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Effect of disorder on transverse domain wall dynamics in magnetic nanostrips
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We study the effect of disorder on the dynamics of a transverse domain wall in ferromagnetic nanostrips, driven
either by magnetic fields or spin-polarized currents, by performing a large ensemble of graphics processing
unit-accelerated micromagnetic simulations. Disorder is modeled by including small, randomly distributed
nonmagnetic voids in the system. Studying the domain wall velocity as a function of the applied field and
current density reveals fundamental differences in the domain wall dynamics induced by these two modes of
driving: For the field-driven case, we identify two different domain wall pinning mechanisms, operating below
and above the Walker breakdown, respectively, whereas for the current-driven case pinning is absent above
the Walker breakdown. Increasing the disorder strength induces a larger Walker breakdown field and current,
and leads to decreased and increased domain wall velocities at the breakdown field and current, respectively.
Furthermore, for adiabatic spin-transfer torque, the intrinsic pinning mechanism is found to be suppressed by
disorder. We explain these findings within the one-dimensional model in terms of an effective damping parameter
α∗ increasing with the disorder strength.
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Domain wall (DW) dynamics in nanoscale ferromagnetic
wires and strips driven by magnetic fields or spin-polarized
currents is a subject of major technological importance for the
operation of potential future nanoscale magnetic memory1,2

and logic3 devices. In these devices information is typically
stored as magnetic domains along a nanostrip or wire and is
processed by DW motion. For the reliable operation of such
devices it is of fundamental importance to understand and
control the effect of imperfections or disorder on the DW
dynamics, necessarily present in any realistic samples, e.g.,
in the form of thickness fluctuations and grain structure of
the sample, or various impurities and defects in the material.
At the same time, such systems constitute a low-dimensional
limit of the general problem of driven elastic manifolds in a
random potential.4

While the crucial importance of disorder for the dynamics
of higher-dimensional DWs is well established, resulting
in phenomena such as the Barkhausen effect,5 a majority
of studies of DW motion in systems with nanostrip or
wire geometry neglect disorder effects. This applies to both
theoretical studies and interpretations of experimental results.
Some exceptions include studies demonstrating enhanced
DW propagation due to the roughness of the edges of the
strip.6,7 Recently also the effect of spatially varying saturation
magnetization Ms on the dynamics of vortex walls was
studied, resulting in an effective damping increasing with
the disorder strength.8 Similar spatially distributed disorder
has also been studied in a simplified, line-based model of a
transverse DW.9,10 Experimental studies of DW dynamics in
wires have revealed its stochastic nature in the case of short
current pulses,11 and has been attributed to the presence of
disorder in the samples, in combination with thermal effects.
For longer current pulses, the resulting average DW velocities
have been shown to be quite low,12 likely due to pinning effects

induced by structural disorder. Dynamical pinning effects have
also been observed in experiments of field-driven vortex wall
dynamics.13,14 However, despite these advances, many details
of the disorder effects on DW dynamics in nanostructures
remain to be clarified.

In this paper, we consider by micromagnetic simulations the
effect of disorder on the field and current-driven dynamics of a
transverse DW in a narrow and thin permalloy strip. Disorder is
modeled by including randomly positioned small nonmagnetic
regions (voids) in the system. Our results show that the
field- and current-driven DW dynamics exhibit remarkable
differences which are only revealed in the presence of disorder.
In particular, we identify two fundamentally different DW
pinning mechanisms acting in a field-driven system, operating
below and above the Walker breakdown field, respectively,
with the latter mechanism being absent in the current-driven
case. Also the Walker breakdown itself is affected by the
presence of disorder, such that it is shifted to larger field
and current values with increasing disorder strength. At the
same time, the DW velocities at the breakdown field and
current get smaller and larger, respectively. Furthermore, for
adiabatic spin-transfer torque, the intrinsic pinning mecha-
nism is found to be suppressed by disorder. These findings
emphasize the importance of understanding the interplay
between disorder, the DW structure, and the properties of
the external driving force, and are shown to be related to an
effective damping parameter α∗ increasing with the disorder
strength.

We perform a large ensemble of micromagnetic simulations
with the graphics processing unit (GPU)-based micromagnetic
simulator MuMax,15 making it possible to obtain large statis-
tics for averaging over the disorder realizations. To study the
time evolution of the magnetization M(r,t) with an amplitude
Ms , we solve the Landau-Lifshitz (LL) equation with the
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spin-transfer torque terms,16

∂M
∂t

= − γ

1 + α2
M × Heff − αγ

Ms(1 + α2)
M × (M × Heff)

− bj

M2
s (1 + α2)

M × [M × (j · ∇)M]

− bj

Ms(1 + α2)
(ξ − α)M × (j · ∇)M, (1)

where Heff is the effective magnetic field (with contributions
from the external, exchange, and demagnetization fields), γ is
the gyromagnetic ratio, α is the Gilbert damping constant, ξ

is the degree of nonadiabaticity, j is the current density, and
bj = PμB/[eMs(1 + ξ 2)], with P the polarization, μB the
Bohr magneton, and e the electron charge.

