PHYSICAL REVIEW A 80, 032329 (2009)

Entanglement-induced invariance in bilinear interactions
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We point out a symmetry exhibited by pairs of entangled states and discuss its possible applications in
quantum information. More specifically, we consider quadripartite systems prepared in bipartite product states
of the form [¥)=|),®|¢)s4 and let the uncorrelated subsystems 14 and 23 interact by a given unitary
U4 ® Uy; describing two bilinear interactions: we show that entanglement between the noninteracting sub-
systems 12 and 34 may lead to invariance of W) under the action of the unitary, i.e., make |¥) an eigenstate
of U4® Up3. We call this phenomenon entanglement induced transparency and investigate its occurrence both
in continuous variable and qubit systems. We also discuss its possible applications to bath engineering, double

swapping and remote inversion.
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I. INTRODUCTION

Entanglement is a relevant resource for quantum informa-
tion processing and considerable efforts in this field have
been devoted to investigate its generation, characterization,
manipulation, and storing [1-3]. It is a general fact that the
interaction with external systems may lead to entanglement
degradation and, in turn, much attention has been paid to
design and implement schemes suitable to preserve and re-
store entanglement [4,5]. In turn, it has been recently recog-
nized [6,7] that there are strict relations between entangle-
ment and thermodynamics, with the asymptotic relative
entropy of entanglement playing the role of entropy function
in the second law.

Among the other approaches, the analysis of symmetries
is a powerful tool to investigate the separability problem and
the dynamics of entanglement, as well as to individuate sys-
tems of interest for quantum information processing, as for
example decoherence-free subspaces [8], cluster states [9],
local invariance [10-12], and measurement of nonlinear
properties of bipartite states [13]. In this paper we follow the
above intuition and exploit a specific symmetry exhibited by
pairs of entangled states for applications to bath engineering,
double swapping and remote inversion.

The basic idea is to consider quadripartite systems pre-
pared in bipartite product states of the form |W)=|¢),
® |1)34 and let the uncorrelated systems 14 and 23 interact by
unitaries of the form U;,® U,3. As we will see, there are
conditions leading to invariance, namely, conditions in which
entanglement of the systems 12 and 34 preserve the initial
state and its properties during the evolution. In other words,
the overall state |W) becomes an eigenstate of U, ® Us;. In
the following we refer to this phenomenon as entanglement
induced transparency of the media realizing the unitary, such
as, e.g., beam splitters, and investigate its occurrence both in
continuous variable and qubit systems, and discuss possible
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applications in quantum information processing.

The paper is structured as follows. In Sec. II we describe
entanglement induced transparency in continuous variable
systems and investigate in details the peculiar role of twin
beams, i.e., maximally entangled states at fixed energy. We
also give the phase-space analysis of the effect to discuss its
robustness to perturbations and the evolution of entangle-
ment of formation. In Sec. III we address application of en-
tanglement induced transparency to bath engineering. In Sec.
IV, we consider the discrete-variable counterpart of entangle-
ment induced transparency and describe its application to the
remote inversion of an operation acting on two qubits be-
longing to two different entangled states. Section V closes
the paper with some concluding remarks.

II. ENTANGLEMENT INDUCED TRANSPARENCY
IN CONTINUOUS VARIABLE SYSTEMS

Let us first consider continuous variable systems to illus-
trate the effect of entanglement induced transparency (En-
tIT). In particular we show the crucial role played by twin-
beam (TWB) entanglement. We address a system composed
by four modes, with field operators a;, k=1, ...,4 and con-
sider quadripartite (pure) states of the form

AEDY Yy ml)1 © [m)y ® > )z @ [k)y. (1)
n,m h.k

Then we make the modes 14 and 23 interact through bilinear
Hamiltonians, as those describing the interaction of modes in
a beam splitter (BS). It is a well known result that nonclas-
sical states interacting through a BS become entangled
[14—18] whereas, on the contrary, entangled states may be
disentangled, as for twin beam of radiation in a balanced BS.
For this reasons, it is quite interesting to find regimes where
this passive optical element leaves the entanglement un-
changed. We denote by U,4(¢) and U,3(¢) the corresponding
unitary operations, which lead to the following Heisenberg
evolution

