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Abstract
Our understanding of howdiseases spread has greatly benefited from advances in networkmodeling.
However, despite of its importance for disease contagion, the directionality of edges has rarely been
taken into account. On the other hand, the introduction of themultilayer framework hasmade it
possible to deal withmore complex scenarios in epidemiology such as the interaction between
different pathogens ormultiple strains of the same disease. In this work, we study in depth the
dynamics of disease spreading in directedmultilayer networks. Using the generating function
approach andnumerical simulations of a stochastic susceptible-infected-susceptiblemodel, we
calculate the epidemic threshold of synthetic and real-worldmultilayer systems and show that it is
mainly determined by the directionality of the links connecting different layers, regardless of the
degree distribution chosen for the layers. Ourfindings are of utmost interest given the ubiquitous
presence of directedmultilayer networks and thewidespread use of disease-like spreading processes in
a broad range of phenomena such as diffusion processes in social and transportation systems.

1. Introduction

Directionality in contact networks has often been disregarded, either because of the lack of data or in order to
simplify theoretical approaches [1]. This is the case of disease spreadingmodels, which usually consider the
underlying networks as undirected [2, 3]. However, there are scenarios inwhich directionality has been found to
be a key feature. Relevant examples are the case ofmeerkats inwhich transmission varies between groomers and
groomees [4] and the transmission ofHIV between humans, withmale-to-female transmission being 2.3 times
greater than female-to-male transmission [5]. Similarly, when addressing the problemof diseases that can be
transmitted among different species, it is important to account for the fact that theymight be able to spread from
one type of host to the other, but not the otherway around. For example, the bubonic plague can be endemic in
rodent populations and spread to humans and other animals under certain conditions. If it evolves to the
pneumonic form, itmay then spread fromhuman to human [6]. Analogously, Andes virus usually spreads
within rodent populations, but it can be transmitted to humans and then spread via person-to-person contacts
[7]. These types of interspecies contagions and other similar cases can be studied usingmultilayer networks, in
which the network of each species is encoded in the layers and the possible interspecies interactions are given by
the links that connect the layers [8].

Human behavior by itself can also introduce asymmetric patterns of disease spreading, either via the
transmissionmechanisms or via asymmetries in socialmixing [9]. For instance, vaccinationmight induce
asymmetric interactions among vaccinated and unvaccinated individuals [10]. Similarly, large-scale cooperation
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[11] can hinder disease spreading via peer punishment (e.g. prohibiting traveling if infected) and peer rewarding
(e.g. freemedical treatment fromorganizations). Both peer punishment and peer rewardingwould deviate
individual interactions far from symmetry, also inducing directionality in disease contagion. Evenmore, the
owndynamics of the entities producing the diseasesmight be asymmetrical. For example, the interplay between
cancer and the immune system can show asymmetric relationships [12]. There are also diseases with long latent
periods that induce complicated dynamics between individuals who develop further the disease and thosewho
do not, such as the interaction between individuals in the primary infection phase of Tuberculosis and those in
the active state [13, 14]. For those cases,multilayer networksmight be able to help disentangling dynamics that
would be otherwise hidden.

The use of directedmultilayer networks is not constrained to diseases that can infect humanpopulations.
Indeed, analogous scenarios can be found in the interface betweenwildlife and livestock, with diseases being
endemic in one of them and then being transmitted unidirectionaly to the other [15]. This directionality is
particularly relevant in the surveillance of diseases within the livestock industry, where the direction of the
livestock interchange between farms can uncover structural changes that would be otherwise hidden [16]. Even
more, the recent introduction of high resolution data of face-to-face interactions has also renewed the interest in
using directed networks both in human and animal populations [17, 18]. This data can be used to build temporal
multilayer networks inwhich the connections between layers, i.e. different time frames, have to be necessarily
directed in order to preserve the causality induced by time ordering [19].