We consider permalloy strips of width w = 100 nm and
thickness 10 nm, such that the stable DW structure is a head-to-
head V-shaped symmetric transverse wall, separating in-plane
domains pointing along the strip axis.17 The used material
parameters are those of permalloy, i.e., Ms = 860 × 103 A/m
and α = 0.02, and no anisotropy fields are included in Eq. (1).
To clearly see the effect of quenched disorder on the DW
dynamics, we set the temperature T = 0. The system is
discretized by considering N cells of size 3.125 × 3.125 ×
10 nm3. Upon application of an external magnetic field
Hext = Hextx̂ along the strip axis in the absence of disorder, the
DW is displaced along the strip. If the field is below the Walker
breakdown field HW , the DW essentially keeps its equilibrium
structure during the propagation, with a small out-of-plane
component close to the tip of the V shape, and a velocity
roughly linearly proportional to the applied field. Above HW ,
an antivortex is nucleated at the tip of the V shape. It then
propagates across the strip width, reversing the polarity of the
DW magnetization. This process is repeated such that the DW
polarity oscillates back and forth, dramatically decreasing the
average DW velocity.18

With disorder included in the form of randomly positioned
nonmagnetic voids of linear size 3.125 nm with varying
densities σ within a strip of length L = 3.2 μm, the DW
can get pinned even for nonzero applied fields.19 This makes
measurement and even definition of the DW velocity a
nontrivial task. Thus, in what follows we consider both the
“conditional velocities” vm of the moving DWs, conditioned
on the fact that the DWs will not get pinned during the time
interval �t = 20 ns we consider in the simulations (i.e., the
DW will either reach the end of the strip or it is still moving
after �t = 20 ns),20 and the probability Ppin for the DW to get
pinned during �t . These are computed by averaging over 50
disorder realizations for each Hext and σ . Notice that here we
consider a T = 0 system, such that a pinned DW cannot depin.
An alternative measure of the DW velocity (which is likely to
be closer to typical experimental measurements where T > 0)
is given by vexp = (1 − Ppin)vm. In general, Ppin will increase
with the observation (time and length) scale, thus making also
vexp a scale-dependent quantity.

Figure 1 shows the resulting average velocities vm of the
moving DWs as a function of Hext and σ . The presence of voids
induces a finite depinning field Hdep(σ ) increasing with σ . For
Hext > Hdep(σ ), vm first increases until a maximum velocity
is reached at Hext = HW (σ ), and then starts to decrease
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FIG. 1. (Color online) The average velocity vm of the moving
DWs (main figure) and vexp = (1 − Ppin)vm (inset) as a function of
Hext and σ . Error bars correspond to the standard deviation of vm. The
pinning probabilities Ppin during the 20 ns simulation (bottom panel)
exhibit large values for large Hext due to the core pinning mechanism.

again. The position HW (σ ) of this maximum, corresponding
to the Walker breakdown, is shifted towards larger field
values as σ is increased, and the corresponding maximum
velocity vm[HW (σ )] decreases with σ . The error bars in Fig. 1
correspond to the standard deviation of vm, and indicate that
the dynamics of moving DWs has a stochastic nature due
to the random disorder. Notice in particular that the pinning
probability Ppin exhibits a nonmonotonic dependence on Hext,
with strong pinning for both small and large Hext, while for
intermediate applied fields (corresponding to large values of
vm) pinning is less likely. The maximum value of vexp (inset
of Fig. 1) exhibits a strong dependence on σ , and depends
also on the observation scale via Ppin (not shown). For large
Hext, Ppin is close to 1 for �t = 20 ns, and consequently vexp

is essentially zero. Similar pinning effects for large applied
fields have been observed experimentally for vortex walls.13,14

