as many

maximal cliques as G \ v does.

2 Each maximal clique in G that does not contain v is a maximal clique in G \ v,
and each maximal clique in G that does contain v can be formed from a maximal

clique C in G \ v by adding v and removing the non-neighbors of v from C.

For other details, see [14]. From this point of view, we can easily summarize these

observations in two cases. Let Ct be a clique at the step t, then there exist two

possibilities:

- Ct is a maximal clique for Gt;

- Ct is a subgraph of a maximal clique in Gt;

This is really important because it allows us to build a more efficient algorithm.

Holes algorithm adopts a constructive approach, but it is slow and heavy in terms

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–188

of computation and resources, so we want to propose a different approach. We now

know that if we want all the cliques in a graph, then they are either a subset of

a maximal clique of the graph or a maximal clique. Then we can run the Bron-

Kerbosch algorithm for the entire graph and then find all the other cliques looping

on each maximal clique. So, the first three steps are:

Algorithm 1 - Initial steps

Step 1: Extract the sorted list of weights of G.

Step 2: List all the maximal cliques in G.

Step 3: For each maximal clique found, find all its subcliques.

In order to build the complex, we now need to rank these cliques: we now loop on

each found clique to rank it. We actually look at each edge to found the minimum

weight, that will correspond to the t− th step of the filter. We then assign a label

containing the step and the minimum weight to the clique. So, we add another few

steps to our new algorithm.

Algorithm 2 - Final steps

Step 4: For each found clique, extract the list of its edges.

Step 4.1: For each edge, find the minimum weight. This is the rank of the clique.

Step 4.2: Look at the sorted list of weights to find the index corresponding to the

clique rank.

Step 5: Put a label to the clique containing the rank and the weight.

This approach is really much faster than the previous one and it requires significantly

less resources. Moreover, step 3 and steps from 4 to 5 can be executed in parallel.

In fact, we can decompose each maximal clique independently from the others, and

we can rank each clique (or set of cliques) separately from the others. A parallel

implementation significantly improves performance on modern computers.

2.2.1 jHoles: network statistics

The last version of jHoles allows the user to calculate the most important network

statistics that are the basis of most network analysis (e.g., for their comparison,

classification, anomalies detection etc. . .) [7]. The following statistics are com-

puted: size, volume, average degree, maximum degree, clustering coefficient (local

and average), negativity and networks weight.

3 jHoles performance evaluation

Several tests for the performance evaluation of jHoles have been executed, in this

section we will provide a short description of the datasets and of our results. For the

sake of clarity, the platform that has been used for the computation is a middle-end

desktop computer equipped with a quad-core processor and 4GB of RAM. It has a

SSD hard drive to reduce loading time and the bottleneck usually represented by

hard drives. Here the full configuration:

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 9

- CPU: Intel i5-2500k @4Ghz Turbo Boost disabled, Energy Saving disabled

- MB: AsRock Pro 3 Gen 3 z68 rev. B2

- RAM: 2x2GB DDR3 modules @1866mhz cl.7

- HDD: 128GB SSD

- OS: Windows 7 pro 64 bit Service Pack 1

Tests were executed with Java 1.7, python 2.7, jython 1.5 and mySQL 5.6

3.1 Datasets

3.1.1 US 2000 air passenger network

The network refers to the year 2000. The data used are publicly available from

the website of the Bureau of Transportation Statistics 3 . Individual flights between

airports were aggregated on routes as defined by origin and destination cities. The

weight reported is the yearly aggregated passenger traffic.

3.1.2 C. Elegans neuron network

The network is a directed representation of the C. Elegans’s neuronal network 4 .

The network was symmetrized by summing the weights present on edges between

the same nodes.

3.1.3 Twitter dataset

The dataset consists of a sample network of mentions and retweet between Twitter

users and is available online on the Gephi dataset page 5 . Weights are proportional

to the number of interactions between a pair of users.

3.1.4 Human gene

The gene interaction network used in the paper is a sampling of the complete human

genome dataset available from the University of Florida Sparse Matrix Collection.

Each node is an individual gene, while the edges correlates the expression level of a

gene with that of the genes. The node set of the analyzed network was obtained by

randomly choosing an origin node, then adding its neighborhood to the node set; the

neighborhoods of the newly added nodes were then added to the node set recursively

until a given number of nodes was obtained (in the case used the target number of

nodes was N = 1300). Then all the edges present in the original network between

the nodes in the node set were added, effectively taking a connected subgraph of the

original network. To reduce the computational complexity due to the large density

of the graph, the weighted clique fltration was stopped at an edge weight of 0.09.

