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In this theoretical study, we analyze quantum walks on complex networks, which model network-based

processes ranging from quantum computing to biology and even sociology. Specifically, we analytically

relate the average long-time probability distribution for the location of a unitary quantum walker to that of

a corresponding classical walker. The distribution of the classical walker is proportional to the distribution

of degrees, which measures the connectivity of the network nodes and underlies many methods for

analyzing classical networks, including website ranking. The quantum distribution becomes exactly equal

to the classical distribution when the walk has zero energy, and at higher energies, the difference, the so-

called quantumness, is bounded by the energy of the initial state. We give an example for which the

quantumness equals a Rényi entropy of the normalized weighted degrees, guiding us to regimes for which

the classical degree-dependent result is recovered and others for which quantum effects dominate.
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I. INTRODUCTION

A quantum walk on a network is a fundamental natural
process [1–5] since the quantum dynamics of any discrete
system can be reexpressed and interpreted as a single-
particle quantum walk, which is capable of performing
universal quantum computation [6]. Quantum walks are
also of increasing relevance outside physics. As well as
being a powerful tool for studying transport in quantum
systems [7–10], e.g., the transport of energy through bio-
logical complexes or man-made solar cells, quantum walks
have been proposed as a means of analyzing classical
sociological networks [11–14]. Fully understanding these
phenomena, and others, for networks with nontrivial top-
ologies, requires the merging of the methods of complex
networks and quantum mechanics [15].

While analytical results have been obtained for some
specific topologies, such as starlike [16–18], regular, or
semiregular [19] networks, progress in analyzing quantum
walks on complex networks has largely been based on
numerics, leaving open the possibility that many conclu-
sions are not representative of all regimes. In this article,
we instead discover analytical properties of continuous-
time unitary quantum walks of arbitrary topology that
follow from the topology of the underlying complex
network.

A widely applicable analysis of unitary quantum walks
has remained illusive because of a strong dependence on
the initial state that is exacerbated by the lack of conver-
gence to a steady state (which is not necessarily the case for
open quantum walks [20,21]). To overcome these difficul-
ties and obtain a result that is relevant beyond specific
initial states and walk durations, we consider a quantity
that characterizes each walk over long times and relate this
to another quantity that characterizes each initial state.
Specifically, we characterize a walk by the long-time av-
erage probability distribution of finding the walker at each
node [16,22], which captures all knowledge of the location
of the walker in the absence of knowledge about when the
walk began. The initial state is naturally characterized by
the energy, which gives a total ordering of the initial
states. We show that for low energies the long-time average
probability distribution is equal to the normalized distri-
bution of degrees in the network. Specifically, the energy
bounds the trace distance between the two distributions.
This provides a wide class of quantum walks on complex
networks with an analytically tractable low-energy regime.
Our result is achieved by mapping the properties of the

ground state of a quantum walk to the steady state of a
corresponding classical walk—in particular, a classical
walk whose steady state represents the connectivity of
nodes as determined by their degree. Such walks are
used by search engines, e.g., Google, to rank websites
[23,24]. Our result extends the importance of the concept
of degree from classical systems [25–30], ranging from
the sociological to the ecological [31–33], to quantum
systems [7–10,34–36].
As a case study, we analytically and numerically

study the walk for a range of model complex network
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structures, including the Barabàsi-Albert (BA), Erdős-
Rényi (ER), Watt-Strogatz (WS), and random geometric
(RG) networks. We repeat this analysis for several real-
world networks, specifically, a karate club (KC) social
network [37], the email (EM) network of Universitat
Rovira i Virgili (URV) [38], the C. elegans metabolic
(CE) network [39], and a coauthorship (CA) network of
scientists [40]. To compare these networks, we start from
an evenly distributed initial state. We find an additional
connection to the degrees for this case, namely, that the
quantumness of the walk is itself controlled by the het-
erogeneity of the degrees, which we quantify in terms of
a Rényi entropy.

