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Designing and controlling particle self-assembly into robust and reli-
able high-performance smart materials often involves crystalline
ordering in curved spaces. Examples include carbon allotropes like
graphene, synthetic materials such as colloidosomes, or biological
systems like lipid membranes, solid domains on vesicles, or viral
capsids. Despite the relevance of these structures, the irreversible
deformation and failure of curved crystals is still mostly unexplored.
Here, we report simulation results of the mechanical deformation of
colloidal crystalline shells that illustrate the subtle role played by
geometrically necessary topological defects in controlling plastic
yielding and failure. We observe plastic deformation attributable
to themigration and reorientation of grain boundary scars, a collective
process assisted by the intermittent proliferation of disclination pairs
or abrupt structural failure induced by crack nucleating at defects.
Our results provide general guiding principles to optimize the
structural and mechanical stability of curved colloidal crystals.

topological defects | curved crystals | fracture | plastic deformation |
plastic avalanches

The morphology of crystals becomes peculiar when self-
assembled on curved shells. For example, the Gaussian curva-

ture of a sphere demands the presence of geometrically necessary
rotational defects (disclinations) such as the 12 pentagons in a
soccer ball. Disclinations can be found in thin shell structures at
different length scales: from the world of carbon allotropes (1) [as
in fullerenes, nanotubes, and graphene (2)] to biological systems
[such as in lipid membranes (3), solid domains on vesicles (4, 5), or
in viral capsids (6–8)], and in synthetic structures such as colloi-
dosomes, colloidal particle shells lying at the interface between
two fluids (9–12). Thin-shell structures are often conceived for
encapsulation purposes at various scales (i.e., as delivery vehicles
of different kinds of cargo, from drugs to flavors and cosmetics)
and arise naturally in biological systems. Examples include crystalline
and glassy colloidosomes, capsules of Janus and patchy particles,
nematic vesicles, and viral capsids.
Theoretical considerations indicate that arranging a colloidal

crystal into a curved geometry involves elastic deformation and
the presence of geometrically necessary disclinations showed
by simulations to be attached to extended grain boundary scars
(13–15), as also confirmed in several experiments (5, 9, 16, 17).
Thus, grain boundary scars are different from standard grain
boundaries in that they have a nonzero disclination charge, which
makes them more costly. Such a complex topological structure is
bound to interfere with the mechanical response of the shell in a
way that is still unclear. Understanding this point, however, is
of utmost importance to control the deformation of many func-
tionalized self-assembled materials (9, 18, 19). Numerical and
theoretical approaches to date are typically based on solving the
elasticity field between grain-boundary scars and deriving equi-
librium particle configurations from the effective free energy of
the interacting defects (15, 20–23). Dynamic models have also been
considered (24) to describe the experimentally observed dislocation
gliding within the grain-boundary scars (5), or to precisely relate
the crystallization dynamics to the surface curvature (25), but no
studies so far have inspected the stress–strain relationships or

the microstructural reorganizations occurring in response to
different protocols of deformation of curved crystals under load.
Here, we study the mechanical response of crystalline colloidal

shells by molecular dynamics simulations. To this end, we con-
sider a crystal made by colloidal particles confined to the surface
of a sphere and then analyze its response to geometrical changes
of this surface. We first simulate an isotropic inflation of the
sphere, which induces tensile stresses in the crystal, leading
eventually to its failure. Geometrically necessary scars act in
this case as weak spots where fracture is nucleated. Next, we
consider shape deformations that modify the local curvature,
such as the squeezing of the sphere. In particular, we discuss
shape deformations that preserve the shell surface area, so that
stretching is not relevant. In this case, the crystal deforms ir-
reversibly and intermittently by reorganizing and reorienting its
grain boundary scar structure. Nevertheless, disclinations and/or
scars do not seem to glide easily through the crystal. We observe
that these defects only move through the reaction with new dislo-
cations that are nucleated in the crystal along the deformation
process. To better understand the motion of disclinations and
scars, we also study the response of the crystal to a localized de-
formation attributable to indentation that leads to the formation of
a hole in the crystal. The newly created hole changes the crystal
topological characteristics and provokes the reorganization of its
existing scar structure. We corroborate that the basic microscopic
mechanism undergoing scar motion always requires the assistance
of new dislocations. All of these peculiar microscopic processes
trigger a heterogeneous response in the form of scale-free plastic
avalanches (26, 27). The scaling properties of plastic deformation
in curved geometries, however, are observed to deviate from the
statistical behavior experimentally and numerically observed for
similar phenomena in flat geometry.

