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In the case of tuberculosis (TB), the capabilities of epidemic models
to produce quantitatively robust forecasts are limited by multiple
hindrances. Among these, understanding the complex relationship
between disease epidemiology and populations’ age structure has
been highlighted as one of the most relevant. TB dynamics depends
on age in multiple ways, some of which are traditionally simplified
in the literature. That is the case of the heterogeneities in contact
intensity among different age strata that are common to all air-
borne diseases, but still typically neglected in the TB case. Further-
more, while demographic structures of many countries are rapidly
aging, demographic dynamics are pervasively ignored when mod-
eling TB spreading. In this work, we present a TB transmission
model that incorporates country-specific demographic prospects
and empirical contact data around a data-driven description of TB
dynamics. Using our model, we find that the inclusion of demo-
graphic dynamics is followed by an increase in the burden lev-
els predicted for the next decades in the areas of the world that
are most hit by the disease today. Similarly, we show that consid-
ering realistic patterns of contacts among individuals in different
age strata reshapes the transmission patterns reproduced by the
models, a result with potential implications for the design of age-
focused epidemiological interventions.
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The control of tuberculosis (TB) has been one of the largest
endeavors of public health authorities ever since the bac-

terium that causes it—Mycobacterium tuberculosis—was discov-
ered (1). Recently, the development of global strategies for diag-
nosis and treatment optimization has led to TB burden decay
worldwide (2), to the point that the End TB Strategy has allowed
the scientific community to think that its eradication before 2050
is possible (3, 4). Nonetheless, such a goal is still far away, and TB
remains a major public health problem (5–7), being responsible
for 1.7 million deaths worldwide in 2016 (4). These dramatic data
evidence the need for new epidemiological measures and phar-
macological resources (8). In the task of forecasting the potential
impacts of such new interventions, epidemiological models of TB
transmission constitute a fundamental resource to assist decision
making by public health agents (9).

Among the various limitations that TB modeling has to face
in this context, achieving a proper description of the multiple
ways whereby TB dynamics couple with populations’ age struc-
ture has been identified as one of the most critical (5, 10). For
example, patients’ age is strongly correlated to the type of dis-
ease that they tend to develop more often, as well as to the
probability of developing active TB immediately after infection
[usually called “fast progression” (8)]. This way, while a larger

fraction of children younger than 15 y of age develop noninfec-
tious forms of extrapulmonary TB with respect to adults [25% vs.
10% (8, 11, 12)], the risk of fast progression is larger in infants
(50% in the first year of life), then decays (20–30% for ages
1–2 y, 5% for 2–5 y, and 2% for 5–10 y), and increases again in
adults (10–20% for individuals older than 10 y) (13). Addition-
ally, transmission routes of TB, being a paradigmatic airborne
disease, are expected to show significant variations in intensity
across age (14, 15). The empirical characterization of these con-
tact structures constitutes an intense focus of research in data-
driven epidemiology of airborne diseases (16), and their influ-
ence on the transmission dynamics of diseases like influenza has
been recently explored with relevant implications (17, 18).

Thus, if subjects’ age modifies the disease-associated risks at
the level of single individuals, it is likely that changes in the
demographic age structure at the population level will impact TB
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burden projections. This is mainly due to the slow dynamics that
are characteristic of TB, which forces modelers to describe the
evolution of the disease during long periods of time, typically
spanning several decades. These timescales are rather incom-
patible with the assumption of constant demographic structures,
at least presently, since worldwide human populations are pre-
sumed to age from the current median of 30 y old to 37 y
old in 2050 (19). And yet, achieving a sensible description of
TB transmission able to capture the effects of time-evolving
demographic structures remains an elusive goal in TB model-
ing. Demographic dynamics are traditionally neglected in TB
transmission models, the same way that contact structures are as-
sumed to be homogeneous across age groups (8, 20, 21).

In this work, we incorporate empirical data on demographic
dynamics and contact patterns into classical formulations of
TB spreading models, thus unlocking less biased descriptions
of the spreading dynamics of the disease. To this end, we
present a TB spreading model (Fig. 1A) whereby we provide
a data-driven description of TB transmission that presents two
main differences with respect to previous approaches. First,
our model incorporates demographic forecasts by the United
Nations (UN) population division (19) (Fig. 1B) to describe
the coupling between demographic evolution and TB dynamics.
Second, the model integrates region-wise empirical data about
age-dependent mixing patterns adapted from survey-based stud-
ies conducted in Africa and Asia (22–26) (Fig. 1C), instead of

assuming that all of the individuals in a population interact
homogeneously, as traditionally considered in the literature (8,
20, 21).