In Sec. II, we formulate and study the problem analyti-
cally, first for a stochastic walk and then for a quantum
walk. Following this, in Sec. III, we confirm our analytical
results for the quantumness of a quantum walk numerically
and explore the way in which the quantum long-time
average deviates from the corresponding classical distri-
bution. We conclude with a discussion in Sec. IV.

II. WALKS FRAMEWORK

We consider a walker moving on a connected network of
N nodes, with each weighted undirected edge between
nodes i and j described by the element Aij of the off-

diagonal adjacency matrix A. The matrix is symmetric
(Aij ¼ Aji) and has real, non-negative entries. We use

Dirac notation and represent A ¼ P
ijAijjiihjj in terms of

N orthonormal vectors jii.
The network gives rise to both a quantum walk and a

corresponding classical walk. The classical stochastic
walk SðtÞ ¼ e�HCt is generated by the infinitesimal sto-
chastic (see, e.g., Refs. [41–43]) operator HC ¼ LD�1,
where L ¼ D� A is the Laplacian and D ¼ P

idijiihij is
defined by its diagonal elements, the degrees, di ¼P

jAij. For this classical walk, the total rate of leaving

each node is identical. The corresponding unitary quan-
tum walk UðtÞ ¼ e�iHQt is generated by the Hermitian

operator HQ ¼ D�1=2LD�1=2. For this quantum walk, the

energies hijHQjii at each node are identical. The gener-

ators HC and HQ are similar matrices, related by HQ ¼
D�1=2HCD

1=2. This mathematical framework, repre-
sented in Fig. 1, underpins our analysis.

As we will describe in Sec. II A, the long-time behavior
of the classical walk generated by HC has been well
explained in terms of its underlying network properties,
specifically, the degrees di. Our goal in Sec. II B is to
determine the role this concept plays in the quantum
walk generated by HQ.

A. Classical walks

In the classical walk, the probability PiðtÞ of being at
node i at time t evolves as jPðtÞi ¼ SðtÞjPð0Þi, where
jPðtÞi ¼ P

iPiðtÞjii. The stationary states of the walk are
described by eigenvectors j�k

i i of HC with eigenvalues �i

equal to zero. We assume throughout this work that the
walk is connected, i.e., that it is possible to transition
from any node to any other node through some series of
allowed transitions. In this case, there is a unique eigen-
vector j�0i ¼ jPCi with �0 ¼ 0, and �i > 0 for all
i � 0 [41,44–46]. This (normalized) eigenvector jPCi ¼P

iðPCÞijii describes the steady-state distribution

ðPCÞi ¼ diP
j dj

: (1)

In other words, the process is ergodic, and after long
times, the probability of finding the walker at any node i
is given purely by the importance of the degree di of that
node in the network underlying the process.

B. Quantum walks

When considering quantum walks on networks, it is
natural to ask what the long-time behavior of a quantum
walker is [11,15,22,47]. The unitary evolution will not
drive the system towards a steady state. Therefore, to
obtain a static picture, we consider the long-time average
probability ðPQÞi of being on node i, which reads

ðPQÞi ¼ lim
T!1

1

T

Z T

0
dthijUðtÞ�ð0ÞUyðtÞjii: (2)

FIG. 1. Relating stochastic and quantum walks. An undirected
weighted network (graph) G is represented by a symmetric, off-
diagonal and non-negative adjacency matrix A. There is a map-
ping from A (by summing columns) to the diagonal matrix D,
with entries given by the weighted degree of the corresponding
node. The node degrees are proportional to the steady-state
probability distribution of the continuous-time stochastic walk
(with uniform escape rate from each node) generated by HC ¼
LD�1, where L ¼ D� A is the Laplacian. The steady-state
probabilities, represented by the vector j�0i, are proportional
to the node degrees. We generate a corresponding continuous-
time unitary quantum walk by the Hermitian operator HQ ¼
D�1=2LD�1=2, which is similar to HC. The probability of being
in a node in the stochastic stationary state j�0i and the proba-
bility arising from the quantum ground state are equal and
proportional to the node degree.
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For ease of comparison with jPCi, we will also write the
distribution in Eq. (3) as a ket jPQi ¼