Significance

Substantial experimental and theoretical work has been de-
voted to understand the equilibrium properties of curved crystals,
but these crystals’ stability under mechanical forces remains
largely unexplored and unknown. Understanding how curved
crystals can adapt their shape and resist failure is of fundamental
importance because these structures are at the forefront in the
drive to fabricate new functionalized self-assembled materials.
Here, we address these questions by numerical simulations of
the deformation of colloidal crystalline shells. Our results high-
light the fundamental role played by geometrically necessary
crystal defects in controlling mechanical stability and plastic
rearrangements of the shell.
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Model
We consider a set of N colloidal particles confined to a spherical in-
terface and interacting through a pair-wise Lennard-Jones potential

VLJ = 4e
��σ

r

�12
−
�σ
r

�6
�

r< rc, [1]

where e is a characteristic energy scale, σ a characteristic length
scale, and rc is the cutoff distance that is set equal to rc = 4.5σ. All
of the particles are initially confined to a spherical surface of
radius R by a constraining force field of the form

F=−Kðr−RÞ r
r
, [2]

where K is the spring constant binding the particles to the spher-
ical surface. The potential we use is appropriate to study frac-
ture, a phenomenon that would not occur with a purely repulsive
long-range potential. Nonetheless, such repulsive potentials have
been commonly considered to explore minimal energy configu-
rations or other purely geometrical features (e.g., see ref. 20).
The geometrical frustration introduced by a nonzero Gaussian

curvature makes the perfect triangular crystalline order, char-
acteristic of unbounded flat surfaces, impossible to fit on general
curved surfaces in the absence of rotational topological defects.
In particular, any triangulation of the sphere is required to have
at least 12 fivefold disclinations (i.e., particles with five nearest
neighbors instead of six). We choose the interparticle equilib-
rium distance so as to ideally tessellate the surface of the sphere
S= 4πR2 with N − 12 hexagons and 12 pentagons:

σ = 2−1=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πR2ffiffiffi
3

p ðN − 2Þ

s
  . [3]

This formula corresponds to an Euclidean lattice spacing equal
to the minimum of the pair potential rmin = 21=6σ (i.e., a potential
energy landscape given by N minima placed in an hexagonal
lattice) and is thus only exact for a tessellation of a flat surface.
In our system, small corrections are attributable to curvature but
also to height fluctuations or “buckling,” which is allowed by the
finite stiffness K of the constraining force along the radial di-
rection. To minimize those effects, we choose R=σ � 1 and also
K=Kσ � 1, where Kσ ∝ e=σ2 is the spring constant of the Len-
nard-Jones potential (Eq. 1) in the harmonic approximation.
We consider two main deformation modes inducing either

volumetric or deviatoric strain in the shell by modifying the
constraining force field in Eq. 2. Volumetric strain is increased
by inflating the shell through an isotropic force field:

F=−Kðr−RðtÞÞ r
r
, [4]

where the radius RðtÞ grows in time according to RðtÞ=R0 + tvexp,
and vexp is the expansion velocity.
Deviatoric strain can be induced by changing the shape of the

spherical shell into a prolate spheroid, centered at the origin and
with principal semiaxes R× aðtÞ and R× cðtÞ, keeping either its
volume or its surface constant. This can be achieved by a force field

F=−KðdðtÞ−RÞ r
dðtÞ, [5]

where d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 + y2Þ=a2 + z2=c2

p
, cðtÞ grows in time with a defor-

mation velocity vdef[i.e., cðtÞ= 1+ t  vdef], and aðtÞ varies, so that
the surface or the volume of the spheroid are conserved. Here,
we discuss in detail the case where we preserve the surface area
of the crystal.

