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Abstract— Difficulties accessing amputee populations has
resulted in the widespread adoption of able-bodied subjects
in virtual environments for the development of myoelectric
prostheses. Factors such as scar tissue, different physiologies
or surgical outcomes, and reduced visual and proprioceptive
feedback, however, may contribute to differences in electromyo-
gram (EMG) patterns between these groups. As such, studies
have consistently found worse results when comparing the
performance of amputee subjects to that of their able-bodied
counterparts under the same conditions. To identify the source
of this performance degradation, a topology-based data analysis
method, called Mapper, was employed to visualize the “shape”
of EMG feature spaces derived from amputee and able-bodied
subjects. The information content of amputee EMG features
was found to differ from those of non-amputee subject in
three ways: 1) the loss of nonlinear complexity and frequency
information, 2) the loss of time-series modeling information, and
3) the segmentation of unique information. The empirical effects
of these differences were visualized by classifying motion classes
using consistent and migratory features from functional feature
groups. In summary, this work characterized inconsistencies in
EMG features between amputee and able-bodied populations
by theoretical means, highlighted the empirical effects when
these are ignored, and proposed a solution for future studies
with able-bodied subjects.

I. INTRODUCTION

Electromyography (EMG) has been used by researchers
and clinicians to extract information related to volitional
movement for use in the control of prostheses [1], electric
power wheelchairs [2], and diagnostic tools [3]. In par-
ticular, pattern recognition based myoelectric control has
been an area of research with clinical influence as early as
the 1960’s. The performance of these systems are highly
dependent on the availability of high quality and robust
features that ensure class-separability with minimal com-
plexity and redundancy with other selected features. The
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state-of-the-art pattern recognition architecture consists of
pre-processing, data segmentation, feature extraction, further
dimensionality reduction, and classification stages for the
recognition of multiple gestures. Each component of this
pipeline has been the subject of much research, resulting in
numerous modifications and introductions of new techniques
that have each incrementally improved in-laboratory and
clinical performance.

The prohibitive cost and lack of availability of research
prostheses, coupled with a lack of access to amputee pop-
ulations, have resulted in many studies resorting to the
testing of able-bodied subjects in virtual environments to
validate controller strategies. Studies that have evaluated both
populations, however, have commonly reported lower system
performance when controlled by amputees than their able-
bodied counterparts [4]. For example, Scheme and Englehart
[1] showed consistent relative trends between the groups
when evaluating different pattern recognition configurations,
but consistently lower amputee performance. Five transradial
amputee subjects experienced higher classification errors
than ten able-bodied subjects despite training with fewer
motion classes (i.e., 7 and 11 classes for amputee and
able-bodied subjects, respectively). This performance margin
was consistent across the eleven state-of-the-art classifiers
employed in the study, with differences between the subject
groups exceeding 10% in some cases.

Nevertheless, myoelectric control systems intended for
amputee populations have regularly been designed and op-
timized using able-bodied subjects, naively translating the
results to amputee subjects assuming the solution applies.
While this has commonly been understood and, largely,
accepted in the field, an explicit investigation of the cred-
ibility of this approach from a design perspective has not
been conducted. In this work, we explore the differences
between EMG features derived from amputee and able-
bodied subjects using a topological data analysis tool called
Mapper that simplifies feature space for better visualization
and understanding. Using this tool, the relationship between
feature types and their categorization into functional groups
can help identify the causes of performance differences
between user groups.

II. METHODOLOGY
A. EMG Data

This analysis used able-bodied and amputee data collected
as part of previous experiments according to the Declaration
of Helsinki. The able-bodied subject group was comprised
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of twenty subjects (10 male, age 21.5±0.97; 10 female,
age 21.2±0.79). Subjects’ right arms were sanitized by an
alcohol solution, then four pairs of Ag/AgCl electrodes were
used to measure the EMG activity of four forearm muscles
during eight hand motions. EMG signals were captured
using a sampling rate of 1024 Hz. For more detail about
the able-bodied data, readers are encouraged to consult [5].
The amputee subject group consisted of nine transradial
amputees, seven of which were traumatic amputees (male,
age 33.7±10.8), and two of which were congenital amputees
(female, age 19, 31). Eight pairs of Ag/AgCl electrodes
were placed around the residual limb of the subjects after
the site had been prepared by alcohol and abrasive skin
preparation gel. EMG signals were captured during six
finger and hand motions using a sampling rate of 2000 Hz.
For more detail about the amputee data collection process,
readers are encouraged to consult [6].