P
iðPQÞijii. Unlike

the classical case, Eq. (2) depends on the initial state �ð0Þ.
Interference between subspaces of different energy van-

ishes in the long-time average, so we obtain an expression
for the probability ðPQÞi in terms of the energy-eigenspace

projectors �j of the Hamiltonian HQ,

ðPQÞi ¼
X
j

hij�j�ð0Þ�jjii: (3)

Here, �j ¼ P
kj�k

jih�k
j j projects onto the subspace

spanned by the eigenvalues j�k
ji of HQ, corresponding to

the same eigenvalue �j. In other words, the long-time

average distribution is a mixture of the distributions ob-
tained by projecting the initial state onto each eigenspace.

Because of the similarity transformation HQ ¼
D�1=2HCD

1=2, the classical HC and quantum HQ genera-

tors share the same eigenvalues �i � 0 and have

eigenvectors related by j�k
i i ¼ D�1=2j�k

i i up to their
normalizations. In particular, the unique eigenvectors cor-

responding to �0 ¼ 0 are j�0i ¼ Dj1i and j�0i ¼ D1=2j1i
up to their normalizations, with j1i ¼ P

ijii. Therefore, the
probability vector describing the outcomes of a measure-
ment of the quantum ground-state eigenvector j�0i in
the node basis is the classical steady-state distribution
j�0i ¼ jPCi.

The state vector jPCi appears in Eq. (3) for the quantum
long-time average distribution jPQi with weight

h�0j�ð0Þj�0i. Accordingly, we split the sum in Eq. (3)
into two parts: The first part we call the ‘‘classical term’’
jPCi, and the second we call the ‘‘quantum correction’’
j ~PQi, given as

jPQi ¼ ð1� "ÞjPCi þ "j ~PQi: (4)

The normalized quantum correction j ~PQi ¼
P

ið ~PQÞijii is
given by

ð ~PQÞi ¼ 1

"

X
j�0

hij�j�ð0Þ�jjii; (5)

and the weight

" ¼ 1� h�0j�ð0Þj�0i (6)

that we call quantumness is a function of both the degrees,
through j�0i, and the initial state.

We can think of the parameter ", which controls the
classical-quantum mixture, as the quantumness of jPQi for
the following three reasons. First, the proportion of the
elements in ðPQÞi that corresponds to the quantum correc-

tion is ". Second, the trace distance between the normal-
ized distribution ðPCÞi and the unnormalized distribution
ð1� "ÞðPCÞi forming the classical part of the quantum
result is also ". Last, using a triangle inequality, the trace
distance between the normalized distributions ðPCÞi and
ðPQÞi is upper bounded by 2".

This expression for the quantumness in Eq. (6) enables
us to make some physical statements about a general initial
state. By realizing that j�0i is the ground state of zero
energy �0 ¼ 0 and the gap � ¼ mini�0�i in the energy
spectrum is nonzero for a connected network [41,44–46],
the above implies a bound E=� � " for the quantumness "
of the walk in terms of the energy E ¼ trfHQ�g of the

initial state. The bound is obtained through the following
steps:

E ¼ trfHQ�g ¼
X
j�0

�j trf�j�ð0Þg � �
X
j�0

trf�j�ð0Þg

¼ �ð1� trf�0�ð0ÞgÞ ¼ ��: (7)

The equation above demonstrates that the classical sta-
tionary probability distribution will be recovered for low
energies. A utility of this result is that it connects the long-
time average distribution to a simple physical property of
the walk, the energy, which provides a total ordering of all
possible initial states.

C. Degree distribution and quantumness

Quantumness is a function of both the degrees of the
network nodes and the initial state. To compare the quan-
tumness of different complex networks, we fix the initial
state �ð0Þ. For our example, we choose the even superpo-

sition state �ð0Þ ¼ j�ð0Þih�ð0Þj with j�ð0Þi ¼ j1i= ffiffiffiffi
N

p
.