To gain insight on the mechanisms behind this behavior, we
consider snapshots of the DW configurations and the various
contributions to ∂M/∂t in Eq. (1). For small Hext, we find
that the overall DW structure is preserved, with the disorder
inducing only minor distortions. If the DW gets pinned,
this happens by a collective action of several voids. This
mechanism is known as collective pinning, and it is responsible
for the nonzero depinning field Hdep < HW (σ ). Remarkably,
we identify a fundamentally different pinning mechanism for
large fields, Hext > HW (σ ): In this regime, an antivortex is
able to propagate to the interior of the strip, resulting in
pinned DW configurations (occurring with probability Ppin)
with the antivortex core positioned exactly on top of a void
or a local void structure. We refer to this mechanism as
core pinning, and attribute it to the fact that the energy of
the system can be significantly lower when the antivortex
core or part of it—involving large magnetization gradients
and out-of-plane magnetization—is placed in a nonmagnetic
region (or more generally, in a region with low Ms). In the
field-driven case the DW is susceptible to get pinned by this
mechanism because the Zeeman torque is relatively small in
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FIG. 2. (Color online) Examples of the spatial distribution of the
contributions of the applied field Hext = 5 mT (top) and current
density jext = 20 × 1012 A/m2 with ξ = 0 (middle) to ∂M/∂t in
Eq. (1), corresponding to the magnetization configuration shown in
the bottom panel, exhibiting an antivortex in the middle of the strip.
∂M/∂t is given in units of Ms/s. The randomly positioned voids with
σ = 3125 μm−2 are shown as gray dots.

magnitude and does not directly displace the DW (top panel of
Fig. 2); instead, the small out-of-plane magnetization due to
the Zeeman torque induces demagnetizing fields, which act to
move the DW. Such an indirect driving mechanism is sensitive
to the perturbations due to disorder, leading to several effects,
including σ -dependent Hdep and HW , and in particular the core
pinning mechanism for high Hext.

We proceed to contrast these results with the current-driven
case by applying a current density j = −jextx̂ with P = 0.5
along strips of length L = 6.4 μm. We first consider perfect
adiabaticity (ξ = 0, top panel of Fig. 3). Due to intrinsic
pinning,21 there is a nonzero depinning current jdep,int in
the absence of disorder, above which DW motion involves
repeated polarity transformations mediated by antivortex
propagation across the strip width. Adding disorder with the
same procedure as above reveals two intriguing observations:
First, it appears that the DW is able to move even for currents
slightly below jdep,int. This surprising finding can be explained
by noticing that the intrinsic pinning mechanism is due to the
ability of the DW to deform in such a way that the torques due
to interactions within the DW (i.e., the effective field) exactly
counterbalance the adiabatic spin-transfer torque.21 However,
the presence of disorder induces additional DW deformations
and imposes constraints on the ability of the DW to counteract
the current-induced torques, leading to nonzero values for both
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FIG. 3. (Color online) The average velocity vm of the moving
DWs as a function of jext and σ , for ξ = 0 (top) and ξ = 0.04
(bottom). Error bars correspond to the standard deviation of vm. The
pinning probabilities Ppin during the 20 ns simulation highlight the
absence of core pinning for large current densities. The insets show
vexp = (1 − Ppin)vm for ξ = 0 (top panel), and the effective α∗(σ ) for
various ξ (bottom panel), respectively.

vm and 1 − Ppin for jext somewhat below jdep,int. Notice that
while vexp (inset of the top panel in Fig. 3) exhibits nonlinear
field dependence reminiscent of typical creep motion for small
fields, we are considering here a T = 0 system in which
a pinned DW cannot depin due to the absence of thermal
fluctuations.22

The second observation is that for larger jext, core pinning
is absent. Even if for jext > jW (σ ) the antivortex core is
constantly moving back and forth across the strip width, it
never gets pinned by the voids, strongly contrasting with the
field-driven case. To explain this observation, we consider
the spatial distribution of the current-induced contribution to
∂M/∂t (middle panel of Fig. 2), and find that the current
acts directly (in contrast to the indirect mechanism in the
field-driven case) and strongly on the antivortex core where the
magnetization gradients are large, facilitating its propagation
along the strip across the energy barriers due to the voids. This
is also directly visible in the the LL equation [Eq. (1)], where
the current acts on the gradient of M rather than on M itself.
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TABLE I. Predictions for jdep,int, HW , and vm(HW ) from the one-dimensional model in terms of σ -dependent effective α∗ and C∗ ≡
(�M2

s |Ny − Nx |)∗, compared with the simulated values. C∗ is estimated by fitting the expression for jW (see text) to the data in the bottom
panel of Fig. 3.

