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We study the random XY spin chain in a transverse field by analyzing the susceptibility of the ground
state fidelity, numerically evaluated through a standard mapping of the model onto quasifree fermions. It is
found that the fidelity susceptibility and its scaling properties provide useful information about the phase
diagram. In particular it is possible to determine the Ising critical line and the Griffiths phase regions, in
agreement with previous analytical and numerical results.
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Introduction.—In the last few years concepts borrowed
from quantum information theory have proven useful in
characterizing the critical behavior of quantum many-body
systems [1]. In particular, a geometric approach to the
study of quantum phase transitions (QPT), i.e., the fidelity
analysis, has been shown to be an effective way of char-
acterizing distinct phases of quantum systems [2-8].
Previously, the fidelity approach has been applied to a
variety of homogeneous systems. In this Letter, we extend
these studies to disordered quantum systems. Specifically,
we investigate the behavior of the fidelity susceptibility of
the disordered XY model in a transverse field. It is well
known that the presence of quenched disorder can have
drastic effects on critical properties. The appearance of
new universality classes and novel states of matter such
as the Griffiths phase are two important examples [9-12].
The aim of the present Letter is to show what can be
inferred about the physics of the disordered quantum sys-
tem from the properties of the fidelity susceptibility.

The Hamiltonian of the disordered XY chain is given by
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where o; are Pauli spin matrices, and y; and A; are sets
of independent random coupling and field variables with
distributions 7(y;) and p(A;). Note that due to gauge
symmetry, the Hamiltonian (1) can be chosen to have
only positive couplings and fields. This model can be
mapped onto a system of quasifree fermions with periodic
boundary conditions, and an exact expression for the fidel-
ity susceptibility is obtained which depends explicitly on
the random parameters characterizing the ground state of
the system. In this Letter, we investigate the statistical
properties of the fidelity susceptibility [4,5] for relevant
regions of parameter space.

Gaussian distributions are used for the random variables,
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where x; is either the field or the coupling at position i on
the chain, x is the respective average value, and ¢ is the
variance.

Previous Results.—The pure XY chain has been analyti-
cally solved in [13]. In the absence of disorder, two differ-
ent quantum phase transitions are present. Following the
standard notation, we refer to the QPT driven by the
transverse magnetic field A as the Ising transition, and to
the QPT driven by the coupling parameter vy as the anisot-
ropy transition. The Ising transition separates a ferromag-
netic ordered phase from a paramagnetic quantum-
disordered phase, whereas the anisotropy critical line is
the boundary between a ferromagnet ordered along the x
direction and a ferromagnet ordered along the y direction.

A major improvement in the understanding of the effect
of disorder on the physics of quantum magnets has been
achieved with the use of the strong-disorder renormaliza-
tion group technique by Dasgupta and Ma [14], and further
developed by Fisher [10,11]. The correctness of this
method has been corroborated both by numerics [15,16]
and analytic exact studies [17,18]. In the work of
McKenzie and Bunder [17,18] the critical behavior of the
disordered XY chain in a transverse field has been studied
using a mapping to random-mass Dirac equations. The
properties of the solutions of these equations imply the
disappearance of the anisotropy transition in the presence
of disorder. Furthermore, Griffiths phases are predicted to
appear both around the Ising critical line and the anisotropy
v = 0 line.

For v = 1 the XY random chain is closely related to the
random transverse-field Ising chain (RTFIC), which is a
prototypical model for disordered quantum systems. Since
it is representative of the universality class of Ising tran-
sitions for all values of vy, let us briefly review what is
known for this model. The Hamiltonian of the RTFIC is
H=—YL[J,0%c%, | + hjot], where J; and h; are ran-
dom couplings and fields, respectively. The system is at
criticality when the average value of the field equals the
average value of the coupling. Using the strong-disorder
renormalization group technique one obtains that, at the
quantum critical point, the time scale 7 and the length scale
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L are related by In7 ~ L'/2. This results in an infinite value
for the dynamical exponent z at criticality. The distribution
of the logarithm of the energy gap, Ine, at criticality broad-
ens with increasing system size, in accordance with the
scaling relation Ine ~ —L'/2 [16]. In the vicinity of the
critical point the distribution of relaxation times is broad
due to Griffiths singularities. This region of the parameter
space, the Griffiths phase, is characterized by a dynamical
exponent z which depends on the distance from the critical
point. This dependence is one of the hallmarks of the
Griffiths phase.

Method.—The main idea of the fidelity approach is to
detect QPTs through enhanced orthogonalization rates be-
tween ground states |'W(x)) nearby in parameter space. The
orthogonalization is signaled by a drop in the fidelity,
F(x, x + Ax) = (W(x)|¥(x + Ax))|, at the critical point.
The fidelity susceptibility is a related quantity with a more
transparent physical meaning [4,5], and whose behavior is
more suitable for numerical analysis. It is defined as

—2InF(x, x + Ax)
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In [5] it was shown that y is related to the dynamic
structure factor of the relevant operator associated with
the transition. A generalization of this result, valid for the
so-called geometric tensor, has been given in [4].