U;k(a)akUhk(a) =ay, cos a+aysin a, (2a)
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Ul @a,Up(@) == a, sin a+ ay cos a, (2b)

for the field modes. This corresponds to have beam splitters
with transmissivities T;,=cos> ¢ and T,;=cos’ ¢. Upon ex-
panding Fock number states |n),=(n!)""*(a})"|0) and using
mode transformation (1) one obtains

|Wow) = U14() ® Usa(@)|thi) (3)

wn,mwh,k

[
n,m,h.k \’I’l' m! h! k!

zzzzer())0))

5=0 1=0 r=0 u=0 S r/\u

X \/(n—s+u)! m=t+r)!(h=r+0) (k—u+s)!
X (COS ¢)n+k—s—u(sin (ZS)HM(COS gD)m+h—t—r(sin (P)z+r
X n=s+uy|m—t+ryh—r+thlk—u+s), (4)

where for the sake of simplicity, we omitted the tensor prod-
uct symbol in the last line. The conditions for transparency
|hou)=|"), can be obtained by imposing (nmhk|i;,)
=(nmhk|i,,) for all the basis elements |nmhk)
= |n),|m),|h)s|k)4). It turns out that the whole set of equa-
tions is subsumed by a single condition

RTINS COS(2¢)COS(2¢)‘/11,1(01,1

. cos(2¢p)sin(2¢)
\2

. sin(2¢)cos(2¢)
\E

. sin(2¢)sin(2¢)
2

+ 1y 0w; ). (5)

If ,,, and w,,; are generic, then the only solution of Eq. (5)
is ¢=¢=0, i.e., the BSs transmissivity should be equal to 1
(trivial solution). For completeness, we note that also ¢=¢
=1r/2 is a solution, but, in this case, the two mode are just
exchanged. In particular, these results can be applied to sepa-
rable states, in which ¢, ,, and wj,; can be written as product
of two terms, respectively. In other words, classical correla-
tions are not enough to obtain the transparency.

Let us now consider the case of photon-number entangled
states, namely, states with i, ,,* 6,4, and @y, ;= S, O,
being the Kronecker delta. TWBs belong to this class, as
well as the so-called pair-coherent states [19,20], which find
applications in quantum communication [21,22]. In this case
Eq. (5) reduces to

o) =cos(2¢)cos(2¢) ¢ w,
+2 cos(¢)sin(p)cos(@)sin(¢) (¢rwy + Ppw,),
(6)

which, in general, admits only the trivial solution ¢=¢=0.
However, if one choose #,=w,=\", corresponding to a pair
of TWB states, Eq. (6) simplifies to cos[2(¢p—¢)]=1 i.e., one

(lﬁl,owz,l - ¢1,2wo,1)

(l/fo,lwl,z— ‘/fz,lwl,o)

(4 200,0 = o 2002 = ¥ pw2 9
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FIG. 1. Entanglement-induced transparency/swapping when the
pair of TWB, |r)) and |s)), are mixed at two balanced beam
splitters.

has the transparency effect by choosing ¢=¢. We can con-
clude that only TWB states may give rise to the EntIT due to
their peculiar analytical expression and, in turn, the transpar-
ency is induced by the TWB entanglement. It is worth to
note that when EntIT occurs, then the quadripartite input
state is an eigenstate of the unitary transformation U, 4(¢)
® U,s(¢p). Notice that EntIT takes place for any value of the
beam splitters transmissivity provided they are equal.

In the following, we focus the attention on the case of a
pair of TWB, |r)) and |s)) for modes 12 and 34 and mix
modes 14 and 23 of state in two balanced BSs (Fig. 1). The
initial state |¢,) is given by two TWB states with (real)
parameters r and s, namely,

[#h) = S12(r) ® S34(9)[0) =) ® [5)), ()

where Shk(g)zexp(gaZaZ—H.c.) is the two-mode squeezing
operator acting onto modes 4 and k, respectively, and q; is
the annihilation operator of mode I.