This state has several appealing properties; for example, it
is invariant under node permutations and independent of
the arrangement of the network.
In this case, the quantumness is given by the expression

" ¼ 1� h ffiffiffi
d

p i2
hdi ; (8)

where hdi ¼ P
idi=N is the average degree and h ffiffiffi

d
p i ¼P

i

ffiffiffiffiffi
di

p
=N is the average root degree of the nodes. As such,

the quantumness depends only on the degree distribution of
the network and increases with network heterogeneity.
This statement is quantified by writing the quantumness

" ¼ 1� 1

N
exp

�
H1=2

��
diP
j dj

���
; (9)

in terms of the Rényi entropy

HqðfpigÞ ¼ 1

1� q
ln

�X
i

pq
i

�
; (10)

where di=
P

jdj ¼ ðPCÞi are the normalized degrees.

To obtain an expression in terms of the (perhaps) more
familiar Shannon entropy H1 [obtained by taking the
q ! 1 limit of Eq. (10)], we recall that the Rényi entropy
is nonincreasing with q [48], which leads to the upper
bound

" � 1� 1

N
exp

�
H1

��
diP
j dj

���
: (11)
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The quantumness approaches this upper bound in the limit
that M nodes have uniform degree di ¼ Mhdi=N and all
others have di ¼ 0. This limit is never achieved unless
M ¼ N and " ¼ 0, e.g., in a regular network. Physically,
" ¼ 0 for a regular network because the symmetry of the
Hamiltonian HQ implies that its eigenvectors are evenly

distributed. The only eigenvector of this type that is posi-
tive is the initial state j�ð0Þi, which because of the Perron-
Frobenius theorem, must also be the ground state j�ð0Þi ¼
j�0i. Therefore, E ¼ 0 and so, from Eq. (7), " ¼ 0.

In another limit, the quantumness takes its maximum
value " ¼ ðN � 2Þ=N � 1 when the degrees of two nodes
are equal and much larger than those of the others (note
that the symmetry of A prevents the degree of a single node
from dominating). In the case that Aij 2 f0; 1g, i.e., the
network underlying the walks is not weighted, the

quantumness of a connected network is more restricted.
It is maximized by a walk based on a star network—where
a single node is connected to all others. For a walk of this

type, " ¼ 1=2� ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
=N � 1=2.

Next, in Sec. III, we confirm the above analytical find-
ings numerically and, at the same time, numerically study
the form of the quantum correction j ~PQi given by Eq. (5)
for a range of complex network topologies.

III. NUMERICAL RESULTS

A. Artificial network topologies

We consider walkers on model networks, each with a
fundamentally different complex network topology. To
start, we consider nonweighted binary networks Aij 2
f0; 1g with N ¼ 500 nodes and average degree hdi � 6. If

FIG. 2. Long-time average probability and degree for nodes in a complex network. Eight networks are considered: BA, ER, WS, RG,
KC, EM, CE, and CA. We plot the classical ðPCÞi (red dashed line) and quantum ðPQÞi (black +) probabilities against the degree di for
every node i. We overlay this with a plot of the average degree distribution PðdÞ against d for each network type (grey solid line), when
known, along with the distribution for the specific realization used (grey +). Alongside the BA network, we also plot ðPQÞi for the
optimized BA (BA-opt) network, in which the internode weights of the BA network are randomly varied in a Monte Carlo algorithm to
reach " ¼ 0:6 (orange x). We do not include a plot of the degree distribution for this network.
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a disconnected network is obtained, only the giant
component is considered. Specifically, we consider the BA
scale-free network [25], the ER [49] and theWS [50] small-
world networks, and the RG (on a square) [51], a network
without the scale-free or small-world characteristics.