Although different in origin, both datasets were pre-
processed identically to minimize the potential effects of
external factors such as electrical interference or motion ar-
tifacts. Pre-processing consisted of resampling both datasets
to 1000 Hz, bandpass filtering at 20-500 Hz, and removing
power-line interference by notch filtering at 50 Hz. Data were
then segmented into 250 ms frames with 50% overlap (125
ms) for feature extraction.

B. Feature Extraction

Feature extraction is a technique that emphasizes the
discriminating information of an input signal. In this work,
58 state-of-the-art EMG feature extraction methods in time
domain and frequency domain, as described in Table 1 of
[7], were employed to define 81 features that captured most
known characteristics of the surface EMG signal [6], [8], [9].
It is important to note that some feature extraction methods
provided more than one feature values. Afterwards, feature
scaling was applied to ensure a zero-mean unit-variance
distribution of features across all subjects and muscles.

C. Topological Data Analysis

Mapper, a topological simplification technique rooted in
topological data analysis, can be used to extract key insights
from complex, nonlinear, low signal-to-noise, highly vari-
ability data [7]. By producing a controlled simplification
of high-dimensional data, a topological network robust to
perturbations can be created. Here, Mapper was computed
via a four stage pipeline:

(1) The raw EMG data were transformed into a point
cloud. For each feature, feature values from all windows
were combined to represent one entity through a principal
component analysis (PCA) method where the number of
principal components defined 95% of the variance of the fea-
ture vector. For instance, the able-bodied dataset contained
38,400 elements for each feature and was transformed into
28 PCA-dimensional space.

(2) The PCA-dimensional EMG feature point cloud was
transformed by a filter function that preserves a global
characteristic. In Mapper, regions that span the transformed

space define a resolution specified by the number of regions
and the overlap between regions; within this study, these
were chosen to be 3, and 50%, respectively. The Euclidean
distance of the kth-nearest-neighbour (k-NN) filter function,
k = 2, was used as an indicator for feature similarity.

(3) Ward’s hierarchical clustering method was applied
to identify local relationships between features within each
region by deriving mutually exclusive nodes that minimized
the error sum of squares.

(4) Connections were formed between regions indicating
the level of mutual information between nodes using edge
thickness. The resulting nodes and connections formed the
topological simplification of the original data cloud.

Analyses of the topological simplification illuminates the
presence of functional feature groups, where features that
characterize similar information are clustered within the
same node or have high edge thickness with connected
nodes. Specifically, for the k-NN filter function, features
within groups that occupy low k-NN distance have strong
correlation; whereas high k-NN distance indicates weak
correlation. Repetition of this protocol on amputee and able-
bodied datasets provides an environment to profile feature
grouping differences between the populations and identify
areas where the information content of amputee data is
diminished.

D. Classification

To provide empirical support for conclusions determined
during topological data analysis, features from the various
functional groups were used to build classification models.
Additionally, pairs of key features were used to illustrate a
scenario where features have low correlation to one another
in able-bodied subjects (providing unique information); but
are redundant in amputee subjects. For all classification tasks,
support vector machine (SVM) classifiers with a linear kernel
were trained using a 10-fold cross-validation to determine
feature accuracy.