3 http://www.transtats.bts.gov/
4 http://cdg.columbia.edu/cdg/datasets
5 http://wiki.gephi.org/index.php/Datasets

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–1810

3.1.5 Random generated datasets

We generated a few random graphs to show that jHoles performances are not in-

fluenced by the number of weights in the graph. We generated three graph, with

density ∼= 1, the first has |W | = 10, the second 1000 and the third 20000. This

means that Holes algorithm needs respectively 10, 1000 and 20000 steps to stop,

while jHoles has a constant run time.

3.2 Benchmark results

In this section we provide some graphs showing and studying benchmark results

on these datasets. The first graph shows the time in seconds that jHoles and Holes

took to process the datasets. We stopped the computation after 25 minutes if it

was not complete.

Fig. 1. Number of steps/time: Holes - blue line, jHoles - red line

The graph (see Fig. 1) represents the time (in seconds) in function of the

number of steps of the graph. We can see that jHoles (red line) is not influenced

by these parameters.

The last graph (see Fig. 2) show how jHoles is influenced by the number of

archs in the graph and how much it is more efficient than Holes. The last change

of the slope in the red line (jHoles) corresponds to the paged dictionary activation.

In general we can conclude that all the following items have been needed for the

performance improvement:

- A new filtration algorithm.

- The optimizations of the general structure of the algorithm and its execution

policy (e.g. the procedure selecting the right number of threads).

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 11

Fig. 2. Number of archs/time: Holes - blue line, jHoles - red line

- Usage of properly data structure (e.g. Hash Map).

- Optimization of memory managment (e.g. paged dictionary).

- Full coding with Java.

- Right tuning of the JVM (e.g. heap size, garbage collector, etc. . .).

4 Biological case study: Analysis of epidermal cells be-
fore and after tumor

We applied jHoles for the study of the epidermis before and after a tumor 6 . The

in silico model has been obtained following the indications provided in [6]. Briefly,

models for tumor growth and skin turnover are combined with pharmacokinetic

(PK) and pharmacodynamic (PD) models to assess the impact of two alternative

dosing regimens on efficacy and safety. We studied the evolution of the topology

(or the local connectivity). Epidermal cells sequentially pass three compartments,

named proliferative (pc), differentiated (dc), and stratum corneum (sc) compart-

ments. We obtained a network representation of the compartments connecting the

cells using both their ammisible evolution (i.e., proliferative are connected only

with differentiated and differentiated with stratum) and their concentration. The

statistics of the networks are:

The homological analysis of the network for the healthy epidermis shows a higher

number of holes that means a more spread cells distribution (the Betti numbers

sequence: β0 = 1 and β1 = 28698), due to the presence of the three compartments.

After the tumor the topology of network changed and the new sequence of Betti

number is β0 = 1 and β1 = 24698 with a reduced number of holes that means

healthy cells disappeared and the network is less connected.

6 The dataset is available at http://cuda.unicam.it/jHoles/dataset/

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–1812

Before the tumor (see Fig.3): After the tumor: (see Fig.4)

Number of Nodes: 98 Number of Nodes: 48

Number of Links: 393 Number of Links: 269

Average Node Degree: 4.01 Average Node Degree: 5.60

Average Clustering Coefficient: 0.190 Average Clustering Coefficient: 0.165

Table 1

Fig. 3. Network of healthy epidermis

Fig. 4. Network of pathological epidermis

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 13

4.1 Conclusion and remarks

Currently we are developing a system that will recognize automatically both the

generators of the holes and the persistent hubs, which will therefore allow both to

recognize which type of cells were alive after the tumor. We believe that topological

data analysis can be a useful instrument to study the drug effect.

Acknowledgement

We acknowledge the financial support of the Future and Emerging Technologies

(FET) programme within the Seventh Framework Programme (FP7) for Research

of the European Commission, under the FP7 FET-Proactive Call 8 - DyMCS, Grant

Agreement TOPDRIM, number FP7-ICT-318121.

References

[1] Jgrapht, free java graph library, Software available at http://www.jgrapht.org.
URL http://www.jgrapht.org

[2] Bondy, J. A. and U. S. R. Murty, “Graph theory with applications,” 6, MacMillan London, 1976.

