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Equivalence between XY and dimerized models
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The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are
shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity
sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary
transformations that map the models onto each other. Moreover, we considerably generalized our mapping and
showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model.
This result has potential application in the study of disordered systems.
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I. INTRODUCTION

Exactly solvable models play an important role as limiting
cases of more complex system or for testing numerical
algorithms. Moreover, their physical properties can generally
be calculated exactly and traced back to simple mechanisms
that can be used in more complicated scenarios. In this Rapid
Communication, we consider two notable solvable models: the
anisotropic XY model, originally introduced in [1] with the aim
of gaining insights into the long-range properties of the Heisen-
berg model, and the dimerized XX model, used sometimes as a
prototype model to describe spin-Peierls distortion. We prove
the equivalence of these two models, although in the literature
they are generally considered as separate. The equivalence is
shown directly by means of a unitary transformation for their
fermionic counterparts and traced back to the spin models,
with the boundary conditions carefully taken into account.

For a chain of length L the dimerized XX and anisotropic
XY models are given by the following Hamiltonians:
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The superscript η denotes different kinds of boundary
conditions (BCs), σx,y

L+1 = ησ
x,y

1 , η = 1, − 1,0, corresponding
to periodic (PBCs), antiperiodic (ABCs), and open (OBCs)
boundary conditions, respectively. Since both Hamiltonians
Eqs. (1) and (2) commute with the parity operator P = ∏

i σ
z
i ,

we define the parity sectors σ = ±1 and the corresponding
projection operators �σ = (1I + σP )/2. The central result of
this paper establishes that Hd and HXY are unitarily equivalent
(∼=) up to at most a border term, as precisely stated by the
following theorem.

Theorem 1. For L odd and OBCs the models (1) and (2)
are unitarily equivalent. For L even and PBCs or ABCs the
equivalence holds in given parity blocks depending on the
boundary conditions, according to the relation

�σH
η

d �σ
∼= �η(−1)L/2H

σ (−1)L/2

XY �η(−1)L/2 .

In other words, for L even, the boundary index in one model
sets the parity sector in the other [times a modulation factor

(−1)L/2], that is, σXY = (−1)L/2ηd and σd = (−1)L/2ηXY .
Note that the two lowest states of the XY model with PBCs,
which become exponentially degenerate in L, map onto the
ground states of the dimer chain with ABCs or PBCs. An
immediate consequence of this theorem is that the two models
share the same thermodynamics, since for L → ∞ the effect
of boundary terms disappears.

The reason for considering OBCs is partly because of the
possibility of using the models Eqs. (1) and (2) to implement
quantum information devices. It has been shown in [2] that, in
the ground state of the dimer model (though with OBCs and L

even), the end spins tend to entangle considerably already
for small values of the dimerization γ . Moreover, the en-
tanglement survives in the infinite-length limit (long-distance
entanglement). In a similar fashion, it was already observed
in [1] that the end spins of the anisotropic model order, and such
order survives in the thermodynamic limit (TDL). However,
this kind of order is of classical nature, and no entanglement is
present between the end spins of the open anisotropic chain.1

Before proceeding to examine the proof of Theorem 1,
let us spend a few words on some benefits of this result.
First, let us note that both models commute with π rotations
around axes x and y, Rα

π = ∏
i e

iπσα
i /2, α = x, y. However,

the dimer model Hd manifests a much larger symmetry; the
total magnetization Mz = ∑

i σ
z
i . This means that Hd is block

diagonal in sectors with given magnetization Mz, a feature that
is especially useful in the case of nonintegrable extensions of
Hd (which maintain this symmetry) where one has to resort
to numerical diagonalization. Because of Theorem I, such a
symmetry (or an approximate one) must exist also for the
anisotropic model HXY . As we will see, the magnetization in
the dimer model is mapped onto a nonlocal operator which
we are able to compute. Clearly, this operator has the same
spectrum as Mz and commutes with HXY .

The proof of Theorem 1 relies on a similar theorem holding
for the fermionic version of the models (denoted here with a
tilde),

H̃ ε
d =

L∑
i=1

[1 + γ (−1)i](d†
i di+1 + d

†
i+1di), (3)

1For instance, for γ > 0 the only nonzero correlation surviving in
the TDL is 〈σ x

1 σ x
L〉 [1]. Such order is clearly classical.
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H̃ ε
XY =

L∑
i=1

(a†
i ai+1 + γ a

†
i a

†
i+1) + H.c. (4)

Here ε = 1,−1,0 distinguishes among PBCs, ABCs, and
OBCs for the fermions, that is, dL+1 = εd1 and aL+1 = εa1.
As we will see later, the spin systems (1) and (2) are connected
to the quadratic fermionic models H̃ ε

d and H̃ ε
XY via a Jordan-

Wigner (JW) transformation, after careful reshuffling of the
boundary conditions. The result for the fermionic models is
the following theorem.