In this work, we aim at characterizing the spreading of diseases in directedmultiplex networks.We focus on
investigating how the epidemic threshold is influenced by the directionality of both interlayer and intralayer
links. In particular, we considermultiplex networks composed by two layers with either homogeneous or
heterogeneous degree distributions in the layers. Besides, we analyze several combinations of directionality: (i)
Directed layer—Undirected interlinks—Directed layer (DUD); (ii)Directed layer—Directed interlinks—
Directed layer (DDD); and (iii)Undirected layer—Directed interlinks—Undirected layer (UDU). For the sake of
comparison, we also include the standard scenario, namely, (iv)Undirected layer—Undirected interlinks—
Undirected layer (UUU).We then implement a susceptible-infected-susceptible (SIS)model on these networks
and study the evolution of the epidemic threshold as a function of the directionality and the coupling strength
between layers. In addition, we analytically derive the epidemic thresholds using generating functions, which
allows to provide theoretical insights on the underlyingmechanisms driving the dynamics of these systems. Our
results show that the presence of directed links results in larger epidemic thresholds with respect to the case of
undirected networks, and that the system ismore resilient when the interlayer links are directed. Therefore, our
conclusions are in linewith previousworks [20, 21] in that directionality is a key topological feature that should
not be disregarded as it can lead to newphenomenology and sizable dynamical effects.

2. Themodel

Multilayer networks are an extension of classical contact networks inwhich nodes are assigned to a given layer, u,
and can be connected to nodes in the same layer or in other layers. As a result, it is possible to distinguish two
types of links: intralayer links, which connect pairs of nodes in the same layer, and interlayer links, which
connect pairs of nodes in different layers. This formulation is used to encode features that characterize the nodes
or the links thatwould be otherwise hidden, such as different types of interactions in protein networks or the
multiple transportationmodes present inmass transit systems [8]. In particular, in this workwe focus on two-
layer directedmultiplex networks. That is, networks composed by two layers inwhich links, either within layers
or to other layers, can be directed. Furthermore, the termmultiplex, in contrast tomultilayer, implies that a
node can only be connected to its counterpart in the other layer. In otherwords, it is not possible to havemore
than one link in each node going to the other layer [22].

First, we implement SIS dynamics on two layermultiplex networks. In thismodel, nodes can be either
susceptible or infected. The latter spread the disease to the former if they are in contact with a given probability.
One of themain characteristics ofmultiplex networks is the existence of several types of links. Thus, it is possible
to associate different spreading probabilities to each of these links [23]. In ourmodel, we assume two spreading
probabilities: the interlayer spreading probability, γ, and the intralayer spreading probability,β. Hence, an
infected node transmits the disease with probabilityβ to those susceptible neighbors of the same layer andwith
probability γ to those located in other layers. This distinction implies that it is possible tofind a critical value ofβ
for each value of γ and vice versa. Thus, henceforthwewill define the epidemic threshold asβc and explore its
value as a function of γ.

In the simulations, all the nodes in the system are initially susceptible. The spreading starts when one node is
set to the infectious state. Then, at each time step, each infected node spreads the disease through each of its links
with probabilityβ if the link is contained in a layer andwith probability γ if the link connects nodes in different
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layers. Besides, each infected node recovers with probabilityμ at each time step. The simulation runs until a
stationary state for the number of infected individuals is reached.

To determine the epidemic thresholdwefix the value of γ and run the simulation overmultiple values ofβ,
repeating 103 times the simulation for each of those values. Theminimumvalue ofβ at which, on average, the
number of infected individuals in the steady state is greater than one determines the value of the epidemic
threshold,βc/μ. This procedure is then repeated for several values of γ to obtain the dependency ofβcwith the
spreading across layers. Lastly, this dependency is evaluated for 102 realizations of each network considered in
the study and theirβc(γ) curves are averaged.

2.1. General analytical derivation of the epidemic threshold
In order to obtain insights into themechanisms driving the spreading process on directedmultiplex networks,
we analytically derive the epidemic threshold for all the configurations considered in this work. To this end, we
extend the generating function formalism, which has been used previously in the context of directedmonolayer
networks [24] and interdependent directed networks [25], tomultiplex networks.

Within the generating function formalism, a node has an in-degree j, out-degree l and inter-degreemwith
probability pjlm, being thefirst two related to the links contained in each layer and the latter to links connecting
nodes in different layers. The generating function for the degree distribution of a node is then defined as

G x y z p x y z, , 1
j l m

jlm
j l m

0 0 0
åå å=
=

¥

=

¥

=

¥

( ) ( )

so that in order to describe a particular network it is sufficient to set pjlm to the degree distribution of the network.
Indeed, with this function it is possible to characterize several properties of the network such as the excess degree
which is themain quantity that is needed for the derivation of the epidemic threshold. The excess degree of a
node is defined as the number of links of a node reached by following a randomly chosen link, without including
the incoming link.Hence, the distribution of excess degree of a node that is reached by following a directed link
in its direction is generated by

H x y z
k

G x y z, ,
1

, , , 2d
d

1,0,0=
á ñ

( ) ( ) ( )( )

where kdá ñ is the average directed degree and the superscript 1, 0, 0( ) refers to partial derivationwith respect to
x. Similar expressions can be obtained for the excess degree of a node reached via the reverse direction of the
same directed link and via an undirected link (see appendix).