Upon model calibration in some of the countries most affected
by the disease in 2015 and subsequent simulation of TB trans-
mission dynamics up to 2050 (Fig. 1D), we scrutinize the impli-
cations derived from integrating these pieces of empirical data
within our model and discuss their impact on the forecasts pro-
duced, at the level of both aggregated incidence and mortality
rates and their distributions across age strata. Specifically, we
quantify the effects of populations’ aging on predicted incidence
rates until 2050, as well as the impact on the age distribution of
the disease burden that emanates from introducing empiric con-
tact data into the models. Furthermore, we quantify the sensitiv-
ity of these effects to the different model inputs and assess their
statistical significance and robustness under a series of alterna-
tive modeling scenarios.

Results
Baseline Forecasts of TB Incidence and Mortality. To illustrate the
ability of our method to reproduce current epidemic trends in
different scenarios, the model was applied to describe the TB
epidemics in India, Indonesia, Nigeria, and Ethiopia (Fig. 2).
These countries, which accumulated as much as ∼40% of the
total TB burden worldwide in 2015, were selected because of
their different temporal evolution trends, current and projected
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C

Fig. 1. Model description. (A) Natural history scheme of the TB spreading model. D, (untreated) disease; F, failed recovery; L, latent; R, recovered; S, suscep-
tible; T, (treated) disease. Types of TB considered: np, nonpulmonary; p+, pulmonary smear positive; p–, pulmonary smear negative. Treatment outcomes:
F, treatment failure; RD, default (abandon of treatment); RN, natural recovery; RS, successful treatment. (B) Scheme of the coupling between TB dynamics
and demographic evolution. The transmission model summarized in A describes the evolution of the disease in each age group, including the removal of
individuals due to TB mortality (curved arrows). The evolution of the total volume of each age stratum is corrected (bidirectional arrows: TB-unrelated pop-
ulation variations) to make the demographic pyramid evolve according UN prospects. (C) Empirical contact patterns used for African and Asian countries.
(D) Data flow scheme. Epidemiological parameters, contact matrices, and demographic prospects are used to calibrate the model, with the goal of repro-
ducing observed TB incidence and mortality trends during the period 2000–2015. As a result of model calibration, scaled infectiousness, diagnosis rates,
and initial conditions of the system in 2000 are inferred. These elements are then used (along with epidemiological parameters, contacts, and demographic
data) to extend model forecasts up to 2050. For further details regarding model formulation and calibration, the reader is referred to SI Appendix.
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Fig. 2. Population structure at 2000 and 2050 (projection) and annual inci-
dence and mortality rates predicted by our model in 2000–2050 for Ethiopia,
Nigeria, India, and Indonesia. Colored areas represent 95% confidence inter-
vals. The contribution to overall uncertainty that stems from each of the
four types of input data is disclosed. (Contributions are cumulative.)

demographic profiles, and geographic locations. Remarkably,
our model does not predict, in general, a sustained decrease in
TB burden for the decades to come in these cases, whose inci-
dence rates (per million habitants and year) range between 1,246
(524–2,124, 95% CI) (Ethiopia) and 3,669 (2,348–5,247, 95% CI)
(Indonesia), in 2050. Additionally, we extended these analyses
to the top 12 countries suffering from the highest absolute TB
burden levels in 2015, producing satisfactory fits in all cases (SI
Appendix, Fig. S1 and Table S1).

During simulations, our model produced TB detection ratios
(TB cases diagnosed divided by new incident cases) that strongly
correlate to the notification rates across countries reported by
WHO (27) (SI Appendix, Fig. S2; Pearson correlation r = 0.96,
P = 4.3E-6). Model-based case detection ratios are systemati-
cally larger than notification rates, which is an expected result,
congruent with the fact that a fraction of all diagnosed cases is
not reported to the WHO surveying system.

Regarding confidence intervals, colored areas in Fig. 1 quan-
tify the contributions to global uncertainty that stem from
the different types of input data processed by the model.