Molecular dynamics simulations using the prescriptions dis-
cussed above are performed with LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator: a free, open source Mo-
lecular Dynamics Simulator) (28). We use a microcanonical en-
semble integration scheme (NVE), but we add a viscous damping
force proportional to the velocity of the colloidal particles to drain
the kinetic energy from the system in a controlled fashion. Thus,
the total energy is not conserved, and the motion is almost
overdamped, which is appropriate for best studying colloidal sys-
tems. We use convenient dimensionless units throughout the pa-
per, scaling lengths by σ, times by t0 ≡

ffiffiffiffiffiffiffiffiffiffi
m=K

p
, energies by

e0 ≡Kσ2, stresses by Σ0 ≡K=σ, and velocities by v0 ≡ σ
ffiffiffiffiffiffiffiffiffiffi
K=m

p
,

where K is the spring constant in Eq. 2, σ is the Lennard-Jones
parameter in Eq. 1, and m is the mass of the colloidal particles.

Results
Topological Properties of Crystalline Shells. To study the mechani-
cal response of crystalline colloidal shells by molecular dynamics
simulations, we first prepare the initial spherical shell configu-
ration by either of the two following cases: case 1, placing the
particles at random on the sphere surface, in a very unstable
arrangement, and then letting them evolve and rearrange while
slowly draining the energy until they get frozen in a stationary
configuration; or case 2, placing the particles in a configuration
with icosahedral symmetry where only exactly 12 geometrically
necessary fivefold disclinations are present, a more stable ar-
rangement, and then letting the particles also freely evolve.
In case 1, the equilibrium shell features 12 grain-boundary

scars (i.e., regularly spaced arrays of alternating fivefold and
sevenfold disclinations), exactly as expected for R=σ � 1 (15, 20–
24). In the latter (case 2), the number of particles must be suited
to fit an icosadeltahedral lattice and is chosen as a Caspar and
Klug “magic number” N = 10ðν2 + μ2 + νμÞ+ 2, with μ and ν
nonnegative integers. This procedure allows us to start with low-
energy configurations of particles interacting isotropically on the
surface of a sphere (6, 7). Although this configuration is more
prestressed than the previous one (Fig. S1), where the geometric
frustration is released by the formation of the scars, this configu-
ration can nonetheless remain stable during this initial preparation
phase depending on the value of the ratio K=Kσ, or already relax in
a scarred configuration, with small scars that are clearly centered
on the previous location of the fivefold defects (Fig. S1).

Fracture Mechanics of Inflated Shells. When the shell is expanded
isotropically, the crystal is subject to an increasing volumetric
tensile stress Σm that can be quantified using the trace of the
stress tensor σij. In particular, we calculate the sum

Σm = σxx + σyy + σzz, [6]

evaluated locally at each particle position, and then average over
all particles in the shell to obtain a strain–stress relationship. As
shown in Fig. 1A, the crystal responds elastically to small defor-
mations, and the average internal stress Σm increases linearly. At
larger deformation, the stress increases nonlinearly and then
suddenly drops when the crystal fractures. When we decrease
the strength of the interaction between colloidal particles e,
the shell becomes softer, and consequently failure is more duc-
tile, with smaller stress drops. In the limit of very weak attractive
interactions, deformation is smoother and the stress drop at
failure is very small. Furthermore, scarred configurations fail at
smaller strain values and exhibit lower peak stress intensities
than ordered icosadeltahedral structures (Fig. S2).
For randomly prepared samples (case 1), fracture nucleates

along grain boundary scars (Fig. 1 B and C and Movies S1 and
S2). This behavior is attributable to the fact that grain boundary
scars induce weak spots in the crystal, where cracks are easily
nucleated. For ordered samples (case 2), cracks nucleate instead
in between isolated disclinations and propagate along the lines
connecting nearby defects (Fig. S2). The particular distribution
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of stress fields along these connecting lines favors crack nucle-
ation under these conditions.
We have also repeated our simulations using a number of col-

loidal particles N that is slightly smaller than the optimal number
needed to triangulate the sphere, as dictated by Eq. 3. Hence, the
crystal is initially prestressed, and when it is inflated, it fails at a
smaller strain, or it could even break without inflating if prestress is
above the breakdown point (see the case N = 5,027 in Fig. S3). The
peak stress, however, does not change significantly (Fig. S3).