The size of an outbreak, as well as the epidemic threshold, can be obtained by computing the fraction of
occupied links in the network. In this context, occupied link refers to a link throughwhich the diseasewas
transmitted. This can be accounted for by incorporating the transmissibility, i.e. themean probability of
transmission between individuals [26], to the previous equations so that

G x y z T T G T Tx T Ty T T z, , ; , 1 , 1 , 1 , 3uv uv uv= - + - + - +( ) ( ) ( )

whereT andTuv denote the transmissibility within a layer and across layers, respectively.
In the SIS epidemicmodel, an infected individual at time tmight recover from the disease ormight spread it

to its direct neighbors.We assume both the recovering process and the spreading process are independent
Poisson processes with rateμ andβ, respectively. The time, denoted as τi, that an infected node i remains
infected is a randomvariable, whose distribution follows an exponential distributionwith rateμ.

The probability T1 ij- that the diseasewill not transmit from an infected node i to a susceptible node j is

e ibt- . As τi is a random variable, the probabilityTij of disease transmission is also a randomvariable.When
assuming a homogeneous recovering rate for each node, the average of disease transmission probability between
infected and susceptible individuals is the average over the distribution of infectious time, which follows

T 1 e e d 4
0
ò m t= - bt mt

¥
- - ( )

fromwhichwe obtain

T 1 . 5
m
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+
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Analogously, the average transmission probability of individuals between different layers reads, given that the
spreading rate between layers is γ,

T 1 . 6uv
m

g m
= -

+
( )
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Hence, the generating function for the distribution of the size of an outbreak can be expressed as

g w T T wG h w T T h w T T T T; , 1, ; , , ; , ; , , 7uv uv uv uv1 12=( ) ( ( ) ( ) ) ( )

where h1 and h12 are recursive functions that generate the distribution of the size of an outbreak starting at a link
connecting nodes in layer 1 and at a link connecting nodes in layer 1 and 2 respectively. The average size of an
outbreakwill be then given by the derivative with respect tow of g(w;T,Tuv) evaluated atw= 1. The said
derivative goes to infinity when its denominator equals 0, which characterizes a phase transition from a phase in
with only small size outbreaks to one characterized by the occurrence ofmacroscopic outbreaks. Thus, the
epidemic threshold can be obtained from the equality
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where H H H1 12
0,0,1

21
0,0,1= - ( ) ( ) andHi refers to transmissionwithin layer i andHij to transmission from layer i

to layer j.
The above expression is general enough as to be used in the calculation of the epidemic threshold for each of

the cases considered in this work. To this end, the only step that is left is to substituteHi byHd if the links in layer i
are directed or, conversely, byHu if they are undirected (see appendix).

3. Results

Wefirst present results of numerical simulations of a stochastic SISmodel. The SIS dynamics is implemented on
directedmultiplex networks composed by two layers. As previously stated, we explore four different
configurations of directionality denoted asDUD,DDD,UDUandUUU. Furthermore, to define the degree
distribution in the layers we use power-law and Poisson distributions, which correspond respectively to Scale-
Free (SF) and Erdős–Rényi (ER)networkmodels. Infigure 1we show the evolution of the epidemic threshold,
βc, as a function of γ for the configurationswith undirected interlinks, UUUandDUD, both for ER (1A) and SF
(1B)networks, for two different average degrees ká ñ.

For the cases inwhich the interlinks are directed, we need to define howmany links point fromone layer u to
another layer v, either in the u v direction or in the opposite one, u v¬ . Indeed, if we set all interlinks to
have the same direction, the epidemic thresholdwould be trivially the one of the source layer and thus the
multiplex structurewould play no role. For this reason, for each directed link connecting layers u and vwe set the
directionality to be u v with probability p and u v¬ with probability (1−p). Consequently, in networks
with directed interlinks the epidemic thresholdwill be given as a function of this probability p.We refer to this
procedure of generating interlinks as the p-model. The same dependence of the critical threshold depicted in
figure 1 is shown infigure 2 forDDDandUDU configurations built using the p-model. The dependency of the
results with the value of p is shown infigure 3.