III. RESULTS

The topological networks constructed using Mapper that
represent the information composition of able-bodied and
amputee EMG feature space are shown in Fig 1. The able-
bodied and amputee topological networks, both have a main
structure shaped like the letter Y composed of three arms
connected to a central core, and were comprised of 10 and
9 nodes, respectively. Analysis of the composition of able-
bodied nodes revealed clusters of four functional feature
groups based on information content: (1) signal amplitude
and power, (2) nonlinear complexity and frequency infor-
mation, (3) time-series modeling, and (4) unique features
[7]. Examples of features within these functional groups for
the able-bodied network were the root mean square (RMS)
and mean absolute value (MAV) in the signal amplitude and
power feature group; zero-crossings (ZC), slope sign change
(SSC) and approximate entropy (ApEn) in the nonlinear
complexity and frequency information feature group; autore-
gressive coefficients (AR) and correlation coefficients (CC)
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Fig. 1. Topological feature networks. Node size is proportional to the number of features contained within the node, which is also explicitly given by the
labeled number. Node color is representative of the average filter values, with blue indicative of low distance and green of high distance. (a) able-bodied
subjects and (b) amputee subjects.
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in the time-series modelling feature group; and histogram
(HIST) and time domain power spectral density (TDPSD) in
the unique feature group.

The amputee nodes differed from the able-bodied nodes
in three notable ways; (1) loss of nonlinear complexity
and frequency information, (2) loss of time-series modeling
information, and (3) spatial segmentation of unique informa-
tion. First, the loss of nonlinear complexity and frequency
information was identified by the migration of maximal
fractal length (MFL), myopulse percentage rate (MYOP),
and Willison amplitude (WAMP) features from the nonlinear
complexity and frequency information feature group to signal
amplitude and power feature group. These features rely
on the extraction of frequency characteristics through the
time domain, thus indicating the inability to capture this
information within amputee EMG signatures. Secondly, the
loss of time series modelling information was identified
by the migration of seven features including the first- and
third-order AR and the second- and fourth-order CC, to
the nonlinear complexity and frequency information feature
group. Thirdly, the unique functional feature node location in
the topological network experienced partial translation along
the network, moving a portion of its features distal to the
nonlinear complexity and frequency information region. In
addition to this migration, the clustering of unique functional
group features changed profoundly. The central unique am-
putee node was composed of features like HIST, kurtosis,
and signal-to-motion-artifact ratio. The distal unique amputee
nodes were composed of features like TDPSD, and skewness.

The SVM classification accuracies derived from both
datasets were included for a subset of select features common
to the four functional feature groups in Table I. Within the
table, features are distinguished as migrated (M) when they
changed functional feature groups across populations and

TABLE I
SVM CLASSIFICATION ACCURACY OF KEY EMG FEATURES ON

ABLE-BODIED AND AMPUTEE DATASETS

Feature Able-Bodied (%) Amputee (%) Migrate (M/C)
RMS 85.00 84.86 C
MAV 85.61 85.30 C
ZC 78.16 65.29 C

SSC 71.76 63.70 C
MFL 89.32 85.92 M

MYOP 80.86 75.10 M
WAMP 85.20 75.17 M

AR 79.85 84.84 M
CC 76.97 84.58 M

HIST 75.09 67.27 M
TDPSD 90.48 89.41 C
AR+ZC 86.11 86.17 M+C

constant (C) when they remain within the same functional
feature group.

IV. DISCUSSION

Inspection of the topological networks shows that the
majority of features remain within the same functional
groups between both populations. Without exception, signal
amplitude and power features remained within their func-
tional group, signifying that amplitude information remains
consistently important between able-bodied and amputee
subjects.

An implication the migration of other features, however,
is that the optimal feature sets determined using able-bodied
data through feature selection techniques (like sequential
forward selection) may be sub-optimal for amputee motion
recognition if the selected features provide fundamentally
different information than originally intended. Specifically,
when feature sets are translated across populations, perfor-
mance degradation may be at least partially explained by
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information redundancy caused by feature migration.
From Table I, everything being equal, amputee perfor-

mance should have exceeded able-bodied performance due
to the inclusion of more measurement channels and fewer
motion classes. However, nearly all features show consistent
or worse performance on the amputee dataset. The effect of
information redundancy can be seen in AR+ZC, where able-
bodied features capture time series modelling, and nonlinear
complexity and frequency information, whereas amputee
features capture only nonlinear complexity and frequency
information, resulting in similar performance despite a more
complex classification task (more motion classes, fewer
EMG channels) in the able-bodied case.