Plastically Deformed Shells. To further study the role of curvature
in plastic deformation of curved crystals, we now consider the
case in which the Lennard-Jones shell changes its shape into
a prolate ellipsoid. To be precise, we have chosen to squeeze
the spherical shell preserving its surface area, or the mean in-
terparticle distance, to avoid the interference of stretching de-
formations that would tend to crack the Lennard-Jones shell,
as discussed in the previous section. Relevant mechanical in-
formation can be extracted in this case from the components of
the deviatoric stress tensor, for instance, given the symmetry
properties of the prolate ellipsoid, from the zz-component of the
deviatoric stress defined as

Σd = σzz −
1
3
Σm, [7]

which gives us a measure of nonvolumetric distortions of the
body shape. In our analysis, we follow the conventional method

of breaking down the stress tensor into two parts: an isotropic
part (in Eq. 6) describing the pressure associated with a volume
change and a deviatoric part, describing stresses attributable to
shape deformations that do not involve volume changes.
The average stress–strain curve reported in Fig. 2 shows an

initial elastic regime followed by intermittent stress drops, a
typical feature of plastic deformation in micron-scale crystals
(29, 30). In conventional geometries where curvature is not a
relevant ingredient, sudden jumps of the stress under strain-
controlled deformation tests are known to be attributable to
collective irreversible rearrangements of topological defects such
as dislocations and grain boundaries. Dislocations glide easily
through plastically deforming crystals, leaving several traces of
their collective motion, such as sudden stress drops in the stress–
strain relations or striking slip bands at the surface of the deformed
samples.
In our spherical colloidal crystals, the curvature of a sphere

demands the presence of fivefold disclinations or grain-boundary
scars, which are different from standard grain boundaries in that
they have a nonzero disclination charge. More precisely, the total
disclination charge in a spherical crystal should be equal to +12.
One can assign a disclination charge qi to each particle i in the
spherical crystal by counting the number of its nearest neighbors
ci and defining the disclination charge as qi ≡ 6− ci. In this way,
fivefold coordinated particles within a triangular lattice corre-
spond to positive disclinations of topological charge q=+1 and
sevenfold coordinated particles to negative disclinations with q=−1.

Fig. 1. Curved colloidal crystals under isotropic expansion fracture along
defects. (Upper) Volumetric stress Σm, averaged over all particles, as a function
of the relative radius of deformation for different values of the interaction
energy (~e ’ 7.2 10−6 e0). The initial shell configuration (obtained by relaxing a
random configuration of particles) shows topological defects already arranged
in the form of scars. (Lower) Evolution of both the scars configuration and the
per-particle volumetric stress at e=~e. We show three different snapshots cor-
responding to different deformation radii before and after the shell rupture.

Fig. 2. Squeezing a colloidal crystalline sphere leads to plastic deformation
mediated by grain boundary scars reorientation. (Upper) Deviatoric stress Σd,
averaged over all particles, as a function of the ellipsoid semiaxis cðtÞ for
different values of the interaction energy e (~e ’ 1.42 10−6 e0). The ellipsoid is
deformed at constant surface area. (Lower) Evolution of both the scars
configuration and the per-particle deviatoric stress at e=~e. We show several
snapshots corresponding to different values of the ellipsoid semiaxis cðtÞ during
a deformation test at constant surface and driving velocity vdef =1.88v010−7.
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From this point of view, a dislocation is therefore a neutral pair of
near-neighbor oppositely charged disclinations, or a fivefold–
sevenfold pair. Finally, the disclination charge of a scar will
be the sum of individual disclination charges along a defective
5–7–5–⋯ string, and in most of the cases reported here, the
charge is equal to +1, because the scars usually contain an
unbalanced fivefold particle.
We find that by squeezing the sphere, these twelve +1 grain