It is also possible to study scenarios inwhich each interlink does not only have one possible directionality,
either u v or u v¬ , but instead are bi-directional. This is achieved by setting two independent probabilities
—one for each direction—, thus allowing for the coexistence of single directionality and bi-directionality in the
interlinks. This situation, whichwe denote as the pq-model, is further analyzed in the supplementarymaterial,
which is available online at stacks.iop.org/NJP/21/093026/mmedia.

Inwhat follows, we present the analytical results obtained for the thresholds after considering directionality
(or lack thereof) and different network topologies.

3.1. ERnetworks
In ERnetworks the degree distribution follows a Poisson distribution. If we consider anUUUnetworkwith
nodes in both layers following said degree distribution, the generating function, (1), is

G x z
k

j
x z,

e
. 9

j

j k
j

0
å=
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=

¥ -á ñ
( )

!
( )

Inserting this expression in (8), the epidemic threshold can be expressed as (the full derivation is presented in
supplementarymaterial).

T
T

k T

1

1
. ER UUUc

uv

uv
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-

á ñ + -
( - )

Henceforth, to facilitate readability and unless otherwise stated, we provide expressions for the epidemic
threshold in terms of the average transmission probability through intralinks,T, and the average transmission
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probability through interlinks,Tuv. Nevertheless, the thresholds can be easily rewritten in terms ofβc in a
straightforwardway using (5) and (6). For this case, we can rewrite the above equation and explicitly express the
value ofβc as,

Figure 1.Epidemic threshold for the spread of a disease within layers,βc, as a function of the probability of interlayer contagion, γ.
Panels (A) and (B) show results for theUUUandDUDconfigurationswith ER (A) and SF (B) degree distributions in the layers. In all
casesμ = 0.1, the number of nodes isN=2×104 and for each directionality configuration there are two sets of networks: in the ER
case onewith k 6á ñ = in both layers and another onewith k 12á ñ = in both layers; in the SF case onewith kmin = 4 andα = 2.7
(average degree k 7.85á ñ = ) and another onewith kmin = 10 andα = 2.8 (average degree k 18.50á ñ = ). In panels (C) and (D)we
compare the analytical values ofβcwith corresponding results from the numerical simulations for the same networks and
directionality configurations shown in panels (A) and (B).

Figure 2.Critical value of thewithin-layer spreading rate,βc, as a function of the spreading rate across layers, γ, inDDDandUDU
configurations built up using the p-model with ER (A) and SF (B) degree distributions in the layers. In all cases p=0.5,μ=0.1, the
number of nodes isN=2×104 and for each directionality configuration there are two sets of networks: in the ER case onewith
k 6á ñ = in both layers and another onewith k 12á ñ = in both layers; in the SF case onewith kmin = 4 andα = 2.7 (average degree
k 7.85á ñ = ) and another onewith kmin = 10 andα = 2.8 (average degree k 18.50á ñ = ).
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Note that if we set γ=0 in (6) so that the spreading fromone layer to the other is completely removed,

Tuv=0 and (10) is simplified to k 1c = á ñb
m

- , which is the classical value of the epidemic threshold in single layer

ERnetworks [27].
In aDUDnetworkwith nodes in both layers following a Poisson degree distribution, with the same average

degree for both incoming and outgoing links, the generating function (1) is
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Again, by inserting this expression in (8)we obtain
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On the other hand, using the p-model previously described, the epidemic threshold inDDDconfigurations
as a function of p is

T
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with m p p T1 uv
2= -( ) and in theUDUconfiguration is
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with m k p p T1 uv
2¢ = á ñ -( ) . Infigure 4(A)we compare the behavior of these four configurations plottingβc as a

function of γ.