While feature migration provides some insight into areas
of performance degradation, these migrations have yet to
be tied to specific physiological factors. The sources of
performance degradation for amputees originate from nu-
merous factors, such as the loss of visual and proprioceptive
feedback beyond the amputation site. Additionally, signals
from traumatic amputees may be hindered by scar tissue,
and post-amputation plasticity of the cortical somatotopic
map [10] introducing inter-subject nerve signal propagation
variability. For congenital amputees neither scar tissue nor
change in cortical somatotopic map are generally a concern;
however, some inter-subject variability in muscle geometry
is still present. In spite of the general knowledge of these
factors, able-bodied subjects have remained the standard
candidate for amputee research for practical reasons.

To develop an appropriate environment for amputee re-
search, we propose two potential solutions. The first is to
overcome the scarcity of amputee research subjects through
widespread collaboration of multiple research groups. Previ-
ously recommended by Resnik et al. [11], a multi-site col-
lection harnessing the geographic dispersion of the amputee
population would be a costly endeavor. However, with sub-
stantial coordination in standardizing aspects like sampling
frequency and electrode sites across the numerous case stud-
ies in future work, a dataset suitable for big data techniques
could be continuously expanded. The second solution is to
develop an adaptive system that could be applied to able-
bodied subject EMG signals to mimic the deviations caused
by morphological changes present in amputee populations.
Signal characteristics have been observed in studies like
Waris et al. [12], where the effect of long-term EMG pattern
recognition performance was compared between able-bodied
and amputee subjects. Specifically, able-bodied subjects ex-
perienced similar performance across 7 days of study; how-
ever, amputee subjects experienced performance degradation
as time between training and testing increased. Addition-
ally, amputee performance was found to be proportional
to residual limb size, indicating an anthropomorphic model
could be beneficial. These findings motivate accompanying
research into the variance of outcomes between amputee and
able-bodied populations under dynamic factor perturbations
like limb position, forearm orientation, contraction intensity,
electrode shift, muscle fatigue, and noise [13].

In conclusion, this study explored the sources of dif-

ferences between control strategies when used by able-
bodied and amputee populations. Specifically, the migration
of EMG features to different functional groupings highlights
meaningful changes in information content between subject
groups, and should be considered during experiments that
use able-bodied subjects exclusively. Taking these differences
into consideration may help inform the design of feature sets
or experimental conditions that better allow for translation
from able-bodied subjects to amputee end users.

REFERENCES

[1] E. Scheme and K. Englehart, “Electromyogram pattern recognition
for control of powered upper-limb prostheses: State of the art and
challenges for clinical use,” Journal of Rehabilitation Research &
Development, vol. 48, no. 6, pp. 643–660, July 2011.

[2] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “A review of
control methods for electric power wheelchairs based on electromyo-
graphy signals with special emphasis on pattern recognition,” IETE
Technical Review, vol. 28, no. 4, pp. 316–326, 2011.

[3] X. Zhang, P. E. Barkhaus, W. Z. Rymer, and P. Zhou, “Machine
learning for supporting diagnosis of amyotrophic lateral sclerosis using
surface electromyogram,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 22, no. 1, pp. 96–103, Jan 2014.

[4] S. M. Wurth and L. J. Hargrove, “A real-time comparison between
direct control, sequential pattern recognition control and simultaneous
pattern recognition control using a fitts’ law style assessment proce-
dure,” Journal of NeuroEngineering and Rehabilitation, vol. 11, no. 1,
p. 91, May 2014.

[5] A. Phinyomark, P. Phukpattaranont, C. Limsakul, and M. Photh-
isonothai, “Electromyography (EMG) signal classification based on
detrended fluctuation analysis,” Fluctuation and Noise Letters, vol. 10,
no. 03, pp. 281–301, 2011.

[6] A. H. Al-Timemy, R. N. Khushaba, G. Bugmann, and J. Escudero,
“Improving the performance against force variation of EMG controlled
multifunctional upper-limb prostheses for transradial amputees,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering,
vol. 24, no. 6, pp. 650–661, June 2016.

[7] A. Phinyomark, R. N. Khushaba, E. Ibáñez-Marcelo, A. Patania,
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