These include epidemiological parameters (purple), demo-
graphic data (orange), contact patterns (green), and, most
importantly, WHO-burden estimations (blue). Complementar-
ily, in SI Appendix, Fig. S3, the individual contribution of each
epidemiological parameter is further disclosed in an exhaus-
tive sensitivity analysis. Of all of the different individual sources
of uncertainty that could impact the model’s forecasts, current
WHO estimates for TB burden levels are the only ones that
introduce more than a 15% deviation with respect to central esti-
mates [the uncertainties in total number of TB cases projected in
2000–2050 that are propagated from WHO data span from 36%
(Ethiopia, lower limit) to 92% (Nigeria, upper limit) with respect
to central expectations].

Effects of Populations Aging on Aggregated TB Forecasts. As can be
deduced from the demographic pyramids in SI Appendix, Fig. S1,
all countries analyzed in this work are experiencing population
aging to some extent, consistent with the overall trend that is
forecasted for global human populations during the same period
(19). The four countries selected in Fig. 2 lie at different points of
the demographic transition by the beginning of the period under
analysis (year 2000) and are expected to evolve at different paces
into more or less aged populations by 2050.

To isolate the influence of populations aging on model
outcomes, we compared our model with a simplified version
where demographic evolution is neglected as done in previous
approaches (8, 20, 21) (reduced model 1). In this reduced model
the demographic structures are taken from their initial config-
uration in 2000 and remain static until 2050. Our results show
that the demographic evolution leads to a systematic and sig-
nificant increase in the predicted incidence rates, which is vari-
able in size across countries [Fig. 3A: relative increase in inci-
dence in 2050: full vs. reduced model 1: India, 39.6% (13.9–63.6,
95% CI); Indonesia, 23.4% (7.9–36.5, 95% CI); Ethiopia, 56.0%
(29.2–62.1, 95% CI); Nigeria, 34.5% (9.1–42.9, 95% CI); see also
SI Appendix, Figs. S1 and S4 and Table S2 for equivalent results
in other countries]. Furthermore, the relative variation between
incidence forecasts obtained from the full and the reduced model
by 2050 significantly correlates with the intensity of the aging
shift, as given by the change in the fraction of adults (age >15 y)
in 2000–2050 (Fig. 3B, Pearson correlation r = 0.66, P = 0.02).
This is indeed a natural consequence, since adults are burdened
with higher incidence rates than children, and thus, populations’
aging implies a relative increase of the demographic strata that
is most affected by the disease (adults), in detriment of children,
among whom TB incidence is lower (Fig. 3C).

Next, we built a series of synthetic demographic evolutions
to simulate different scenarios (Fig. 3D). To this end, we used
three pivotal examples extracted from actual cases of popula-
tions featuring young, triangular demographic pyramids (Fig. 3D,
stage i, extracted from Ethiopia in 2000) and aged, inverted pyra-
mids (stage v, extracted from China, 2050), as well as interme-
diate situations (stage iii, extracted from Indonesia, 2000, and
stages ii and iv, built upon linear interpolation). Making use of
these pivotal populations, we built synthetic transitions among
them occurring in the period 2000–2050, which we then inte-
grate in our TB model, in the four countries analyzed, instead
of their own real demographic projections. As we can see in
Fig. 3D, population aging appears associated with increased inci-
dence rates, while eventual transitions toward younger popula-
tions would cause incidence forecasts to decline faster.

To further validate the general character of these results,
we performed a series of robustness tests in scenarios that
go beyond the assumptions made in our modeling framework.
These include comparing full and reduced model 1 under the
assumption of highly biased input data (i.e., burden data depart-
ing significantly from WHO uncertainty estimates; SI Appendix,
Fig. S5), swapping contact structures across continents (SI
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Fig. 3. Effects of demographic dynamics on model forecasts. (A) Incidence rates from 2000–2050 obtained from the full model (red) and reduced model
1 (constant demography, blue). Relative variation in incidence in 2050: full vs. reduced model 1: India, 39.6% (13.9–63.6, 95% CI); Indonesia, 23.4% (7.9–
36.6, 95% CI); Ethiopia, 56.0% (29.2–62.1, 95% CI); Nigeria, 34.5% (9.1–42.9, 95% CI). (B) Relative variation of aggregated incidence at 2050 for the top 12
countries with highest absolute TB burden in 2015 vs. variation in the fraction of adults in the population during the period 2000–2050. In all countries
but Tanzania and The Philippines, in gray, the variations in incidence are significant at a nominal P = 0.05. (C) Age-specific average incidence rate of
TB vs. variation of age-strata population density in 2000–2050. Older individuals are, at the same time, those affected by higher TB incidence rates and
those whose presence in the population is increasing as a result of populations’ aging. (D) Incidence projections for synthetic scenarios of demographic
evolution, including transition toward younger populations (iii–i and iii–ii), static populations (iii remaining constant), and realistic transitions representing
populations’ aging (from iii to iv and from iii to v). Pivotal demographic structures corresponding to stages i, iii, and v are taken from actual examples
(Ethiopia in 2000, Indonesia in 2000, and China in 2050) and normalized to a common total population to rule out hypothetical system volume effects.
Stages ii and iv are obtained upon linear interpolation. In each panel, the demographic evolution of each country is substituted by these synthetic scenarios:
demographic transitions that go from stage iii in 2000 to different ending points in 2050. Colors in incidence series correspond to those in the arrows below,
indicating the respective demographic transitions. Model calibration is repeated in each case.