boundary scars rearrange in a rather intricate manner and
eventually reorient along the spheroid axis. This result is also
shown in Fig. 2 as well as in Movies S3 and S4. By doing so, the
stress fields built up in the crystal loaded under this particular
squeezing mode (i.e., under an effective pressure that changes
the total volume of the ellipsoid at the expense of preserving its
surface area) gets, at least partially, accommodated with the
scars reorientation along the axial direction. In the continuum
mechanics of thin shells under pressure, the so-called circum-
ferential or hoop stress is known to be about twice as big as the
stress in the axial direction (31). This stress is at the base of the
lengthwise ripping of a grilled sausage skin, or of the bursting
observed in long gas pipes. In our case, the reorientation of the
grain boundary scars replaces the rupture of the elastic shell
because the reorientation process can also partly accommodate
this stress component.
Finally, it is also worth emphasizing that isolated disclinations

and/or scars do not glide easily through the crystal in the same
way as dislocations normally do to release stress in conventional
geometries. Indeed, in our study, we unveil, for instance, that scars
only move and reorient through multiple reactions with new dis-
locations that are nucleated in the strained crystal; that is, scars
move by growing longer on one side (i.e., after the attachment of
a new, properly oriented dislocation) and getting shorter on the
opposite one (i.e., after the annihilation of an existing 5–7 pair
with a nearby dislocation of the opposite sign) following this
basic microscopic mechanism that requires the assistance of new

dislocations. We further inspect and discuss this assisted dynamics
performing indentation tests.

Crackling Noise. In Fig. 2, we observe a heterogeneous dynamics
in response to the accumulation of internal elastic stress in the
crystal. The stress drops in Fig. 2 are also referred to as plastic
avalanches (26, 27). Plastic avalanches are widely observed in
plastically deforming crystals in response to the nucleation and
correlated motion of topological defects. Correlated motion is
also at the base of the so-called crackling noise (32), associated
to localized avalanches spreading through the crystalline shell.
An example of the spatiotemporal intermittency we observe in
our simulations is reported in Fig. 3, where we show the averaged
root mean square velocity of the colloidal particles and where
some of the crackling noise peaks are shown together with the
corresponding velocity maps.
To quantify the statistics of crackling noise in curved crystal-

line shells, we measure the distribution of avalanche sizes, de-
fined as the area under each pulse. This is done in practice by
defining a small threshold vc, and considering as a pulse any
sequence of time points where the velocity hjvji> vc. The ava-
lanche size is defined as

s≡
Zt2
t1

dthjvðtÞji, [8]

where t1 and t2 are the times where the pulse starts and ends,
respectively. The distribution of avalanche sizes are reported in
Fig. 4 as a function of the driving rate vdef. The threshold vc has
to be larger than the velocity background because of numerical
noise but small enough to record the signal. In the present case, a
good choice is vc = 10vdef.
As expected in general for crackling noise, the distribution cru-

cially depends on the deformation rate. For slow deformation,
we find that the avalanche distribution decays as a power law,
PðsÞ∼ s−τ, with an exponent close to τ= 2. This value is different
from the one measured in flat geometry through 2D dislocation
dynamics (33) and colloidal crystal simulations (34), which yield
τ ’ 1. This finding suggests that the shell curvature introduces
peculiar properties to the dynamics of plastic avalanches. Indeed,
isolated disclinations and/or scars do not seem to move unless
assisted by new dislocations, and dislocations themselves do not
seem to glide over long distances after nucleating and unbinding on
the surface of a spherical shell, because they mainly react with
existing scars. Thus, in curved geometries, most of the plastic

Fig. 3. Plastic deformation is intermittent. (Upper) Averaged root mean
square velocity for the case e=~e as a function of the spheroid deformation
parameter cðtÞ displays bursts of activity (or avalanches) in correspondence
with dislocations rearrangements. (Lower) The magnitude of the per-particle
velocity, here displayed at several time steps for a deformation test at
constant surface and driving velocity vdef = 1.88 10−7 v0, helps to visualize the
widespread dynamics of avalanches during deformation.

Fig. 4. Distribution of avalanche sizes displays scaling. Distribution of ava-
lanche sizes s for different driving rates vdef. The scaling behavior is observed
at low driving rates.
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avalanches are triggered by much shorter scale events such as the
nucleation of dislocation dipoles, tetramers, etc., dislocation reac-
tions, and limited glide flow, rather than to the long range corre-
lated glide of several dislocations. One could then anticipate that
the size of these avalanches could not span so many orders of
magnitude as in conventional geometries, where both the number
as well as the displacements of topological defects are not so
limited. A natural consequence of this observation is a larger ex-
ponent value characterizing the decay of the size distribution of
these plastic events.