Theorem 2. In the cases L even and PBCs or ABCs, L odd
and OBCs, the models (3) and (4) are unitarily equivalent, that
is, there exists a unitary operator U (a “mapping”) such that
UH̃ ε

d U † = H̃ ε
XY .

A simple way to recall the different cases in which the
theorem applies is given by the following argument. Sending
aj → iaj in H̃ ε

XY , one realizes that the spectrum of H̃ ε
XY is

invariant under the transformation γ → −γ . By relabeling the
sites of the dimer model, one sees that H̃ ε

d possesses the same
invariance only when it contains an even number of bonds.
This occurs for L even in the case of PBCs or ABCs, and for
L odd only in the case of OBCs.

Proof of Theorem 2. Since the fermionic Hamiltonians are
quadratic, one way of proving the equivalence between them
is to show that they have the same one-body spectrum. To
diagonalize the anisotropic model we rewrite the Hamiltonians
following the conventions of [1]: H̃ ε

XY = ∑
i,j a

†
i Ai,j aj +

(1/2)(
∑

i,j a
†
i Bi,j a

†
j + H.c.) and H̃ ε

d = ∑
i,j d

†
i Mij dj with

matrices given by
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⎜⎜⎜⎜⎜⎝
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. . .

. . .
. . . 1
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⎞
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⎛
⎜⎜⎜⎜⎜⎝

0 1 ε
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. . .

. . .
. . . 1

−ε −1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

while M is⎛
⎜⎜⎜⎜⎜⎝

0 1 − γ · · · ε[1 + (−1)Lγ ]

1 − γ 0
. . .

...
...

. . .
. . . 1 − (−1)Lγ

ε[1 + (−1)Lγ ] 1 − (−1)Lγ 0

⎞
⎟⎟⎟⎟⎟⎠ .

The one-particle energies of H̃ ε
XY are given by the (positive)

square root of the eigenvalues of (A − B)(A + B). Calling
such roots �k , since A is traceless, one gets [1]

H̃ ε
XY =

∑
k

�kη
†
kηk − 1

2

∑
k

�k.

The equivalence of the two models now stems from the fact
that, for L even and PBCs or ABCs, and for L odd and
OBCs, M2 = (A − B)(A + B). Moreover, under the same
hypothesis, the eigenvalues of M are symmetric around zero
(for L odd and OBCs there is one zero eigenvalue). To
write H̃ ε

d in the same form as H̃ ε
XY , perform a particle-hole

transformation on the negative eigenvalues of M . We arrive
then at H̃ ε

d = ∑
k �kβ

†
kβk − ∑

neg �k , where
∑

neg is the sum

over the negative eigenvalues of M . To complete the proof
note that, in the specified cases,

∑
neg �k = (1/2)

∑
k �k . �

II. THE MAPPING

The proof does not give the explicit form of the mapping.
We will now provide a physically more compelling proof,
which has the additional advantage of revealing an exact form
of the mapping. For simplicity we will stick to L even and
PBCs or ABCs for the fermionic models. The first step is to
write both models in Fourier space,

H̃ ε
d =

∑
k

[2 cos(k)d†
kdk + 2iγ sin(k)d†

k+πdk], (5)

H̃ ε
XY =

∑
k

{2 cos(k)a†
kak + γ [i sin(k)a†

ka
†
−k − i sin(k)a−kak]}.

(6)

Let us consider first PBCs. The momenta in the Brillouin
zone (BZ) are given by k = 2πn/L, n = −L/2 + 1, . . . ,L/2.
Note that, only for PBCs and ABCs, if k ∈ BZ then −k ∈
BZ. Moreover, only for L even, k ∈ BZ → k + π ∈ BZ. In
particular, Eqs. (5) and (6) are not correct if L is odd. The
unitary transformation that maps the dimer onto the XY model
is

d
†
k =

{
a−k−π , −π < k < 0,

a
†
k, 0 � k � π.