Appendix, Fig. S6), and interrupting the time evolution of the
fitted parameters after 2015 (Materials and Methods and SI
Appendix, Fig. S7) as well as dispensing with the independent cal-
ibration of the reduced model to rule out the possibility of these
differences arising from technical artifacts during model calibra-
tion (SI Appendix, Fig. S8). Remarkably, under all these alterna-
tive scenarios, the comparison between full and reduced model
remains valid.

Collectively, our results show that ignoring the populations
aging within TB spreading models generates forecasts of aggre-
gated burden that are systematically and significantly lower than
those obtained when this ingredient is taken into account.

Effects of Aging on Age-Specific Burden Levels. Next, we interro-
gated whether the effect of aging on TB burden estimates is only
due to a relative increase of the age strata more hit by the dis-
ease (i.e., adults) or whether, in turn, significant increases in the
incidence rates within age groups can be identified.

In Fig. 4, we show, for one example per continent—India and
Ethiopia—the infection matrices between age groups described
by each model and their difference. The entry (a, a ′) of these
matrices represents the predicted number of infections (in 2050)
from age-group a (infection source) to a ′ (infection target) per
year per million people in group a ′. For both countries, the dif-
ferences between full and reduced model 1 point to a system-
atic underestimation of the number of infection events caused
by adults as a consequence of ignoring demographic dynam-
ics, as well as an overestimation—only appreciable in India—of
infections caused by children during the period under analysis.
Furthermore, once contagions are aggregated across infection
sources within each target age group (Fig. 4, age-specific infec-
tion rates histograms, built as column-wise marginal sums of the
infection matrices), significant differences between age-specific
infection rates arise in both countries, mainly in adult age strata,
where the full model predicts systematically larger incidence
levels than the reduced model 1.

4 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1720606115 Arregui et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1720606115


M
ED

IC
A

L
SC

IE
N

CE
S

Fig. 4. Age-to-age infection rate matrices (number of infections from age
group a to age group a′ per year per million people in target age-group
a′) and age-specific infection and incidence rates forecasted in 2050 for
India and Ethiopia (number of contagions or new active TB cases, respec-
tively) per year and million individuals in a given age group. (Left col-
umn) The forecasts derive from the full model. (Center column) The fore-
casts derive from reduced model 1 (constant demography). (Right column)
The difference (full model minus reduced model 1) of these three observ-
ables: infection matrices, age-specific infection rates, and age-specific inci-
dence rates. Differences in incidence and infection rates are shown in
gray when they are not statistically significant. Neglecting demographic
dynamics appears associated to an underestimation of infections caused
by adults in both countries and an overestimation of infections from chil-
dren, mostly in India (infection matrices). At the level of infection/incidence
rates (histograms), the full model produces larger age-specific infection
and incidence rates than the reduced version, more intensely among
adults.

This ultimately translates into an increase in age-specific inci-
dence rates of active TB cases (Fig. 4, age-specific incidence his-
tograms), which can be easily interpreted by attending to the
larger probabilities of developing the most infectious forms of
pulmonary TB that adults experience with respect to children
(8). Adults, whose proportion increases in the system as a result
of considering populations’ aging, constitute not only the part

of the demographic pyramid most hit by the disease, but also
the one that contributes the most to overall spreading. There-
fore, including populations’ aging on model dynamics causes an
increase not just in the aggregated burden levels across all age
groups, but also within age strata.