Figure 3.Epidemic threshold for two-layeredmultiplex networks for different values of pwith: (A) directed layers with ER degree
distribution and directed interlinks; (B) directed layers with SF degree distribution and directed interlinks; (C) undirected layers with
ER degree distribution and directed interlinks; (D)undirected layers with SF degree distribution and directed interlinks. In both ER
cases the average degree is 12 and in the SF cases theminimumdegree is 10 and the exponent is 2.8, resulting in an average degree of
18.50.
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3.2. SF networks
In SF networks the degree distribution follows a power-law of the form P k k~ a-( ) . Thus, the epidemic
thresholds are
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k T k T
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2 2
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for theUUUconfiguration,

T
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for theDUDconfiguration,

T
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2 8
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with m p p T1 uv
2= -( ) for theDDD configuration and
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with m p p T1 uv
2= -( ) for theUDU configuration. The full derivation can be found in the supplementary

material. As in the ER case, the explicit dependence ofβcwith γ is shown infigure 4(B).

4.Discussion

Our results show that directionality is a key factor in the spreading of epidemics inmultiplex networks. Even
more, thesefindings suggest that its effects cannot be trivially generalized as the consequences of changing the
directionality of some links are completely different for Scale-Free and ERnetworks. In particular, infigure 1(A),
we can see that for networks with k 6á ñ = the epidemic threshold is very similar in bothUUUandDUD
configurations. This effect is again seen for denser networks, k 12á ñ = , implying that it is the directionality of the
interlinks, and not the one of the links containedwithin layers, themain driver of the epidemic in these
networks. On the other hand, infigure 1(B)we can see that this behavior is not replicated for SF networks.
Certainly, there is a large difference between the curves of theUUUandDUDconfigurations, implying that the
directionality of intralinks ismuchmore important in this type of networks. In agreement with these
observations, when the interlinks are those that are directed, we found the same difference between ER and SF
networks. As can be observed infigure 2(A), the evolution of the epidemic threshold as a function of γ is again
quantitatively similar for bothDDDandUDUconfigurations. Conversely, infigure 2(B), a difference between
these configurations arises again for SF networks. Besides, in all the cases considered so far,figures 1 and 2, the
epidemic threshold is always lower for those configurationswith undirected linkswithin the layers, compared to
those inwhich those links are directed, given the same interlink directionality.

Figure 4.Comparison of the analytically derived epidemic thresholds for each network configurationUXUorDXD (X=UorD) and
different degree distributions for the networks in the layers. (A)ERnetworks with k 6á ñ = and p=0.5. (B) SF networks with
kmin = 3,α = 2.6, resulting in the theoretical average degree k 6.1á ñ = and p=0.5.
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To get further insights into themechanisms driving the behavior observed previously, we rely on the
analytically derived thresholds and explore the evolution ofβc as a function of γ for thewhole range of possible
values of the latter parameter. Results are shown infigure 4. In this case, we can see that the value of the epidemic
threshold of theDUDconfiguration in SF networks tends to the value of theUUUcase for large values of the
spreading probability across layers,mimicking the behavior of ERnetworks. Thus, when 1g  we reach the
state inwhich both networks exhibit the same properties, namely: (i) the epidemic threshold inDUDandUUU
configurations is the same; (ii)XDX (X=UorD) configurations are almost not affected by the value of γ, except
for theweakly coupled regime (i.e. small values of γ). Hence, in general, one can conclude that the directionality
(or lack of) of the interlinks is themain driver of the epidemic spreading process. The exception is the limit of
small spreading from layer to layer, as in this scenario, the directionality of interlinksmakes SF networksmuch
more resilient, see the dashed–dotted line infigure 4(B). Altogether, the general conclusion is that directionality
reduces the impact of disease spreading inmultilayer systems.

It is important to note that these results are not only relevant for the situations described in the introduction
of this paper. First, because even though a systemmight be commonly presented as amonolayer network, itmay
be possible to detect different types of links in the network that would allow for the construction of amultiplex
network. If this is done, as we have shown in this paper, the definition of the directionality of the interlinks is far
from trivial as it can have dramatic consequences on the dynamics. In particular, the epidemic threshold can
change by up to a factor of two depending on the directionality of the interlinks. Evenmore, these results are not
restricted only to epidemicmodeling, as these kind of diffusion processes can be applied to a broad range of
systems. For example, the generating function approach has been proposed as a tool to identify influential
spreaders in social networks [28].