The long-time average probability of being on each node
i is plotted against its degree di for a quantum (PQ) and a

stochastic (PC) walk in Fig. 2. The two cases are nearly
identical for these binary networks and the evenly distrib-
uted initial state, illustrating that the quantumness " is
small. We have in fact calculated the quantumness directly
for each network type, yielding " ¼ 0:130, 0.043, 0.016,
and 0.040 for the BA, ER, WS, and RG networks, respec-
tively. Within these, the BA network shows the highest
quantum correction. This result is expected since the BA
network has a more heterogeneous degree distribution. The
WS network, which is well known to have quite uniform
degrees [52], is accordingly the network with the lowest
quantum correction.

For many of the network types, the typical quantumness
can be obtained from the expected (thermodynamic limit)
degree distribution. In the BA network, the degree distri-
bution approximately obeys the continuous probability
density PðdÞ ¼ hdi2=2d3 [25]. Integrating this to find the
moments results in " ¼ 1=9, which is independent of the
average degree hdi and is compatible with our numerics.
The degree distributions of the ER and RG networks both

approximately follow the Poissonian distribution PðdÞ �
hdide�hdi=d! for large networks, which explains the simi-
larity of their quantumness " values. For hdi ¼ 6, we
recover " � 0:046, which is compatible with the values
for the particular networks we generated. From the general
form, calculating the quantumness numerically and per-
forming a best fit, we find that " � �1hdi��2 , with fitting
parameters �1 ¼ 0:429 and �2 ¼ 1:210.

The size of the quantum effects can be enhanced by
introducing heterogeneous weights Aij within a network.

We have done this for a BA network by using several
iterations of the following procedure. A pair of connected
nodes is randomly selected, and then the associated weight
is doubled or halved at random. As anticipated, the effect is
to increase the discrepancy between the classical and
quantum dependence of the long-time average probability
on degree, illustrated in Fig. 2. As the number of iterations
is increased, the quantumness follows the bound given in
Eq. (11), as shown in Fig. 3. In fact, most networks are
found to be close to saturating this bound, especially for
low quantumness.

Further, the energy E ¼ h�0jHQj�0i of the given

initial state has a simple expression E ¼ 1� ð1=NÞ�P
ijAij=

ffiffiffiffiffiffiffiffiffi
didj

p
, which allows us to determine the extent

to which the bound E=� � " is saturated by comparing
the values of E=� and ". We find that for some networks,
e.g., the BA, ER, and WS networks, the bound is quite
restrictive and reasonably saturated. However, for the
other networks, we find that quantumness takes a low

value without being ensured by the bound only (see
Table I).
Finally, our numerical calculations reveal the behavior

of the quantum part ~PQ of the long-time average node

occupation. We find that the quantum part enhances the
long-time average probability of being at nodes with
small degree relative to the classical part. More precisely,

FIG. 3. Quantumness and degree entropy. The value of "
against H1 [Eq. (10)] for the nine different networks considered
in Fig. 2, as well as the random regular (RR) network (a network
with the same degree for each node—in this case, we consider a
regular graph with each node of degree six) and star (ST)
networks (black +). We also plot " and H1 for the network
obtained in several iteration steps, each randomly varying an
internode weight of the BA network, for an increasing number of
iteration steps (bottom to top, grey to orange x). The quantum-
ness " increases and the entropy H1 decreases with step number.
The red dashed line represents the upper bound of Eq. (11).

TABLE I. Quantumness, energy, and gap. We show the quan-
tumness " and its upper bound E=� (the ratio of the energy and
the gap), for each of the nine networks considered in Fig. 2.

Type " E=�

BA 0.1299 0.5583

ER 0.0431 0.1734

RG 0.0396 11.2875

WS 0.0164 0.0846

BA-opt 0.6092 844.9181

KC 0.1204 1.3471

CE 0.2247 4.7622

EM 0.1987 1.5449

CA 0.1138 39.8535
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ð ~PQÞi=ðPCÞi exhibits roughly ðdiÞ��3 scaling, with �3 � 1,
as shown in Fig. 4. Interestingly, there is a correlation
between the amount of enhancement, given by �3, and
the type of complex network. The network types with
smaller diameters (order of increasing diameter: BA, then
ER and WS, then RG) have the smallest �3, and the
quantum parts enhance the low-degree nodes least.
Moreover, the enhancement �3 seems to be quite indepen-
dent of the internode weights. Thus, our numerics show a
qualitatively common quantum effect for a range of com-
plex network types. Quantitative details vary between the
network types but appear robust within each type.