(7)

Notice that the particle-hole transformation does not involve
either k = 0 or k = π . In fact, for these two momenta, the
dimer model is given by 2(d†

0d0 − d†
πdπ ) and the anisotropic

one by 2(a†
0a0 − a†

πaπ ). The same mapping Eq. (7) transforms
H̃ ε

d into H̃ ε
XY also in the case of ABCs, where the momenta

satisfy k = π/L(2n − 1), n = −L/2 + 1, . . . ,L/2.
The mapping Eq. (7) can be written in a compact form as

d
†
k = f+(k)a†

k + f−(k)a−k−π with the help of two auxiliary
functions f±(k) := θ [± sin(k)] ± δsin(k),0/2, where θ is the
Heaviside function with the convention θ (0) = 1/2.

Because of Eq. (7), the equivalence between (fermionic)
dimer and anisotropic models can be generalized. In fact, the
mapping transforms an r-nearest-neighbor hopping term into
itself, provided r is odd. Instead, an alternating hopping of the
form

∑
i(−1)id†

i di+r + H.c. becomes
∑

i(a
†
i a

†
i+r + ai+rai),

again for r odd. When r is even the mapping introduces
nonanalyticities in Fourier space, and correspondingly the
transformed model becomes long ranged in real space. These
findings can also be obtained directly by a real-space Fourier
back-transform of Eq. (7):

d†
m =

∑
x

[f̂+(m − x)a†
x + (−1)xf̂−(m − x)ax], (8)

with the definition f̂±(x) = L−1 ∑
k e−ikxf±(k). If we write

simply f̂± in place of the matrix (f̂±)i,j := f̂ (i − j ), the
following relations hold: f̂±f̂± = f̂±, and f̂+f̂− = f̂−f̂+ = 0.

Proof of Theorem 1. The first step is to map the spin models
Eqs. (1) and (2) to fermionic models via the JW transformation.
In terms of the ladder operator σ±

i = (σx
i ± iσ y)/2, the JW

transform is given by σ+
i = c

†
i exp(iπ

∑i−1
j=1 c

†
j cj ) [this in turn
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implies σ−
i = ci exp(−iπ

∑i−1
j=1 c

†
j cj ), σ z

i = 2c
†
i ci − 1I]. The

dimer and anisotropic boundary terms become, respectively,

H
ηd

d → −ηd [1 + γ (−1)L](d†
Ld1 + d

†
1dL)eiπNd ,

H
ηXY

XY → −ηa(a†
La1 + γ a

†
La

†
1)eiπNa + H.c.,

where Nd(a) is the total number operator for the d (a) fermions
and ηd(XY ) specifies the spin BC for the dimer and XY models.
For OBCs, ηd = ηXY = 0, we can directly apply the result of
Theorem 1 and deduce that the spin models also are unitarily
equivalent for L odd. To study the remaining cases, we first
need to compute exp(iπNd ) under the action of the mapping
Eq. (7). Writing the number operator in Fourier space, we get
Nd = ∑

0�k�π a
†
kak + ∑

−π<k<0 aka
†
k . The sum over negative

momenta contains a different number of terms depending
on the boundary conditions. For PBCs the sum contains
L/2 − 1 terms while for ABCs it contains L/2 terms. Calling
N+

a ≡ ∑
0�k�π a

†
kak and N−

a ≡ ∑
−π<k<0 a

†
kak , we can write

compactly Nd = N+
a − N−

a + L/2 − (1 + ε)/2, where ε =
±1 defines the boundary conditions of the fermions. Since
N±

a are integers, under the action of the mapping we obtain
exp(iπNd ) = −ε(−1)L/2 exp(iπNa). Let us now consider the
spin models H

ηd

d (HηXY

XY ) in the parity sector σd (σXY ). Because
of the JW transformation, for L even, the parity operator
is P = eiπNd(a) and so in each sector eiπNd(a) = σd(XY ). This
means that, in the parity sector σd , the spin model with
BCs ηd has boundary conditions −ηdσd in the fermions.
The same clearly holds for the anisotropic XY model. The
equivalence of the fermionic models (Theorem 1) holds when
they have the same BCs, which we denote by ε. So we
arrive at the relation ηdσd = ηaσa = −ε. Now we use the
mapping of exp(iπNd ) = σd , obtaining σd = −ε(−1)L/2σXY .
Solving these last two equations, we finally obtain the
parity sectors and boundary conditions under which the
equivalence of the spin models applies: σXY = ηd (−1)L/2 and
ηXY = σd (−1)L/2. �

In this proof we have partly seen what happens to the
conserved quantity Nd after the action of the mapping. The
precise form also depends on the boundary conditions ε. In
Fourier space we can write Nd = ∑

k[f+(k) − f−(k)]a†
kak +

L/2 − (1 + ε)/2. Since the functions f±(k) are not analytic,
and by use of f+(k) + f−(k) = 1, ∀ k, the number operator
becomes nonlocal in real space. For example, its explicit form
for PBCs (ε = 1) is

Nd = 2

L
Na + L − 2

2
+

∑
x 	=y

ix−y
2 sin

[
(x − y)

(
π
L

+ π
2

)]
L sin

[
(x − y)π

L

] a†
xay.