Thanks to the transformations (1), the state emerging from
the BSs can be written as:

| our) = Urg © Uns|thin), (8)

1 .
=exp{ 5[(;’ +5)(alal + a;fa:{)

+(r—s)(aja} + aa}) - H.c.]}|0>. ©)

Form Eq. (9) we see that
if s=r = |vou = |¥in): (10)
if s==7 = |thou) = $13(r)S24(1)|0). (11)

In other words, in the case (10) we have the EntIT effect, i.e.,
[th)— |th); in the case (11) we obtain S;,(r) ® S54(r)|0)
— 813(r) ® Sp(r)|0), i.e., entanglement is “swapped” from
mode 12 and 34 to modes 13 and 24 (note that modes 1 and
3, as well as modes 2 and 4, did not directly interact each
other). In the last case no measurement is required to obtain
(double) entanglement swapping, even if to this aim one
should have two identical states as inputs (double swapping).
More generally, if the BSs have transmissivity T),=cos’ ¢
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and Tyy=cos’ ¢, then the outgoing state reads
| ou) = expl(r cos ¢ cos @+ s sin ¢ sin @)ala)
+ (r sin ¢ sin @+ s cos ¢ cos (p)a;'aj;
+ (r cos ¢ sin ¢ — s sin ¢ cos (p)afag
+(rsin ¢ cos @ —s cos ¢ sin )aja, — H.c.]|0),
(12)

which reduces to Eq. (9) if ¢=¢=m/4. Investigating Eq.
(12), we see that if ¢=¢ we have

|ou) = eXpL(r cos® ¢+ s sin® paja]

+(rsin® ¢+ 5 cos’ P)alal

+(r—s)cos ¢ sin ¢(aja) + ayal) — H.c.]|0),
(13)

and one can always obtain the EntIT for r=s, whereas there
is no way to obtain perfect swapping.

Phase-space analysis and robustness of EnIT

In this section we characterize the state (13) in the phase-
space in order to address the distribution of two-mode en-
tanglement among all the possible partitions and the robust-
ness of the EntIT effect. In order to simplify the formalism,
we will use the following notation for the input/output modes
h,k,.... when we write “[1,, ~ we refer to input modes,
whereas writing “C1%%-)” output modes are considered.
Since the involved states are Gaussian and the evolution pre-
serves this character, in order to characterize the output states
we consider the evolution of the covariance matrix (CM)
[23]. The CM associated with the two-mode squeezed
vacuum state |,,(r)))=S,(r)|0) of modes h and k reads

1( cosh2rl, | sinh 2r o3
) =3 :

. (14)
—sinh 2r o3 | cosh 2r 1,

where 1, is the 2 X2 identity matrix and o3=Diag(1,-1) is
the Pauli matrix. Thus, the four-mode covariance matrix of
state (7) is given by
3 (r 0
12(r) a5
0 234(»?)

The CM after the evolution through the BSs can be obtained
as follows:

2103 =2 (1) @ Tayls) = (

3129, ) = ST(h, @) 21038 (b, @), (16)
where
cos ¢ 1, 0 0 sin ¢ 1,
Spg=| —o—pemtlmen 3|
0 —singl,|cos ¢l, 0
—sin ¢1, 0 0 cos ¢ 1,
(17)

is the symplectic transformation associated with mode trans-
formation (2). Now, if we use the following 2 X 2 block ma-
trix decomposition of a 8 X 8§ matrix
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FIG. 2. Plot of the minimum symplectic eigenvalue k_ of (par-
tially transposed) density matrices @2 (solid line) and (¥
(dashed) as functions of x=s/r. We chose two balanced BSs, i.e.,
¢=¢=m/4, and put r=0.7. See the text for details. The dotted line
refers to the separability threshold k_=1/2: if k_=1/2 the state is
separable.