Effect of Contact Pattern Heterogeneities. After discussing the
impact that demographic dynamics have on model outcomes, we
inspected what the effects are of including contact patterns in
the TB model forecasts, either at the level of aggregated rates
or within age-specific strata. To do so, we built a second reduced
model where the empirical contact matrices estimated from sur-
vey studies conducted in Africa and Asia (22–26) are substituted
by the classical hypothesis of contacts homogeneity (reduced
model 2; see Materials and Methods and SI Appendix, section 2.3
for further details).

In Fig. 5, we represent the infection matrices that derive from
the full and the reduced model 2 for India and Ethiopia in
2050. Clearly, empirical contact patterns reshape the distribution
of contagions among age groups, giving a larger importance to
assortative infections that take place among individuals of sim-
ilar ages—specifically between adolescents and young adults—
while penalizing infections from children to adults or vice versa.
As a result, in this case, the infection and incidence rates of TB
among children are higher in the reduced model, while the full
model predicts more infection and disease burden among adults,
with slight variations between the two countries that are due to
the different contact data used in each case in the full model. In
all of the countries analyzed, the opposite directions of the dif-
ferences between the full and the reduced model that are found
in children vs. adults tend to compensate each other. This results
in similar global incidence rates produced by both models (SI
Appendix, Fig. S9).

Once we showed that empirical contact patterns adapted from
both African and Asian studies produce results that depart sig-
nificantly from those obtained assuming homogeneous mixing,
we interrogated whether the differences between the contact
matrices used in both continents (Fig. 1C, for example) are
significant enough to translate into differences in TB burden
forecasts. To do this we conducted an additional test in one
country—Ethiopia—in which we evaluated the differences in the
TB burden distribution across ages that emanate from using
contact data adapted from African, Asian, and, as a control,
European studies. The results of this analysis are presented in
SI Appendix, Fig. S10, and evidence that the different contact
structures used in this work, derived from different empirical
studies, introduce significant differences in the distribution of
TB incidence. This emphasizes the importance of the estima-
tion of high-quality, country-specific data about contact patterns
for the production of robust epidemic forecasts in age-structured
models.

Finally, we tested whether significant differences regarding
age-specific distributions of incident cases can also be observed
between the full and the reduced model 2 in a series of alter-
native modeling scenarios. The results of these tests (analogous
to those presented in SI Appendix, Figs. S5–S8 for the effects of
demographic dynamics) are shown in SI Appendix, Fig. S11, and
indicate that the effects of empirical contact patterns on TB bur-
den distributions are robustly significant under a wide spectrum
of alternative situations.

Summarizing this part, and despite the reduced effect ob-
served on aggregated rates, we showed that including empirical
contact structures on TB model dynamics reshapes the transmis-
sion patterns among age groups and generates significant differ-
ences in age-specific infection and incidence rates. Additionally,
we showed that considering different matrices estimated from
studies conducted in different geographical areas significantly
impacts the projected burden distributions.
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Fig. 5. Age-to-age infection rate matrices and age-specific infection and incidence rates forecasted in 2050 for India and Ethiopia, from the full model (Left
column) and reduced model 2 (Center column), with the difference (full model minus reduced model 2) (Right column) shown in each case. Differences
in incidence and infection rates are shown in gray when they are not statistically significant; otherwise they have the color associated to the model for
which the rate is higher. When empirical contact patterns are introduced in the model, we observe an increased density of infections close to the diagonal
(i.e., contagions taking place between individuals of similar age) and fewer infections taking place from children to adults or vice versa. At the level of
infection/incidence rates, this translates into an underestimation of burden among adults (and an overestimation among children) associated to assuming
contacts homogeneity in the reduced model.

Discussion
The model presented here was specifically designed to provide
a suitable description of TB transmission dynamics in situations
where demography is evolving at the same time that the epi-
demics unfold. Importantly, we showed that considering current
populations’ aging trends in TB transmission models is followed
by a systematic increase in burden forecasts. This worrisome
result can be understood in terms of the known mechanisms
whereby age affects the transmission dynamics of the disease.
In TB, adults are affected by higher age-specific burden lev-
els than children, and, at the same time, they are more effi-
cient spreaders, given their increased tendency to develop infec-
tious forms of pulmonary TB (8). As a consequence, considering
populations’ aging translates into higher burden forecasts, sim-
ply by increasing the fraction of older individuals with respect
to children.

These results suggest that the decay in TB burden levels that
has been observed in most countries during recent decades might
be harder to sustain than previously anticipated. Under this view,
the socioeconomic and public health improvements that made
possible the recent decline of TB worldwide would need to be
intensified in many countries if the goal of TB eradication is to
be pursued before 2050, at the same time that global aging of the
human populations unfolds.