Indentation of a Spherical Shell of Repulsive Particles. To better
understand the microscopic rearrangements occurring in a plas-
tically deforming shell, we inspect a simple situation mimicking
an indentation process. To this end, we approach quasistatically
a linearly repulsive planar wall toward the particle shell. Parti-
cles remain essentially confined to the spherical template, but
as stated in Model, deviations from the template are allowed for
a cost. Furthermore, we do not take into account interactions
between the repulsive wall and the spherical template, which is
supposed to remain intact along the process. In this case, in-
dentation leads to accumulation of stress until a crack opens up
in the shell, near the indentation area, after achieving a thresh-
old stress value (Fig. S4).
If we consider colloidal particles that interact through a pair-

wise repulsive potential of the form V ðrÞ∼ 1=r, we favor plastic
deformation, as opposed to the abrupt cracking near the indented
zone that we observe in Lennard-Jones shells (Fig. S4). Such po-
tential does not have a characteristic energy scale associated,
and colloidal particles should not overcome a threshold energy
value to start receding over the surface. We observe a smooth
crossover from the initial elastic regime to a cavitation regime
once the particles near the pushing wall have displaced them-
selves a distance of the order of the lattice spacing. The gradual
opening of a hole on the spherical shell allows visualization of
the rearrangement of the topological defect structure.
We consider N particles initially located at the interface of a

perfect spherical drop in a scarred low-energy particle configu-
ration (see the single snapshot illustrated in Fig. 5A for a crystal
consisting of N = 612 particles). We model the short-range re-
pulsion attributable to the planar wall with a potential of the
form VrðdwÞ=V0d−12w , with dw being the dimensionless separa-
tion of each particle from the repulsive wall. In this initial
configuration, we can identify 12 positive disclinations in excess
on the crystal, as expected. Fig. 5A shows six positively charged

disclination strings or scars on the visible hemisphere. Five- and
sevenfold sites are colored in red and green, respectively.
In general, the cavitation of the shell changes the topology of

the crystal: according to the Euler theorem, the number of q=+1
excess disclinations needed to triangulate a surface is equal to
n= 6χ, where χ is the Euler characteristics, a topological in-
variant of the surface. In particular, χ = 2 for a closed surface
(e.g., a sphere) corresponding to n= 12 excess disclinations and
χ = 1 for an open surface (e.g., a sphere with a hole), so that n= 6
excess disclinations are needed. Hence, once the hole is created,
the Euler theorem then implies that only 6 excess disclinations
are necessary instead of the 12 originally present in the crystal.
Our goal in this section is to investigate the dynamic reorgani-
zations undergoing this process. Notice that the definition of
disclination charge for particles at the edge of the crystal qs has
to be changed to qs ≡ 4− cs, because 4 is the regular coordination
number for a particle at the edge of a perfect triangular lattice.
Hence, positive disclinations correspond to threefold coordinated
particles at the lattice edge and negative disclinations to fivefold
coordinated particles.
Having this in mind, we see that indeed fivefold coordinated

particles located at the edge of the cavity, each contributing a
disclination charge of qs =−1, compensate the unnecessary ex-
cess disclination charge in the presence of a hole. To be precise,
Fig. 5B shows four negatively charged disclinations and a nega-
tively charged disclination scar, which compensate the unnecessary
five positively charged scars still present in the visible hemisphere.
Ideally, these five pairs of opposite-charged disclination structures
should annihilate to reduce their energy cost, but disclinations
themselves do no seem to be able to flow in the crystal. Instead,
we observe a new physical mechanism that allows the pairs
eventual annihilation. Disclination scars grow whenever new
dislocations, which are nucleated in pairs of opposite Burgers
vectors (dislocation dipoles such as the one in Fig. 5B), are able
to attach to the existing disclination structures. For instance, the
nucleation of new dislocations gives rise to the new −1 scar that
emanates from a qs =−2 negative disclination located at the edge
of the void in Fig. 5B, the region under higher stress concen-
tration where dislocation nucleation is thus more favorable.
Moreover, the growth of this scar also represents the flow of the
excess disclination charge, which can now be located at the other
end of the growing scar.
The snapshot in Fig. 5C shows the appearance of two neutral

grain boundaries ensuing this delocalization process, which
allows the annihilation of two pairs of oppositely charge dis-
clination structures. A neutral grain boundary does not have a