All A12 A13 A14

A= , (18)

and introduce the notation

A A
[[AT]y = (ﬁ) (19)

then the CM X% associated with the reduced state 0%
=Tr, [0"%¥], with n#m#h#k, @53 being the density
matrix of the state (12),

300 = [0, (20)

Starting from %" one can easily evaluate the purity, the
separability and the entanglement of formation of the re-
duced states 0"¥. As an example, we plot in Fig. 2 the
minimum symplectic eigenvalue x_ of the partially trans-
posed of the reduced density matrices 02, 0¥ as a func-
tion of x € [—-1,1], where we fixed r and put x=s/r. For the
reduced density matrices 0% and 0 one has the same
results. Recalling that a bipartite Gaussian state is separable
iff k. =1/2, from Fig. 2 we can see the swapping of en-
tanglement; notice that there is an interval of values of x for
which all the four partitions are not separable. In the present
case, due to the symmetry of the reduced states, their en-
tanglement of formation is given by [24],

(el 3) -3 ola-3)
E;= X+5 In )(+5 —\x-3 In X=5) (21)

where y=(k2+1/4)/(2K_). We have seen that EntIT is
achieved requiring s=r and ¢=¢. In order to evaluate the
robustness of the effect, we address the fidelity between @,
and 02 the input and the output state of modes 1 and 2,
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respectively. Since they are both Gaussian states, the fidelity
is given by

F={Del[3,+ 32712, (22)

The analytic expression of F is quite cumbersome; however,
we report two relevant series expansions with respect to the
TWB parameters (r and s) and the BSs transmissivities
(Ty4=cos? ¢ and Tp;=cos” ). The first expansion concerns
the TWB parameters in the case ¢=¢ and reads

F=1- %[3 +sin® ¢ cos(2¢)](s — r)?; (23)

the second one addresses the BSs transmissivities
F = f+f* sin(2¢)cos*(¢p)sinh®(r — s)(dp— @),  (24)
where f=f(r,s, ¢) is given by

1
T 141+ cos? () Jsin¥(B)sinh?(r —s)

f (25)
Equation (23) shows the robustness of the effect with respect
to fluctuations of s, whereas, from Eq. (24), we conclude that
the fluctuations of BSs transmissivities may be quite rel-
evant.

II1. APPLICATION TO BATH ENGINEERING

It is well known that correlated noise may enhance the
capacity of a quantum channel [25,26]. Moreover, in the last
years the bosonic quantum channels with memory have at-
tracted a growing interest [27-29]. These channels are char-
acterized by Gaussian distributed-thermal noise and correla-
tions between the environmental modes. Even if only
classical correlations have been addressed so far, it has been
demonstrated that uncorrelated phase-sensitive environ-
ments, i.e., uncorrelated noisy channels with squeezed fluc-
tuations can been addressed for preservation of macroscopic
quantum coherence [30-32] or for improving teleportation of
squeezed states [33]. A new insight to the properties of this
kind of channels, when also nonclassical correlations are
present, may be given by applying our analysis to a simple
case of bath engineering, where entangled bath oscillators let
properties such as entanglement and purity of an input state
survive longer than uncorrelated ones do. Let us now assume
that the BSs in Fig. 1 describe linear losses (with the vacuum
as input for both the ports 3 anﬂ i.e., s=0). In this case, it
is useful to define ¢=arccos\1-I", where T=cos’ ¢ is the
BS transmissivity (we assume that both the BS have the
same transmissivity, i.e., ¢=¢): if ['=0 there are not losses,
is I'=1 the state is completely lost. We will refer to I" as loss
parameter. As a matter of fact, losses degrade the properties
of the outgoing state Q(lz) of mode 1 and 2; however, we can
use the results of the previous section to engineer the state
034 to recover the degraded state (see Fig. 1). If ¢, is ini-
tially in a TWB state with TWB parameter r, then, by choos-
ing as 034, a TWB with parameter s=r (EntIT configuration),
we have 0'?'=p,: the state is totally recovered. Neverthe-
less, a partial recover is achieved also when s <r (of course,
if s> r the outgoing state !'? has properties more related to
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FIG. 3. Entanglement of formation, Ey, of the state 012 a func-
tion of the TWB parameter s used to engineer the coupling (see Fig.
1) for r=0.5 and different values of loss parameter I', from top to
bottom: I'=0.01 (solid), 0.05 (dashed) and 0.1 (dot-dashed). The
inset shows the corresponding value of the purity as a function of s.