One particularly interesting and open challenge is to quantify the effects that the interplay between different
social networks could have on spreading dynamics. The theoretical framework developed here is particularly
suitable to study this and similar challenges related to the spreading of information in social networks. On the
one hand, because social relations are, by default, directed: a user is not necessarily followed by her followings,
i.e. social relations are not always reciprocal [29]. On the other hand, disease-likemodels have beenwidely used
to study information dissemination, or in otherwords, simple social contagion [30, 31].We have analyzed the
dependence of the epidemic thresholdwith the inter-spreading rate in a real social network composed by two
layers, see figure 5(A). Thefirst layer of themultilayer systems ismade up by the directed set of interactions in a
subset of users of the nowdefunct FriendFeed platform,whereas the second layer is defined by the directed set of
interactions of those same users in Twitter. Even though thismultiplex network originally corresponds to a
DUDconfiguration, we have also explored the other possible configurations for the directionality of the links.
Note that in contrast with the synthetic networks studied in the previous section, in this network the layers have
different average degrees. In particular, the FriendFeed layer has 4768 nodes and 29 501 directed links, resulting
in an average out-degree of 6.19, and the Twitter layer is composed by 4768 nodes and 40 168 directed links, with
an average out-degree of 8.42. Nevertheless, their degree distributions are both heavy tailed, although the
maximumdegree in the FriendFeed network ismuch larger than in the Twitter network. For details on how this
networkwas obtained, we refer the reader to the original source of the data [32].

The results, figure 5(B), confirmourfindings for synthetic networks. In particular, for the range of γ under
consideration, the configurationswith some directionality are alwaysmore resilient against the disease. These

Figure 5.Epidemic thresholdmeasured in amultiplex network composed by users of two different social platforms: friendfeed and
twitter. The original network (A) has directed intralinks and undirected interlinks, thus it corresponds to theDUD configuration.
Nevertheless, to explore the effects of directionality, the four configurations studied in this paper are considered (B). For those
configurationswith directed interlinks we used the p-model to generate them, setting p=0.5.

8

New J. Phys. 21 (2019) 093026 XWang et al



results would imply that information travelsmuchmore easily in undirected systems than in directed systems.
For instance, one could build up a directedmultiplex network using Instagram andTwitter data, either in aDUD
configuration if it is assumed that the likelihood of someone sharing the information fromone platform to the
other is independent of the source or in aDDDconfiguration if the likelihood of sending it from Instagram to
Twitter is deemed to be different than fromTwitter to Instagram.On the other hand, undirected social
platforms such as Facebook andWhatsApp should bemodeled usingUDUorUUUconfigurations. According
to our results, informationwould spreadmore easily through these platforms, which could beworrisome as they
have recently been identified as one of themain sources ofmisinformation spreading [33].

Lastly, it would be possible to build similar directedmultiplex networks in transportation systems [34]. In
these systems, the interlinks can bemodeled as undirected or directed, depending on the purpose of the study. If
one is interested in taking into account the fact that, for example, ametro station can be overcrowded in the
incoming direction but not in the outgoing direction, such as during themorning peak time, or the otherway
around, during the evening peak time, it would be necessary to use directed links. On the other hand, if
congestion is not relevant for the study, those links could be regarded as undirected.

In summary, we have developed a framework that allows studying disease-like processes inmultilayer
networks. This represents an important step towards the characterization of diffusion and spreading processes
in interdependentmultilevel complex systems.Our results show that directionality has a positive impact on the
system’s resistance to disease propagation and that theway inwhich interdependent (social)networks are
coupled could determine their ability to spread information.Our results could be applied to a plethora of
systems and show thatmore emphasis should be put in studying the role of interlinks in diffusion processes that
take place on top of them.
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Appendix. Full derivation of the epidemic threshold

Consider a directedmultiplex network consisting of two layers interconnected by interlinks. The directed
contact between an infective individual to a susceptible individual can bewithin the same layer, or across
different layers or amix of both. Depending on the directionality of linkswithin layers and the directionality of
links interconnecting different layers, we analyze all possible combinations inwhich directionality is the same in
both layers, namely: (i) directed layers and undirected interlinks, denoted asDUD, (ii) directed layers and
directed interlinks, denoted asDDD, (iii) undirected layers and directed interlinks, denoted asUDUand (iv)
undirected layers and undirected interlinks, denoted asUUU.