[3] Carlsson, G., Topology and data, Bulletin of the American Mathematical Society 46 (2009), pp. 255–308.

[4] Chan, J. M., G. Carlsson and R. Rabadan, Topology of viral evolution, Proceedings of the National
Academy of Sciences 110 (2013), pp. 18566–18571.

[5] De Silva, V., D. Morozov and M. Vejdemo-Johansson, Dualities in persistent (co) homology, Inverse
Problems 27 (2011), p. 124003.

[6] Gieschke, R. and D. Serafin, “Development of Innovative Drugs via Modeling with MATLAB,” Springer,
2013.

[7] Kunegis, J., Konect: the koblenz network collection, in: Proceedings of the 22nd international conference
on World Wide Web companion, International World Wide Web Conferences Steering Committee, 2013,
pp. 1343–1350.

[8] Moon, J. W. and L. Moser, On cliques in graphs, Israel journal of Mathematics 3 (1965), pp. 23–28.

[9] Nicolau, M., A. J. Levine and G. Carlsson, Topology based data analysis identifies a subgroup of breast
cancers with a unique mutational profile and excellent survival, Proceedings of the National Academy
of Sciences 108 (2011), pp. 7265–7270.

[10] Petri, G., Holes: python package for persistent homology calculations, ”Software available at
http://lordgrillo.github.com/Holes/” (2013).

[11] Petri, G., M. Scolamiero, I. Donato and F. Vaccarino, Topological strata of weighted complex networks,
PloS one 8 (2013), p. e66506.

[12] Rucco, M. and J. Binchi, jholes: A java high performance package for persistent homology, ”Software
available at http://cuda.unicam.it/jHoles/ (2014).

[13] Tausz, A., M. Vejdemo-Johansson and H. Adams, Javaplex: A research software package for persistent
(co)homology, ”Software available at http://code.google.com/javaplex” (2011).

[14] Tsukiyama, S., M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all the maximal
independent sets, SIAM Journal on Computing 6 (1977), pp. 505–517.

[15] Zomorodian, A. and G. Carlsson, Computing persistent homology, Discrete & Computational Geometry
33 (2005), pp. 249–274.

[16] Zomorodian, A. J., “Topology for computing,” 16, Cambridge University Press, 2005.

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–1814

http://www.jgrapht.org

Appendix: Useful mathematics definitions

The present work represents an interdisciplinary application from algebraic topology

to graph theory, and an extensive treatment of these topics is not the main purpose

of this paper. Moreover, to make the presentation in this paper self-contained, in the

next subsection we will provide some mathematical definitions that can be useful to

the reader. For a complete treatment of graph theory, algebraic and computational

topology we suggest [2,16].

Graph theory

Definition 1 Graph

A Graph is an ordered pair (V,E) where V is the non-empty, finite set of its elements

(nodes or vertices) and E is the non-empty finite set of its edges (links, ties or arcs),

which are 2-elements subset of V.

Definition 2 Weighted Graph

A weighted graph is an ordered tuple (V,E,W, f), where V is the non-empty, finite

set of its elements, E is the non-empty, finite set of its edges, W is the finite set

of weights such that |W | ≥ 1 and f is a discrete function from E to W such that it

associates each ε ∈ E to one w ∈ W .

Definition 3 Density of a graph

Let G(V,E). Density of G, d(G), is defined as:

d =
2|E|

|V | (|V | − 1)
(1)

the ratio between the size of the graph and its maximum number of edges, so

0≤d(G)≤1.

Definition 4 Clique (complete graph)

Let G(V,E) be an undirected graph (eventually weighted). G is a clique (or complete

graph) if d(G)=1.

Definition 5 Maximum weight clique (for weighted graphs)

Let G and C be two weighted undirected graphs, with C⊆ G and C clique, and for

every edge of C, its weight is bigger (weaker) or equal a certain p. C is a maximum

clique for the weight p if there is no vertex in G with weight bigger (weaker) or equal

p that can extend C and for each clique Si of G, |Si| ≤ |C|.

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 15

Algebraic and Computational Topology

Definition 6 Topology

A topology on a set X is a family T ⊆ 2X such that

- If S1, S2 ∈ T, then S1∩S2 ∈ T (equivalent to: If S1, S2, . . . , Sn ∈ T then ∩n
i=1Si ∈

T)

- If {Sj |j ∈ J} ⊆ T, then ∪j∈JSj ∈ T.