034 than to @,). This is shown in Fig. 3, where we plot the
E; and the purity u={(16Det[2"?] }~2 of ! as functions
of s and different values of the other involved parameters.

IV. TWO TWO-QUBIT SYSTEMS INVARIANCE VIA
“REMOTE INVERSION”

Let us now consider the qubit counterpart of the continu-
ous variable setup investigated above. In this scenario,
sketched in Fig. 4, the qubits 14 and 23 of two two-qubit
states |¥)),, and |®));, undergo the generic unitary evolu-
tions Uy, and U,s, respectively, where

3
U14(0)=6Xp(— IE Hka'k® 0'0® 0'0® 0'k> (26)
k=0

=G0(0)0'0 ® () & gy ® ()
3

—EGk(ﬂ)a'k@ 0'0®0'0® gy, (27)
k=1

3
Uy(o) = exp(— i g0y ® 0, ® 0, ® 0'0) (28)

k=0

|D))a4

FIG. 4. Qubits 14 and 23 of two two-qubit states undergo the
unitary evolutions U4 and U,3, respectively.
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3

=Gy(h) oy ® 0y ® 0y @ 07— 2, Gl )0 ® 0, ® 0, ® 7,
k=1

(29)

with 0=(6,,0,,6,,65), ¢=(py. b1, bs. d3), o, k=0,1,2,3,
are the Pauli matrices, o=1, and

3
Gk(x) :e—i(xo—xl—xz—x3) 1+ l 2 gk(l’l,m)EZi(x”+x’")

n,m=1
(30)
x=(x0,x1 ,X2,)C3), with
+1 if k#nm
gln,m)=10 if n=m ) (31)

—1 elsewhere

We are interested in finding the conditions on @ and ¢, that
leave the input states unchanged. We restrict our analysis
assuming that |¥)),, and |®))s, are initially in the same
state. Let us now consider as input states [¥));,=5(/00),
+[11);,) and |<D>>34=%(|00>34+|11>34), where  |xy)e,=|x)
®|y),. The four qubit initial state is then given by

1234 =¥N 12 @ |P))3y (32)

1
=E(|00>14|00>23 +101)14/01)23

+[10)14]10) 53+ [11)14]11)53) (33)

a0\\ [ o)) ‘ a\\ | o

— —
\2 14 2 3 | V2 [ sl N2/ [ 53
.0 g3 3 )
i +| = ,
\E>>23 ‘ \E>>14 \"2>>23

(34)
where we rearranged the tensor product elements in order to
put in evidence the bipartite couples (14 and 23, respec-
tively) involved by the transformations; from Eq. (33) to Eq.
(34), we used the matrix notation for bipartite states [34].
Now, after some algebra based on the properties of the Pauli
matrices, one can easily find the following relations:

Ll Ll
5 -
N2/ [ aal N2/ [ 2

=[Gy(0) - G,(0) + G,(0) - G5(0)]
X [Go(@) — G(() + Go(P) — G5()]

% %
2/ [l N2 ) o

S

U(o. )

X (35a)
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k4| k|
2 14 2 23

=[Gy(0) - G1(0) — G,(0) + G5(0)]
X [Go(d) = Gi(d) — Go(oh) + G5(P) ]

[ o,
- - s
\’E 1l N2/ [ 23
.0, .0y
1= 1=

VE 14 VE 23

=[Go(0) + G,(0) + G»(0) + G3(0)]
X [Go() + G () + Go() + G3(¢h)]

