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MOTIVATION
Viral marketing, a popular concept in the business literature, has
recently attracted a lot of attention also in computer science, due
to its high application potential and computational challenges.The
idea of viral marketing is simple yet appealing: by targeting the
most influential users in a social network (e.g., by giving them
free or price-discounted samples), one can exploit the power of
the network effect through word-of-mouth, thus delivering the
marketing message to a large portion of the network analogous to
the spread of a virus.

Influence maximization is the key algorithmic problem behind
viral marketing. The problem, as originally defined by Kempe et
al. [32], is as follows: given (i) a directed social network, (ii) a set of
weights associated with edges, representing strengths or probabili-
ties of influence among users, (iii) a stochastic influence propagation
model that governs how a certain behavior would diffuse among
users, and (iv) a cardinality constraint k , aim is to identify a set of
k nodes, called the “seed set”, that can be targeted to maximize the
expected number of influenced nodes. Kempe et al. studied influ-
ence maximization as a discrete optimization problem, obtaining
provable approximation guarantees under several social influence
propagation models. Following this seminal work, research on the
dynamics of social influence propagation and influence maximiza-
tion took off in several dimensions.

In this tutorial we cover major algorithmic and theoretical de-
velopments and issues arising in this field. A good chunk of this
research has been done in the data mining and databases commu-
nities. While related tutorials [2, 10, 23, 24, 35, 55] appeared in
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VLDB’11, KDD’11, KDD’12, WSDM’13, WWW’15, and KDD’15,
our tutorial showcase recent advances in the field not covered by
the previous tutorials. A tutorial like the one that we propose can
allow interested researchers and practitioners to gain up-to-date
knowledge on the recent theoretical and algorithmic developments
and seize the opportunity to contribute to the advancement of this
fast-paced field.

TUTORIAL OUTLINE

Part I: Influence maximization problem (70%)
We start the tutorial by introducing social influence propagation
models and the standard influence maximization problem as de-
fined by Kempe et al.We then extensively survey the algorithmic
efforts for devising scalable and efficient influence maximization al-
gorithms. We also discuss recently defined context-aware influence
maximization problems, as well as closely related alternative opti-
mization problems. The detailed outline of Part I is as follows:
• Influence maximization problem (15%)

• Discrete- [32, 33, 43] and continuous-time [21, 51] models
• Hardness & greedy approximation [15, 17, 32, 36]

• Improving efficiency and scalability (20%)

• Ranking and score based heuristics [15, 17, 22, 27, 31, 47]
• Sketches, reverse influence sampling [8, 19, 30, 46, 57, 58]

• Context-aware influence maximization (25%)

• Topic- [3, 11, 13, 38] and time-aware [14, 39]
• Location-aware [37, 53, 54, 61]
• Competitive and comparative [7, 9, 40, 41, 50]
• Dynamic influence maximization [18, 48]

• Other optimization objectives (10%)

• Business-oriented optimization: adoption, profit, recom-
mendation, etc [6, 42]
• Robustness of influence maximization [12, 28, 49]

Part II: Modeling and learning social influence (15%)
In this part of the tutorial we first review the body of research that
aims to learn influence weights from past propagation traces [25,
45, 52]. We then cover recent efforts that aim to directly learn the
influence function [20, 26, 29, 44], thus, enabling the estimation of
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the expected influence of a given set of nodes directly from given
propagation traces. We also review a recent line of work which
leverages active learning and multi-armed bandits to tackle “on-
line” influence maximization where influence probabilities are not
known and no past propagation data is available [16, 34, 59, 60].

Part III: Broader optimization objectives (15%)
The area of computational advertising has attracted a lot of interest
during the last decade. However, with the advent of social adver-
tising, the standard interest-driven allocation of ads to users has
become inadequate as it fails to leverage the potential of social
influence. In comparison to computational advertising, social ad-
vertising is still in its early stage. In this part of the tutorial, we
review the recent initial efforts that aim to bridge the gap between
viral marketing and social advertising [1, 4, 5, 56].
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