Furthermore, our model incorporates a data-driven descrip-
tion of the dependency of TB transmission routes with age,
which, we have showed, exerts a significant influence on the fore-
casted age distribution of the disease burden, by reshaping infec-
tion routes. These results will impact the evaluation and com-
parison of novel epidemiological interventions, mostly if they are
conceived to target specific age strata. That is the case of new
preventive vaccines aimed at substituting or improving Bacillus
Calmette–Guérin and their application through age-focused vac-
cination campaigns. In this context, previous works have con-
cluded that a quick immunization of young adults through vac-
cination campaigns focused on adolescents is expected to pro-
duce a faster decline in TB incidence than an alternative strategy
based on newborns’ vaccination (21). Our results would further

reinforce this hypothesis, to the extent that empirical contact pat-
terns are followed by a relative increase of TB among adults with
respect to children. It must be noted, though, that in the deci-
sion of what is the optimal age group to target in a hypothetical
immunization campaign for a new vaccine, at least two additional
aspects have to be considered, namely, whether the new vaccine
is conceived to boost or substitute Bacillus Calmette–Guérin and
whether previous exposure to environmental antigens is expected
to compromise vaccine performance [via “blocking” (28, 29)].
Bacillus Calmette–Guérin substitutes and/or vaccines susceptible
to lose immunogenicity due to exposure to mycobacterial anti-
gens of individuals before vaccination might not be eligible for
adolescent immunization anyway.

Despite all the improvements introduced in this work, our
approach is not exempt from the strong limitations that affect
all TB transmission models operating at this level of resolution.
The outcomes of our model depend on a series of epidemiolog-
ical parameters and initial burden estimates that are subject to
strong sources of uncertainty. Even though we have registered
these uncertainties and propagated them to the final model out-
comes, future improvements and reassessment of these pieces
of input data are generally expected to impact the quantita-
tive outcomes of the model and to further delimitate the uncer-
tainty ranges here reported. As a first example, International
Health authorities insist on the importance of implementing
systematic surveys of TB prevalence in many countries, as a
means toward more accurate TB burden evaluations. Accord-
ingly, they revise and update their burden estimates on a regu-
lar basis, as new data become available, which obviously impacts
model calibration and results. Furthermore, the demand for epi-
demiological studies aimed at obtaining updated estimates of
key epidemiological parameters in current epidemiological set-
tings has been identified as a primary need for the develop-
ment of more reliable TB models (30). Similarly, we have seen
here the importance of obtaining data on contact patterns spe-
cific for each setting, by showing that different contact struc-
tures inferred from studies conducted in different parts of the
world yield significantly different distributions of TB burden
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across age (SI Appendix, Fig. S10). Importantly, the interpre-
tation of these burden distributions of TB across age is hin-
dered by the limited quality of the data available regarding TB
distribution across age, which makes adventurous any compari-
son between model and data. For example, current WHO data
structure splits TB incidence into only two major age groups
(0–14 y vs. 15+ y), with alleged, heavy underreporting biases
among children.

All these considerations, taken together, evidence the need
of further studies, spanning from the implementation of system-
atic surveys that could unlock more accurate burden estimations
(either aggregated or, very importantly, age specific) to the rees-
timation of key epidemiological parameters and contact patterns
in specific epidemic settings.

Despite those limitations, in this work we have shown that
abandoning the simplifications of constant demography and
homogeneous contacts shared by previous models of TB trans-
mission is not just technically feasible, but has significant effects
on model outcomes. Remarkably, TB is not the only disease
where long characteristic timescales and strong age dependen-
cies concur (31, 32), which, despite the specific details of the
transmission dynamics of each case, implies that similar correc-
tions to what we have proposed here for the case of TB might
be pertinent to correct bias of current epidemic models of other
diseases too.