.0,

i

V2 14

o3 o3

V2 1l N2/ [ 2

=[Gy(0) + G1(0) — G,(0) - G5(0)]
X [Go(P) + Gi(d) — Go() — G5()]

k] k]
\“E 14 \"E 23 ’

where we defined U(6,p)=U4(0)Uxy(¢p) and used the
property A ® B|C))=|ACBT)) of the matrix representation of
bipartite states. Hence, the input states are left unchanged if
the condition ¢p=—@ is met: in this case all the numerical
coefficients appearing at the right hand sides of Egs. (35) are
equal to 1. The same result holds if we consider as input
states |¥)),, and |®));, one of the three left Bell states. For
a generic two qubit state the previous condition is not
enough to leave it unchanged, and more condition on @ are
required (see Appendix for a complete zoology).

We can also look at the invariance obtained for Bell states
as follows. The action of an unitary transformation, acting on
two qubits belonging to different couples of qubits initially
in the same Bell state, can be canceled out by applying the
inverse transformation to the remaining couple of qubits
(choosing ¢=-6 formally corresponds to the inverse of the
first transformation, of course, acting on a different system).
For this effect (invariance), Bell states play a crucial role: if
we consider as starting states other than Bell states, the in-
version of the operation is not enough to achieve the invari-
ance, further conditions are needed, i.e., differently form the
Bell state case, not all the classes of unitaries lead to invari-
ance up to “remote inversion.”

U(o. )

X (35b)

U(o.¢)

X (35¢)

U(o. )

X (35d)

V. CONCLUSIONS

In this paper we have investigated in some details a useful
symmetry exhibited by pairs of entangled states, which in-
duces operation transparency (invariance), i.e., the preserva-
tion of the state under the action of specific class of unitaries.
In continuous variable systems entanglement induced trans-
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parency occurs when two TWBs with the same energy are
left unchanged after the evolution through two equal beam
splitters. We have shown that entanglement is crucial for the
effect and we have studied its occurrence and robustness.
Besides, we have shown how EntIT may be useful to engi-
neer baths with nonclassical correlations in order to preserve
transmission of entanglement and the purity of TWBs during
the propagation. Related to the EntIT effect is the double
swapping: now entanglement is swapped between the modes
of TWBs by simply changing the phase of the initial bipartite
states before the interaction at two balanced BSs and without
any measurement.

The investigation of the discrete-variable counterpart of
the Entlt has brought us to the “remote inversion” effect, i.e.,
the action of an unitary transformation, acting on two qubits
belonging to different couples of qubits initially in the same
Bell state, can be canceled out by applying the inverse trans-
formation to the remaining couple of qubits. This effect my
be used to remotely control quantum operations over a quan-
tum network.
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APPENDIX: ZOOLOGY FOR QUBIT INVARIANCE VIA
“REMOTE INVERSION”

Here we assume that both the states |¥)), and |®)), are
equal to the same state

PHYSICAL REVIEW A 80, 032329 (2009)

)= 2 aulhk), (A1)

h,k=0,1

with Eh’kaﬁ,;l (without loss of generality we choose only
real coefficients). We have seen in Sec. IV that if |)) is one
of the four Bell states, then the invariance is achieved for
¢=-0. In all the other cases the following further conditions
are needed (of course, together with ¢p=—6):

a00=l or a”:l:>01=02.
aOl:I or a10=1:>01=—02.
apo, apg 750, a007&a|1, and apy, a10=0:> 01202.

ag;, ap*0, ayp Fay and ay, a;;=0=0,=-0,.
a7 0, VYV hk:

ag=ay;; and ag =a;g= 6,=06;.

agp=—a;; and ag=—-a;p=> 6,=-06;.

agp=—a;; and ag =a,g= 6,= 6.

agy=ay;; and apg=—a; = 6,=—6;.

In all the other cases one should put ¢p=0=0, i.c., the states
are left unchanged only if no operation is performed.
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