Previous works have characterized the pure XY spin
chain using the fidelity approach [2,3,19,20] and the quan-
tum Chernoff bound [21]. The mapping of the spin model
onto the quasifree fermion Hamiltonian [13],
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yields an explicit BCS-like form for the ground state | V) =
Nexph 3L, ]G e ])10), where N is a normalization
factor.

The fidelity of the ground states evaluated at slightly
different parameter values (coupling or magnetic field) x
and x + Ax has a simple analytical expression. Defining
the matrix Z(x) = A(x) — B(x) and the unitary part of the
polar decompositions of Z(x) and Z = Z(x + Ax) as T(x)
and T = T(x + Ax), respectively, the fidelity can be writ-
ten as

T+T
t
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Note that the matrix G defining the ground state is simply
the Cayley transform of 7' [19].

In the following, we will use an alternative expression

for the fidelity susceptibility, obtained in the limit of small
Ax,

x(x) = glla, Tz, (6)

with || - || the Frobenius norm. Equation (6) is obtained
from (5) via standard algebra. We have numerically eval-
uated the fidelity susceptibility using (6) for relevant re-
gions of parameter space of the disordered XY model. The
numerical analysis has been performed on two sets of
system sizes, i.e., {128, 256, 512}, and {400, 410, ..., 500}
in steps of 10. We have taken 50 000 disorder realizations
for all sizes except for those larger than 400, in which case
we used 10000 realizations.

Results.—We consider the Hamiltonian (1), where the
couplings 7y, and the transverse fields A; are independent
random variables with Gaussian distributions centered
around A = [A;]e and v = [y;].ve. both with standard
deviation o. [-],,. denotes the arithmetic mean over the
disorder realizations.

A scaling analysis has been performed using arguments
first developed in [4]. Following that reference, we can
express the fidelity susceptibility as an integral in imagi-
nary time y = [®,d7r7G(7), where G(7)= 6(7)X
{0,H(7)d,H(0)) is the connected correlation function of
the conjugate operator in the Hamiltonian associated with
the driving parameter in the transition, and @ is the
Heaviside step function. For example, in the case of the
Ising transition we have G(7) = 6(7)(3; jaf(T)aj(O)».
The average fidelity susceptibility can then be written as
W ave = [Co dT7[G(T)]4ye ~ L+, where the finite-size
scaling dimension A, of [ x],. is givenby A} =2z +2 —
2A, [4]. A, is the scaling dimension of the QPT conjugate
operator (3 ;o075 in the case of the transition driven by A),
and in general A, depends on the parameters y and A.

For the XY chain without disorder, in the quantum
critical regions y scales as y ~ L?, whereas away from
the critical region y ~ L. Since for finite system sizes the
quantum critical region has a finite width, A, is 1 for all but
a narrow range of A (or ), having a maximum of 2 for
A=1(y=0).

With this disorder-free behavior in mind, we now study
[xluve about the Ising transition, driven by the coupling A.
In our numerical studies we have focused on the case of the
RTFIC, where y = 1. Qualitatively all of our results on the
critical behavior of the fidelity susceptibility hold true for
other values of 7y, since the universality class of the model
does not change in the range y € (0, 1].

Figure 1(a) shows [ x].v. as a function of A for the clean
case and o = 0.1, 0.3 disorder strengths. The averaged
fidelity susceptibility displays a local maximum at the
Ising critical point, which for the disordered case is shifted
slightly away from the clean value of A = 1 due to finite-
size effects. Figure 1(b) shows A, (A), the finite-size scal-
ing dimension of [yl for the same set of disorder
strengths. The disorder leads to a broadening in the peak
of A Yo which is consistent with the presence of a Griffiths
phase. Note that far from the Ising critical point [ x],ve
scales strictly extensively, while in the vicinity of the
critical point the scaling becomes superextensive. For the
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FIG. 1 (color online). Ising transition at y = 1. (a) Average
fidelity susceptibility, [ x]uve, for L = 512 and 10* realizations,
with varying disorder strengths o € {0, 0.1, 0.3}; (b) the associ-
ated finite-size scaling dimension A, of [Xlives (c) probability
distribution of Iny at the Ising transition for system sizes L =
128, 256, 512, and disorder o = 0.1; (d) distribution of Iny
away from the Ising transition for the same disorder and range of
system sizes.

weaker noise this scaling is nearly quadratic, as in the clean
case, while with stronger noise the maximum scaling di-
mension is correspondingly reduced. Qualitatively, the
reduction of the maximum scaling dimension may be
ascribed to the presence of rare regions whose extent
effectively determines the critical behavior. The linear
extension of rare regions is smaller than the overall system
size determining the critical behavior in the clean case.