Fig. 5. The indentation of a spherical shell leads to the rearrangement of disclination structures. The evolution of the morphology of an indented crystalline
spherical shell containing N= 612 particles as a function of time. As a repulsive flat tip approaches the interface, a hole opens up on the shell. (A) Before the
cavitation of the curved crystalline structure, six disclination structures are present on the visible hemisphere. (B) After the cavitation of the shell, disclination
charges of the opposite sign appear at the edge of the hole to fix the number of geometrically necessary defects under the new topological conditions.
(C) The annihilation of pairs of opposite charged disclinations occurs progressively in time with the delocalization of these defects into neutral grain boundaries.
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net disclination charge, and therefore, a grain boundary is a much
less energy-costly topological defect, which could also be gradually
annihilated through dislocation reactions at a later stage. The
remaining three negatively charged disclinations near the void in
Fig. 5C have also attached a new dislocation, and by doing so, they
have moved from their previous position. In general, we observe
that this process is indeed the microscopic mechanism by which
disclinations and scars move and rearrange through the crystal: by
multiple reactions with newly nucleated dislocations, which in turn
only occurs if enough internal shear stress has been accumulated.

Discussion
In this paper, we have shown that the internal stress built up in a
curved crystalline particle shell under load can give rise to fracture
and plastic phenomena that, on the one hand, reflect the specificity
of the chosen geometry, mainly because geometrically necessary
rotational topological defects represent the key actors of irrevers-
ible deformation, but, on the other hand, exhibit features that are
similar to those observed in flat geometries such as stress drops,
crackling noise, and defect-induced crack nucleation.
In bulk plasticity, dislocation nucleation and motion gener-

ally serve to accommodate and release elastic shear stress ac-
cumulated in deformed crystals. The complexity of this process
changes according to the scale of the crystal, to its microstructural
features, and to the details of the deformation protocol. Once
formed, dislocation dipoles usually unbind and dislocations glide
parallel to their Burgers vector in opposite directions, giving rise
to conspicuous stress drops in the stress–strain curves or plastic
avalanches. For instance, in deformed flat colloidal crystals,
one observes the motion of isolated dislocations reacting with
grain boundaries (35). Likewise, in curved geometry, one ex-
pects that internal shear stress should be, at least partly, re-
leased with the migration of disclinations and dislocations over

the crystalline interface. However, how is this motion taking
place at the microscale?
The curvature of a sphere demands the presence of twelve five-

fold disclinations in excess, usually in the form of grain-boundary
scars, which have a net disclination charge. The enormous cost of
disclinations and scars in a planar crystal in equilibrium conditions
prevents their formation in flat geometries. Our results show that
plastic deformation of curved crystals occurs through the rear-
rangement of these scars. In particular, we observe that scars
rearrange intermittently through the assistance of new disloca-
tions, which enable to modify their length and to reorient them
through multiple reactions. Moreover, dislocations do not glide
over long distances on curved crystal shells before such reactions
occur. We thus observe plastic avalanches in curved shells un-
dergoing irreversible deformation, but the size of these avalanches
does not span as many orders of magnitude as in conventional
geometries. We report a larger value for the exponent τ charac-
terizing the power law decay of the size distribution of these plastic
events, which indeed implies that large avalanches are more rare.
This work could stimulate further study of the out-of-equi-

librium dynamics of topological defects in crystalline curved
shells, and, as happens in bulk structures, it would be worthwhile
investigating if crystalline shells share some characteristics with
similar but amorphous assemblies of particles (36). Our results
could be relevant to understand the mechanics of capsules made
by active colloidal Janus particles (19), topologically constrained
active structures (37), and other biostructured soft materials.
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