- ∅, X ∈ T.

Definition 7 Topological spaces

The pair (X,T) of a set X and a topology T is a topological space. We will often

use the notation X for a topological space X, with T being understood.

Definition 8 Simplices

Let u0, u1, ..., uk be points in R
d. A point x =

∑k
i=0 λiui is an affine combination of

the ui if the λi sum to 1. The affine hull is the set of affine combinations. It is a

k-plane if the k+1 points are affinely independent by which we mean that any two

affine combinations, x=
∑k

i=0 λiui and y =
∑k

i=0 μiui are the same iff λi = μi for all

i. The k+1 points are affinely independent iff the k vectors ui . . . u0, for 1 ≤ i ≤ k,

are linearly independent. In R
d we can have at most d linearly independent vectors

and therefore at most d+1 affinely independent points.

k-simplex is the convex hull of k+1 affinely independent points, σ =

{u0, u1, u2, ...uk}. We sometimes say the ui span σ. Its dimension is dimσ = k.

Any subset of affinely independent points is again independent and therefore also

defines a simplex of lower dimension. The special names of the first few dimensions

are:

- vertex for 0-simplex;

- edge for 1-simplex;

- triangle for 2-simplex;

- tetrahedron for 3-simplex;

Definition 9 Face

A face of σ is the convex hull of a non-empty subset of the ui and it is proper if the

subset is not the entire set. We sometimes write τ ≤ σ if τ is a face and τ < σ if

it is a proper face of σ. Since a set of k+1 has 2k+1 subsets, including empty set, σ

has 2k+1 − 1 faces, all of which are proper except for σ itself. The boundary of σ,

denoted as bdσ, is the union of all proper faces, and the interior is everything else,

int σ = σ− bd σ

Definition 10 Simplicial complexes

A simplical complex is a finite collection of simplices K such that σ ∈ K and τ ∈
K, and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both.

Definition 11 Filtration

A filtration of a complex K is a nested sequence of subcomplex, ∅ = K0 ⊆ K1 ⊆
K2 ⊆ ⊆ Km = K. We call a complex K with a filtration a filtered complex.

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–1816

Fig. 5. A simplicial complex (left) and a collection of simplices (middle and right) which do not comprise
a sumplicial complex.

Definition 12 Chain group

The k-th chain group of a simplicial complex K is 〈Ck(K),+〉, let F be a field. The

F−linear space on the oriented k-simplices, where [σ] = −[τ] if σ = τ and σ and

τ have different orientations. An element of Ck(K) is a k-chain,
∑

q nq[σq], nq ∈
Z, σq ∈ K.

Definition 13 Boundary homomorphism

Let K be a simplicial complex and σ ∈ K,σ = [v0, v1, ..., vk] The boundary homo-

morphism ∂k : Ck(K) → Ck−1(K) is

∂kσ =
∑

i(−1)i[v0, v1, ..., v̂i, ..., vn]

where v̂i indicates that vi is deleted from the sequence.

Fig. 6. From graph to simplicial complex with the expression for each simplex.

Definition 14 Cycle and boundary

The k-th cycle group is Zk = ker∂k. A chain that is an element of Zk is a k-

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–18 17

cycle. The k-th boundary group is Bk = im∂k+1. A chain that is an element of

Bk is a k-boundary. We also call boundaries bounding cycles and cycles not in Bk

nonbounding cycles.

Definition 15 Homology group

The k-th homology group is

Hk = Zk/Bk = ker∂k/im∂k+1

If z1 = z2 + Bk, z1, z2 ∈ Zk, we say z1 and z2 are homologous and denote it with

z1 ∼ z2

Definition 16 k-th Betti number

The k-th Betti number Bk of a simplicial complex K is the dimension of the k-th

homology group of K. Informally, β0 is the number of connected components, β1 is

the number of two-dimensional holes or ”handles” and β2 is the number of three-

dimensional holes or ”voids” etc. . . .

Definition 17 Invariant

A topological invariant is a property of a topological space which is invariant under

homeomorphisms. Betti numbers are topological invariants.

J. Binchi et al. / Electronic Notes in Theoretical Computer Science 306 (2014) 5–1818

	Introduction
	Clique Weight Rank Persistent Homology
	Holes Algorithm
	jHoles

	jHoles performance evaluation
	Datasets
	Benchmark results

	Biological case study: Analysis of epidermal cells before and after tumor
	Conclusion and remarks

	References