For a general directedmultilayer network, a node has an in-degree j, out-degree k and inter-degreemwith
probability pjkm. The generating function for the degree distribution of a node is defined as

G x y z p x y z, , , A.1
j k m

jkm
j k m

0 0 0
å å å=
=

¥

=

¥

=

¥

( ) ( )

where G p1, 1, 1 1j k m jkm, ,= å =( ) satisfying the probability property.

Another quantity related to the nodal degree distribution is called the excess degree distribution, which is the
distribution of degrees of nodes reached by following a randomly chosen link. The probability to reach a node is
biased by nodal degrees because nodes with a higher degree have a higher probability to be chosen. The
probability to reach a node by following the direction of a randomly chosen link, i.e. in-link of the reached node,

is
jp

p

jkm

j k m jkm, ,å
. The corresponding generating function for the excess in-degree j−1, out-degree k and inter-degree

m reads
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H x y z
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jp
x y z

G x y z

G
, ,

, ,

1, 1, 1
. A.2d
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Analogously, the generating function for a node reached by following the reverse direction of a randomly chosen
directed link, i.e. out-link of the reached node, follows

H x y z
kp

kp
x y z

G x y z

G
, ,

, ,

1, 1, 1
A.3r

j k m

jkm

j k m jkm
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= =
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=
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and similarly, the generating function for a node reached by following an undirected inter-link reads

H x y z
mp

mp
x y z

G x y z

G
, ,

, ,

1, 1, 1
. A.4u

j k m
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=
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=
¥

=
¥

-( ) ( )
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To account for the probability of a link being infected by a disease that is transmitted from an infective
individual to a susceptible individual, we furthermodify the generating functions. DenoteT i, 1, 2i Î as the
average probability that a susceptible individual will be infected by an infectious individual in the same layer.
DenoteTuv as the average probability that an infectious individual from layer uwill transmit the disease to a
susceptible individual in layer v.We omit the subscript ofTiwhen there is no ambiguity. The generating function
for the distribution of the number of infected links of a randomly chosen node is obtained by incorporating the
probability of disease transmission in the generating function of degree distribution,G(x, y, z,T,Tuv), which
reads

p
j

a
T T

k

b
T T

m

c
T T x y z
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Analogously, we derive the generating functions for the distribution of the number of infected links of a node
reached by following a randomly chosen directed link in the designed direction, as

H x y z T T H T Tx T Ty T T z, , , , 1 , 1 , 1 A.6d uv d uv uv= - + - + - +( ) ( ) ( )

and similarly of a node reached by following a randomly chosen undirected inter-link, as

H x y z T T H T Tx T Ty T T z, , , , 1 , 1 , 1 . A.7u uv u uv uv= - + - + - +( ) ( ) ( )

Anumber of nodes can be infected starting from a single infected nodewithin the directedmultilayer
network. Due to the randomness of disease spreading and the variability of contacts, the size of a disease
outbreak is a random variable. To eventually determine the epidemic threshold, we first investigate the
distribution of the size of an outbreak starting froma single infected node and its corresponding generating
function.

Denote S sPr =[ ]as the probability of the size s of an outbreak starting from a single infected node. The
generating function for the size distribution is defined as g w T T S s w, , Pruv s

s= å =( ) [ ] . To solve the average
size of an outbreak, we further define the generating function for the size of an outbreak starting from anode
reached by a randomly chosen directed link in the designed direction, which denotes as
h w T T S t w, , Pruv t

t= å =( ) [ ] . By adding subscript u or uv to the generating function h(w,T,Tuv), we
distinguish a randomly chosen linkwithin a layer u, u=1, 2, and a randomly chosen interlink uv connecting
layers u and v.

Starting from a single infected node reached by following a randomly chosen intra-link (linkswithin layers),
the possible ways of future transmission are: the disease spreads along an intra-link in the same layer, it spreads
along an inter-link to the opposite layer, it spreads along two intra-links, it spreads along one intra-link and one
inter-link, etc. The transmission diagram is shown infigure A1. To account for all the transmission possibilities,
we construct a recursive relation in the generating functions.Without loss of generality, we assume the disease
spreading starting from an infected node in layer 1, the generating function satisfies a recursive relation

h w T T wH h w T T h w T T T T, , 1, , , , , , , , . A.8uv uv uv uv1 1 1 12=( ) ( ( ) ( ) ) ( )