B. Real-world network topologies

The models of networks examined in the previous sub-
section have very specific topologies and, therefore, degree
distributions, and they do not capture the topological prop-
erties of all real-world networks (for details, see Chap. 9 of

Ref. [30]). Therefore, we now study the behavior of the
quantumness and gap for topologies present in a variety of
real-world networks, as described in Sec. I: a karate club
(KC) social network [37], the e-mail (EM) network of URV
University [38], the C. elegans metabolic (CE) network
[39], and a coauthorship (CA) network of scientists [40].
The values of the quantumness and comparison against

the entropic upper bound are shown in Fig. 3. Despite

the variety of topologies, we again find that the quantum-
ness is consistently small. Therefore, the classical and
quantum distributions are very close, as shown in Fig. 2.
Additionally, the quantum correction exhibits the same
generic behavior as observed for the artificial networks;
Fig. 4 shows an enhancement of the probability of being in
nodes of small degree. Interestingly, the quantumness of

real-world networks is appreciably smaller than enforced
by the bound of Eq. (7), with E="� taking large values, as
shown in Table I.

FIG. 4. Quantum effects. The ratio of the quantum ð ~PQÞi and classical ðPCÞi probabilities plotted against degree di (black +) for every
i, for the networks considered in Fig. 2. We also plot the best-fitting curve (red dashed line) to these data of the form ð ~PQÞi=ðPCÞi /
ðdiÞ�3 , whose exponent �3 is given in the plot.
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IV. DISCUSSION

We have found an analytical expression for the average
long-time probability distribution for the location of a low-
energy quantum walker on a complex network of arbitrary
topology. Specifically, we have shown that this is equal to
the distribution arising in the steady state of a correspond-
ing classical walk, equal to the normalized degrees. As
well as providing an analytical solution for low-energy
walks, our result will allow the benchmarking of other
methods for studying quantum walks on complex net-
works, a field in which numerical analysis is typically the
only viable option.

The stationary state of the classical walk generated by
the asymmetrically normalized Laplacian HC is closely
connected to the ranking of nodes within a network, as
used by Google. Therefore, our results indicate that the
long-time average probability distribution of a quantum
walk underHQ, with the energy of the initial state as a free

parameter, could provide a means of interpolating between
classical and quantum [11,12] ranking of real-world net-
works. This idea also connects nicely with the work of
Ref. [14] in which the authors numerically simulate driving
a quantum system to its ground state, with the quantum
system chosen such that its ground state represents the
Google ranking vector.

For the evenly distributed initial state, the quantumness
(loosely speaking, the difference between the classical and
quantum distributions) only depends on the degrees.
Together with our result for the low-energy distribution,
this result shows that the degree distribution can be as
important and illuminating in quantum walks as in their
classical counterparts. Our numerical examples also show
that for remarkably diverse network types, quantum effects
are qualitatively similar; they act to reduce the degree
dependence of the average probability of a walker being
found on a node.

Our presentation focused on a walker state � that is a
time average over a unitary evolution. However, to con-
clude, note that our analytical solution to the expected node
occupation hij�jii holds whenever a significant portion of
� is in the ground-state subspace of HQ, i.e., when � ¼
1��0��0 is small. To see this, one can always useP

j�j ¼ 1 to expand hij�jii ¼ ð1� "ÞðPCÞi þ "ð ~PQÞi.
Similarly, the bound E ¼ trfHQ�g � "� will always

hold [Eq. (7)]. In particular, these results are independent
of whether � is obtained by a unitary or a nonunitary walk.
For example, the steady state � of a walker equilibrating
with a low-temperature bath has a small "; thus, hij�jii is
proportional to the degree.
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