Materials and Methods
TB Natural History. The description of the natural history of the disease that
we use in our model (Fig. 1A) is largely based on previous works by Dye
and colleagues (8, 20), with fewer variations to make it compatible with the
structure of data reported by WHO regarding disease type and treatment
outcomes (27). Specifically, we deal with a compartmental, age-structured
model based on ordinary differential equations, which was implemented
in the programing language C through a fourth-order Runge–Kutta algo-
rithm (time step = 1 d). The model presents two different latency paths to
disease—fast and slow—and six different situations of disease, depending
on its etiology (nonpulmonary, pulmonary smear negative, or pulmonary
smear positive, characterized by an increasing infectiousness) and on treat-
ment status. After disease, we explicitly consider the main treatment out-
comes included in WHO data schemes: treatment completion, default, fail-
ure, and death, as well as natural recovery. The natural history model and
transitions between the different states, including exogenous reinfections,
endogenous reactivations, mother–child transmission, and smear progres-
sion (i.e., the transition from smear negative to positive during an episode
of active TB) (7, 8, 13, 20, 27, 33, 34), are thoroughly detailed in SI Appendix,
Fig. S12.

Age Structure and Demographic Evolution. The transmission dynamics
defined by the natural history described above are executed in parallel in
n = 15 age groups of a span of 5 y each, except for the last one, which
contains all individuals older than 70 y (omitted from Figs. 3 and 4 to facil-
itate visual reading of the scales). The internal transitions between disease
states within age groups are then complemented by transitions between
age groups representing individuals’ aging (Fig. 1B). That defines, per each
age group, an a priori evolution term Ṅo(a, t) that describes the uncorrected
time derivative of the population in age group a, at time t. Then, to make
our demographic structures reproduce the curves reported by the UN Pop-
ulation Division, these empirical data series are fitted to smooth polyno-
mials that are then derived to obtain ṄUN(a, t). Finally, a correction term
∆N(a, t) = ṄUN(a, t)− Ṅo(a, t) is added to the uncorrected evolution in such
a way that the final time derivative of the demographic structure, defined as
Ṅ(a, t) = Ṅo(a, t) + ∆N(a, t), verifies Ṅ(a, t) = ṄUN(a, t) by construction. This,
along with the initialization of the population structures according to the
UN data, ensures that the evolution of the demography reproduces the UN
prospects for all countries and time points. The correction term ∆N(a, t) rep-
resents the population variations that occur for causes foreign to TB: new
births, introduced as susceptible individuals in the first age group, except for
the fraction that undergoes perinatal infection (SI Appendix, section 2.1.10),
as well as TB-unrelated deaths and migrations, which are distributed, for
the rest of the age groups, among the different disease states proportion-
ally to their respective volumes (see SI Appendix, section 2.5 for further
details).

Countries Analyzed. The analyses presented in this paper were performed
in India, Indonesia, Nigeria, and Ethiopia, four countries that were selected
for their assorted geographic contexts, populations’ aging prospects, and
TB burden trends. In SI Appendix, section 1.1, we also analyzed 8 more
countries—Pakistan, South Africa, Bangladesh, Democratic Republic of
Congo, Myanmar, Tanzania, China, and The Philippines (SI Appendix, Fig.
S1)—thus covering the 12 countries affected by the highest levels of TB in
the world, measured in total numbers of incident cases.

Empirical Contact Patterns. Empirical data of age-dependent contact pat-
terns have been adapted from statistical surveys conducted in different
countries in Africa, Asia, and, as a control, Europe. In each case, contact
matrices from studies conducted in different countries of the same con-
tinent [Kenya (22), Zimbabwe (23), and Uganda (24) in Africa; China (25)
and Japan (26) in Asia; and Belgium, Germany, Finland, Great Britain, Italy,
Luxembourg, The Netherlands, and Poland in Europe (14)] have been pro-
cessed according to the following steps.

First, contact matrices from each study ξs(a, a′) are corrected to preserve
symmetry (i.e., to make the total number of contacts between age-groups a
and a′ compatible with survey responses from both groups, conditioned by
the demographic structure of the population of each study) and normalized
to a common scale. Then, matrices corresponding to studies made on the
same continent are averaged, weighted according to the number of partic-
ipants in each study. As a result, we obtain one matrix per region ξreg(a, a′),
which also guarantees that the reports of the contact frequency between a
and a′ are compatible, generating the same number of total contacts, given
the demography of the region (i.e., the union of the countries being aver-
aged at the time of the studies):

Nreg(a)ξreg(a, a′) = Nreg(a′)ξreg(a′, a). [1]

Second, to be able to use these averages in specific settings with different
demography, we interpret the matrices ξreg(a, a′) as the product of two nui-
sance factors: the fraction of individuals in a′ that exist in the population,
Nreg (a′ )

Nreg
, and an auxiliary matrix πreg(a, a′):

ξ
norm
reg =πreg(a, a′)

Nreg(a′)

Nreg
. [2]

Under this interpretation, the auxiliary matrices πreg(a, a′) capture the
“intrinsic” intensity of contacts between groups a and a′, once the effect
of the demography has been removed, except for a common scale factor.