A corollary of our proof is that this operator commutes with
the anisotropic Hamiltonian Eq. (6) (ε = 1) and its spectrum
is made of integers from zero to L.

III. MAJORANA FERMIONS

The possibility of mapping the dimer model into an
anisotropic one is not restricted to the mapping Eq. (7).
Another mapping is obtained directly in real space by
introduction of Majorana fermions ζ1(j ) = (aj + a

†
j )/

√
2,

ζ2(j ) = i(aj − a
†
j )/

√
2, satisfying {ζα(j ),ζβ(j ′)} = δαβδjj ′ . In

this way, it is possible to show that each model gets transformed
onto two separate Ising chains in a transverse field, each
consisting of L/2 sites [3]. Then, assuming L even and PBCs
or ABCs, we make the two pairs of Ising chains identical by
translating by one site one of the two chains obtained from
HXY . The composition of all these steps yields the mapping

d
†
j = 1

2 [ia†
j+1 + a

†
j − (−1)j (iaj+1 + aj )]. (9)

The transformation above has the advantage of being local in
real space and much simpler than Eq. (8). By using Eq. (9) one
can reproduce the results of Theorem 1 for PBCs or ABCs.
However, Eq. (9) is more powerful in view of its applications to
more general local Fermi models. Using the mapping Eq. (9),
we can map the “disordered” tight-binding model

Hd =
L∑

j=1

Jjd
†
j dj+1 + H.c. (10)

with arbitrary hopping rate Jj onto the generalized anisotropic
model

HXY =
L∑

j=1

(J (+)
j a

†
j aj+1 + J

(−)
j a

†
j a

†
j+1) + H.c., (11)

with J
(±)
j = (±)j (Jj ± Jj−1)/2 and Jj always considered

periodic, that is, JL+i = Ji . This mapping can be further
generalized by addition of a uniform and staggered chemical
potential. After application of the transformation Eq. (9), such
terms become

L∑
j=1

[µ + µst(−1)j ]d†
j dj − µ

L

2

= − i

2

L∑
j=1

[µ + µst(−1)j ][a†
j aj+1 − (−1)j a†

j a
†
j+1] + H.c.

The equivalence between the generalized models Eqs. (10) and
(11) has potential applications in the study of disordered sys-
tems. To obtain results on the random version of the anisotropic
model Eq. (11), it is favorable to simulate the Hamiltonian
Eq. (10) which conserves the number of excitations. Moreover,
through the JW transformation, apart from a possible border
term depending on the BCs, the equivalence between Fermi
models can be extended to their spin counterparts. In this way
a random XY model can be mapped into a random XX model.

IV. CONTINUUM LIMIT

The mappings that we have analyzed so far admit a
simple interpretation in the continuum limit. To this end we
expand the fermionic fields into chiral components ψ(x) =
eikF xR(x) + e−ikF xL(x). For γ = 0 the two models merge in
free massless fermions: H0 ≡ ∑

j a
†
j aj+1 + H.c. where the

band is half filled, so kF = π/2. In the continuum limit, we
get [4,5]

H0 = i

∫ L

0
dx[:R†(x)∂xR(x) − L†(x)∂xL(x):] (12)
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while the mass-generating terms in γ , OXY = a
†
j a

†
j+1 + H.c.

and Od = (−1)j a†
j aj+1 + H.c. become

OXY = i :L†(x)R†(x) − R(x)L(x):,

Od = i :L†(x)R(x) − R†(x)L(x):.

From these expressions, we see directly that the terms
multiplied by γ in Hd and HXY are transformed into each
other by particle-hole exchange (and a minus sign) on the
left movers, L → −L†, which is reminiscent of the discrete
mapping Eq. (7), where the particle-hole transformation was
also applied only for negative momenta.