The generating function for the distribution of the size of an outbreakw along a randomly chosen interlink
satisfies a recursive relation

h w T T wH h w T T h w T T T T, , 1, , , , , , , , . A.9uv uv uv uv12 12 2 21=( ) ( ( ) ( ) ) ( )
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Analogously, the spreading in layer 2 itself satisfies a recursive relation

h w T T wH h w T T h w T T T T, , 1, , , , , , , , A.10uv uv uv uv2 2 2 21=( ) ( ( ) ( ) ) ( )

and

h w T T wH h w T T h w T T T T, , 1, , , , , , , , . A.11uv uv uv uv21 21 1 12=( ) ( ( ) ( ) ) ( )

The recursive relation of the generating functions is shown infigure A1. Similarly, the generating function for
the distribution of the size of an outbreak along a randomly chosen node in layer 1 reads

g w T T wG h w T T h w T T T T, , 1, , , , , , , , . A.12uv uv uv uv1 12=( ) ( ( ) ( ) ) ( )

The average sizeE[S] of an outbreak starting froma randomly chosen node thus can be calculated by

E S s S s
g w T T

w
Pr

d , ,

d
.

s

N
uv

w1 1
å= = =
= =

[ ] [ ] ( )

Performing the derivative with respect tow on both sides of equation (A.8)–(A.12), the derivatives for generating
functions hu, huv and g read

Figure A1.Panel (a) shows the future transmission diagram starting from a single infected node reached by following the direction of a
randomly chosen link. Solid lines represent the disease transmission on directed links and dashed lines depict the bidirectional disease
transmission on undirected links. Panel (b) shows the recursive relation of generating functions for the size distribution of outbreaks
by following four types of linkswhich are (i) intralink in layer 1, (ii) interlink pointing from layer 1 to layer 2, (iii) intralink in layer 2
and (iv) interlink pointing from layer 2 to layer 1 .
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Forw=1, the derivatives of generating functions are simplified as
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where the arguments of a function in the right side of the equation are omitted for readability, for example
G h h T T1, , , , uv

0,1,0
1 12( )( ) is denoted asG(0,1,0) .

Now,we can express the average size E[s] of an outbreak in terms of the generating functions as
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The expression forE[s] goes to infinity when the denominator equals zero, which characterizes a phase transition
from small size of outbreaks with tree-like structure to the occurrence of large-scale outbreaks. Therefore, the
critical equation that determines the epidemic threshold reads
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A.1. Epidemic threshold for ERnetworks
In this subsection, we elaborate on the derivation of epidemic threshold for coupled ERnetworks withDUD
configuration.

DUD:Consider a directedmultilayer network consisting of two directed graphs that are interconnected by
undirected links.We employ Poisson degree distributions as an example to illustrate the derivation of the
epidemic threshold. If both the in-degree and out-degree follow a Poisson distributionwith the same average
degree ká ñ, the generating function for the excess degreeHd follows
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fromwhichwe derive the partial derivative with respect to y evaluated at the point x=y=z=1 as

H k1, 1, 1 . A.19d
0,1,0 = á ñ( ) ( )( )

Since intralinks in the configuration ofDUDare directed, the generation functionH1 for layer 1 is substituted by
Hdwhich reads

H H T T TH1, 1, 1, , 1, 1, 1 . A.20d uv d1
0,1,0 0,1,0 0,1,0= =( ) ( ) ( )( ) ( ) ( )

The derivatives of the generating functionH1 for layer 1, and similarlyH2 for layer 2, thus follow
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As two layers of graphs are connected by undirected or bidirected interlinks, the disease thus can be transmitted
with probabilityTuv from layer 1 to layer 2 and,meanwhile, with probabilityTuv to be transmitted from layer 2 to
layer 1 . The bidirectionality for disease transmission of undirected interlinks is reflected by the generating
functions
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The extra added termTuv incorporates the spreading from layer 2 to layer 1 due to the bi-directionality of an
undirected interlink.With H T T T k1, 1, 1, ,u uv

0,1,0 = á ñ( )( ) for a Poisson degree distribution and
H T T1, 1, 1, , 0u uv

0,0,1 =( )( ) for zero extra undirected interlink (apart from the interlinkwe come along), we
arrive at
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Substituting generating functions (A.21) and (A.23) into the equation (A.17), which characterizes the critical
point of phase transition, we derive the epidemic threshold forDUDas

T
T
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