In Figs. 1(c) and 1(d) we plot the distribution of the
fidelity susceptibility over many realizations at the Ising
critical point and away from it, for system sizes L = 128,
256, and 512. We choose to plot the distribution of Iny
instead of y itself because, in analogy to other physical
quantities, the presence of disorder greatly broadens the
distribution. As the system size increases, note that the
probability density function of Iny broadens for A = 1, but
becomes narrower away from criticality. Indeed, this
broadening behavior persists for a range of values of A
about the critical point. This is typical of disordered sys-
tems, and is analogous to the absence of self-averaging of
some physical observables.

The Griffiths phase around the Ising critical point can be
detected by looking at the scaling dimension of the fidelity
susceptibility and at the properties of the distribution of
Iny, in accordance with the relation A, = 2z + 2 — 24,
The following analysis of the region about the anisotropy
line further supports this conclusion.

Although for the disordered XY model the y = 0 line is
not critical, as it is in the pure case [17,18], the presence of
Griffiths singularities still has highly nontrivial effects on
the fidelity susceptibility in the vicinity of y = 0, as shown
in Fig. 2(a). Specifically, in the presence of disorder the
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FIG. 2 (color online). Elimination of anisotropy transition at
v = 0 due to disorder. (a) Average fidelity susceptibility [ x],yes
near y = 0 for L = 500, A = 0.2, ¢ = 0.1, and 10* realizations.
(b) Finite-size scaling dimension of [x],,. (in this case y =
0.036); (c) probability distribution of Iny at y = 0 and at the
value of vy corresponding to the maximum of [y]ue;
(d) distribution of Iny far away from the anisotropy line, where
the finite-size scaling is extensive.

peak in [y, () splits into two peaks, symmetrical about
v = 0. Note that y = 0 is a special case for the XY chain.
With zero anisotropy and noise only in the field A;, Bunder
and McKenzie [18] showed that the density of states does
not diverge at zero energy. This implies that this point is
not critical and does not belong to a Griffiths phase. We
observe similar behavior with disorder in both the field and
anisotropy. At y = 0 the fidelity susceptibility scales only
extensively, as it does in the noncritical region. This sug-
gests that the y = 0 point does not belong to the Griffiths
phase, having characteristics of a point which is noncritical
and away from any Griffiths phase. This is further corro-
borated by the nonmonotonic dependence on 7y of the
associated scaling dimension shown in Fig. 2(b). At y =
0, one finds A, = 1, whereas in the interval 0 < y < 0.075
the scaling dimension A X(y) exhibits a nonuniversal de-
pendence on the driving parameter vy, indicating the pres-
ence of a Griffiths regime. Note that the observed
maximum is not to be seen as an indication of a QPT.
Rather, it originates from the competition between the
scaling properties of y in the Griffiths phase and at the y =
0 line. In Figs. 2(c) and 2(d) we show P(Iny) at y = 0, at
the point where x(y) and A, () both peak, and far away
from the anisotropy line. In analogy to the Ising transition,
the probability distribution function in the Griffiths regime
is broad and asymmetric due to the absence of self-
averaging, whereas far away from it, its shape is symmetric
and its distribution is much narrower. To complete the
discussion of the effects of disorder on the anisotropy
transition in Fig. 3 we plot the average fidelity susceptibil-
ity for a fixed system size and various disorder strengths,
including the clean case. Notice that as the disorder
strength is increased, the original peak disappears and the
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FIG. 3 (color online). Average fidelity susceptibility for vari-
ous disorder strengths o € {0,0.1, 0.2, 0.3}, with fixed system
size L = 400. Here A = 0.5, and the derivative in Eq. (6) is
taken along .

new maxima in the fidelity susceptibility are symmetrically
located around the y = 0 line, at a distance which in-
creases with disorder. Much like the Ising transition, the
maximum value of the fidelity susceptibility decreases
with increased disorder. We believe that this can be ex-
plained again in terms of the extension of rare regions.

Conclusions.—In this Letter, we have applied the fidelity
approach to the study of the disordered XY chain in an
external magnetic field. We have found that the fidelity
susceptibility is able to provide the phase diagram for this
model. In the case of the Ising transition, we obtain results
which are consistent with what is already known in the
literature. In the parameter region around the y = 0 line
the scaling analysis of the fidelity susceptibility shows the
disappearance of the QPT and the emergence of a Griffiths
phase, in accordance with similar analytical and numerical
results. As far as we know, this result has not been obtained
before for this distribution of disorder both in the couplings
and in the fields. This is nontrivial, since it is known that
choosing a different parametrization for the disorder can
modify the critical behavior [17].

We plan to further investigate the relevance of disorder
on the fidelity susceptibility in future works. Other aspects
that will be studied with more details are the extent of the
Griffiths phase together with its dependence on disorder
strength and the probability distribution of disorder.
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