Translating into bosonic language, it is known that the
model Eq. (12) is equivalent to the Gaussian model H0 =
1
2

∫
dx{[∂x�(x)]2 + [∂x�(x)]2}. The fields � and � are

bosonic and reciprocally dual: ∂x� = ∂τ� and ∂τ� = ∂x�.
A nonvanishing value of γ has the effect of transforming
the Gaussian into the sine-Gordon model by adding a
relevant (in the renormalization group sense) term OXY =
:sin[

√
4π�(x)]: or Od = :sin[

√
4π�(x)]:, respectively, in

the XY or dimer case. Hence, in the bosonic language, the
dimer ↔ XY mapping simply acts by swapping � ↔ �. It is
interesting to observe that a direct consequence of the mapping
is the interchange between density and current density, as can
be readily inferred from their expressions,

ρ(x) = :R†(x)R(x) + L†(x)L(x): = −∂x�(x)/
√

π,

j (x) = :R†(x)R(x) − L†(x)L(x): = ∂x�(x)/
√

π.

Integrating these densities over the space, we obtain two
quantum numbers: the total number and the current. In
particular, the total number and current are directly related
to the two winding numbers m,n ∈ Z of, respectively, � and
�. These integers (which determine the scaling dimensions
of the primary operators in the Gaussian model) are both
good quantum numbers for γ = 0. For γ 	= 0, the breaking
of translational symmetry in the dimer chain invalidates the
conservation of the current, but maintains the particle number
conservation. In the XY model the situation is just reversed:
the particle number is no longer conserved, owing to the pair
creation-destruction terms, while the current remains a good
quantum number.

V. HIGHER DIMENSIONS

The mapping described in Eq. (7) can be easily general-
ized to D dimensions. In a hypercubic D-dimensional lat-
tice the anisotropic model reads H̃XY = ∑D

i=1

∑
x(a†

xax+ei
+

γ a
†
xa

†
x+ei

) + H.c., where x = (x1, . . . ,xD) and ei is the unit
vector along the ith direction. We do not specify BCs here;

to fix ideas we can take PBCs on a bipartite lattice. After
Fourier transforming, one realizes that the BZ is contained
in [−π,π ]D . Now, let us divide the BZ into two regions
according to the sign of the first moment k1: A = {k ∈ BZ, :
k1 ∈ [0,π ]} and B = {k ∈ BZ, : k1 ∈ (−π,0)}. The canonical
transformation a

†
k = d

†
k for k ∈ A and a

†
k = d−k−π for k ∈

B with π = (π,π, . . . ,π ) generalizes the one-dimensional
version Eq. (7). This mapping transforms the XY Hamiltonian
into the D-dimensional dimer model:

H̃XY =
D∑

i=1

∑
k

{2 cos(k · ei)d
†
kdk

+ [iγ sin(k · ei)d
†
kdk+π + H.c.]}

=
D∑

i=1

∑
x

[1 + γ (−1)|x|]d†
xdx+ei

+ H.c. ,

where the modulation factor is (−1)|x| = exp(iπ · x).

CONCLUSIONS

In this paper, we have analyzed two common spin models
(XY and dimerized XX) and shown that they are unitarily
equivalent apart from at most a border term. By explicitly
providing the unitary transformation, we have been able to
generalize the equivalence in many ways. For example, the
fully disordered (with site-dependent couplings) XY chain
can be mapped onto a disordered XX chain. Considering the
fermionic counterpart, we have also shown that generally a
dimerized, r-nearest-neighbor hopping term is mapped onto
an r-nearest-neighbor pair creation term. In one dimension,
our mappings have a simple interpretation in the continuum
limit in terms of bosonic fields. Similar considerations can also
be extended to higher dimensions.

Mapping XY onto XX models can be useful in view of
numerical simulations of disordered models or nonintegrable
extensions. This is due to the explicit particle number con-
servation of the XX models, which makes them easier to
treat numerically. A by-product of our analysis is that particle
number symmetry is also present in the XY models, although
in a hidden fashion.

ACKNOWLEDGMENTS

We are grateful to T. Giamarchi for inspiring us with
the picture in the continuum and D. Mattis for reading the
manuscript. We also thank J. I. Cirac, and Z. Zimboras
for interesting discussions. We have been supported by the
EU-STREP Projects HIP (Grant No. 221889) and COQUIT
(Grant No. 233747).

[1] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407
(1961).

[2] L. Campos Venuti, C. Degli Esposti Boschi, and
M. Roncaglia, Phys. Rev. Lett. 96, 247206 (2006);
L. Campos Venuti, S. M. Giampaolo, F. Illuminati, and
P. Zanardi, Phys. Rev. A 76, 052328 (2007); E. I. Kuznetsova
and E. B. Fel’dman, J. Exp. Theor. Phys. 102, 882
(2006).

[3] R. Jullien and J. N. Fields, Phys. Lett. A 69, 214 (1978); F. Iglói,
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