Next, the matrices πreg(a, a′) of each region, as inferred from Eq. 2, are
adapted to the specific demography of the countries analyzed in this work.
Contacts derived from studies conducted in Asia are applied in India and
Indonesia, while contacts proceeding from the African studies are applied
in Nigeria and Ethiopia. (European contacts are used only as a control in SI
Appendix.) This yields the country-specific matrices

ξ̃c(a, a′, t) =πreg(a, a′)
Nc(a′, t)

Nc(t)
[3]

which allow us to incorporate the influence of the evolving demography on
the contact structure of our model automatically. Finally, ξ̃c(a, a′, t) is nor-
malized dynamically at each time step to obtain the final contact matrices
used in our model, denoted as ξc(a, a′, t). These matrices represent, at any
time, the contact frequency that an individual of age a has with individuals
of age a′, relative to the overall frequency of contacts that any individual
has with anyone else in the system (see SI Appendix, sections 2.2 and 2.3 and
Fig. S13 for further details).

Data Flux and Model Calibration. The flux of data is summarized in Fig. 1C.
The model makes use of four different types of inputs, including (i) each
of the 19 literature-based epidemiological parameters (7, 8, 13, 20, 33, 34)
(SI Appendix, Table S14); (ii) TB burden and treatment outcome proportions
[reported at the WHO TB database (27), accessed on November 16, 2016
(SI Appendix, Table S15)]; (iii) contact patterns [estimated from different
survey studies conducted in Africa (22–24) and Asia (25, 26)]; and (iv) demo-
graphic prospects reported in the UN Population Division database (accessed
on November 16, 2016).

All these input data are integrated at the step of model calibration,
whose goal is to reproduce the time series of aggregated incidence and
mortality reported by the WHO for each country in the period 2000–2015.
To achieve this goal, the initial conditions of the system and the values of

Arregui et al. PNAS Latest Articles | 7 of 8

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720606115/-/DCSupplemental


the only two parameters that do not proceed from bibliographic sources (the
scaled infectiousness and the diagnosis rate) are estimated for each country.
This procedure is completed using the Levemberg–Marquard optimization
algorithm implemented in the C library levmar (SI Appendix, section 2.8 and
Fig. S14). These two fitted parameters, which define a scale for the number of
secondary infections caused by each infectious agent, as well as for the num-
ber of cases diagnosed per unit time in each country (SI Appendix, Fig. S15),
are allowed to vary in time, as in previous works (20), to illustrate socioeco-
nomic improvements that might impact the ability of public health systems to
better control the disease and restrain its transmission. Finally, the estimates
of the initial conditions and the fitted parameters are integrated with the
rest of the inputs to produce model forecasts up to 2050.

Uncertainty and Sensitivity Analysis. The uncertainty of each independent
source of input data was propagated to model forecasts. The contribution to
overall uncertainty assigned to each type of input (epidemiological param-
eters, WHO estimates of TB burden and treatment outcomes, contact pat-
terns, and demographic prospects) was calculated by repeating model cal-
ibration and forecast steps in a series of alternative scenarios where each
uncertainty source is shifted sequentially from its expected value to its con-
fidence interval limits. Finally, the deviations from the central estimate that
correspond to these alternative scenarios are aggregated assuming mutual
independence and linearly weighted to generate the final confidence inter-
vals shown in Fig. 2 for aggregated burden projections and in Figs. 4 and
5 for incidence and infection rates within age group. In SI Appendix, sec-
tion 1.3 and Fig. S3, the individual contribution of all single sources of

uncertainty on aggregated incidence and mortality is disclosed, with red
(blue) bars representing changes in burden rates associated to an increase
(decrease) of the parameters/uncertainty sources from the central values. An
important feature of this method is that it allows us to test how sensitive
our forecasts are to inputs’ uncertainty upon model recalibration, instead of
testing the intrinsic sensitivity of the dynamics of the noncalibrated model
to each input (see SI Appendix, section 4, for further details).

Further Specifications. For further model details, including definitions of
model states, explicit enunciation of model differential equations, param-
eter values, and uncertainties, the reader is referred to SI Appendix,
sections 2–4.
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