σ (μm−2) α∗ C∗ (A2/m) j
pred
dep,int (A/m2) j sim

dep,int (A/m2) H
pred
W (mT) H sim

W (mT) vpred
m (HW ) (m/s) vsim

m (HW ) (m/s)

0 0.0200 2.92 × 10−10 14 × 1012 15 × 1012 2.75 2.75 457 457
1562.5 0.0221 2.52 × 10−10 12.1 × 1012 13 × 1012 3.05 3.0 398 437
3125 0.0238 2.45 × 10−10 11.7 × 1012 12 × 1012 3.25 3.25 389 419
4687.5 0.0258 2.36 × 10−10 11.3 × 1012 11.5 × 1012 3.52 3.25 377 403
6250 0.0283 2.28 × 10−10 10.9 × 1012 11 × 1012 3.78 3.5 368 387

Finally we consider the role of the nonadiabatic spin-
transfer torque (bottom panel of Fig. 3, where the ξ = 0.04
case is shown) on the DW dynamics. For ξ > 0 and σ = 0,
there is no intrinsic pinning, and the DW propagates, preserv-
ing its internal structure with a finite velocity linearly propor-
tional to the current density jext up to a Walker breakdown
current jW . For jext > jW , an antivortex is again nucleated
and propagates across the strip width, reversing the polarity
of the DW magnetization, and decreasing the average DW
velocity. For larger jext, the velocity again increases with jext.
Adding disorder induces a finite depinning threshold jdep(σ ),
and pushes the local maximum of vm or the Walker breakdown
to higher jext. At the same time, vm at jW (σ ) increases with σ .
Thus, the voids are able to inhibit the antivortex entering the
strip, enhancing the DW propagation and structural stability for
intermediate current densities, jW (σ = 0) < jext < jW (σ >

0). This effect arises as the antivortex core is pushed across the
strip width by the effective field terms in Eq. (1) (notice that
the effect of the current is symmetric such that no antivortex
displacement along the y direction arises directly due to
the current—see the middle panel of Fig. 2), a mechanism
sensitive to the disturbances due to disorder. Again, there is
no core pinning for jext > jW (σ ), for the same reason as in the
adiabatic (ξ = 0) case.

For jdep(σ ) < jext < jW (σ ), vm depends linearly on jext,
and by extrapolating linear fits to the data to jext = 0 all the
lines cross at vm = 0 (not shown). Thus, we estimate effective
values of the damping parameter from the slopes of these linear
fits,8 as within one-dimensional models23 vm ∝ (β/α)jext for
jext < jW , with β = ξ/(1 + ξ 2). Our simulations (inset of the
lower panel of Fig. 3) with different ξ indicate that the data can
be interpreted in terms of an effective α∗ increasing with σ .8

Also an effective M∗
s = (1 − σLw/N)Ms emerges naturally.

Thus we can explain our results with the one-dimensional
model in terms of σ -dependent effective parameters: For in-
stance, jW (σ ) = 4πγ (M2

s �|Ny − Nx |)∗α∗/(gμBP |β − α∗|),
with � the DW width and Nx and Ny the demagnetizing
factors, and jdep,int(σ ) ≡ jW (σ,ξ = 0).23 Using the expression
for jW and the values of α∗ to estimate C∗ ≡ (�M2

s |Ny −
Nx |)∗, the scaling of jdep,int with σ can be reproduced
remarkably well—see Table I. A similar analysis in the

field-driven case, with HW = 2πα∗(Ms |Ny − Nx |)∗ and
vm(HW ) = (γ�∗/α∗)HW ,23 reproduces the observed scaling
of both HW and vm(HW ) with σ (Table I). Notice that in our
case vm(HW ) depends on σ through the σ -dependent effective
parameters, while for systems with only edge roughness
vm(HW ) is independent of the amount of edge roughness.6

To summarize, we have presented a detailed analysis of the
effect of disorder on the field- and current-driven transverse
DW dynamics in a narrow and thin permalloy nanostrip. We
have identified two fundamentally different pinning mecha-
nisms, acting in different regimes of the DW propagation. The
observation that there is no core pinning in the current-driven
case whereas it dominates the field-driven dynamics for large
fields highlights the different nature of the field and current
drive in a way that can be observed only in the presence of
disorder. In general, we have seen that the pinning mechanisms
operating will depend on the details of the DW structure,
and thus we expect that the core pinning mechanism is
absent for systems with high perpendicular magnetocrystalline
anisotropy as there is no (anti)vortex core that could get
pinned, but it could play a role in the dynamics of vortex walls
occurring in wider soft strips,8 possibly also for small applied
fields. If only edge roughness is present, no core pinning should
occur. Experiments should be performed to systematically
study the scale dependence of Ppin and vexp. Finally, we point
out that the observation that disorder tends to stabilize the DW
internal structure and increase the maximum DW velocity by
suppressing the Walker breakdown in the current-driven case
suggests that it could be desirable to deliberately engineer
disorder in the system, for instance, to replace notches to pin
the DW in various technological applications.24
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12M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland,
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