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Damage detection via shortest-path network sampling
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Large networked systems are constantly exposed to local damages and failures that can alter their functionality.
The knowledge of the structure of these systems is, however, often derived through sampling strategies whose
effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of
shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize
the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged,
not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the
damage detection and the number of probes used to sample the network. We test and measure the efficiency of
our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the
number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the

damage precisely.
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I. INTRODUCTION

Real-world networks are often the result of a self-organized
evolution without central control [1-3]. The physical Internet
and the World Wide Web (WWW) are two prototypical
examples where the interplay of local and nonlocal evolution
mechanisms defines the global structure of the network. In
absence of determined blueprints, the only way to characterize
the global structure of self-organizing systems is by devising
sampling experiments, such as traceroute probing for the
physical Internet [4—16] and web crawlers for the WWW
[17-19]. However, sampling processes are limited by time,
physical constraints, and in general, guarantee access only to
a part of the network. In this context, the detection of network
damage is a difficult task. The lack of information on the
exact structure of the system makes it extremely difficult to
identify what damage has actually been suffered and segregate
damaged elements from those that have simply not yet been
probed by the sampling process.

Here, we numerically study the effectiveness of shortest-
path sampling strategies for damage detection in large-scale
networks. These methods are currently used in Internet probing
[1,20-24], including failure detection via traceroute-like tools
and end-to-end measurements. We consider different attack
strategies, namely, random or connectivity based, and
introduce a global measure, M, that allows us to quickly
identify damages that induce large variations in the routing
patterns of networks. We then propose a statistical method
able to classify nodes as damaged or functioning in the case
of partial network sampling. In our analysis, we first sample
a given network structure via shortest-path probes [1,20-24]
obtaining a partial representation of its nodes and connectivity
patterns. Then, we damage the network by removing nodes
according to different strategies and sample again the damaged
network supposing not to know the location and magnitude
of the damage. During this sampling, we constantly monitor
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whether the probability not to have seen a node exceeds the
expected value calculated on the basis of the sampling of the
undamaged graph. We define a statistical criterion to assess
which nodes of the network can be considered damaged,
and we test the performance of the method by looking at the
number of true and false positives it identifies.

We perform numerical experiments on synthetic networks,
either heterogeneous, generated with the uncorrelated con-
figurational model (UCM) [25], or homogeneous, obtained
through the Erdos-Reényi model (ER) [26]. Remarkably, the
magnitude and location of the damage can be detected with
fairly good confidence. The accuracy improves for nodes that
play a central role in the network’s connectivity. Namely,
the detection of damaged hubs is more reliable than that of
peripheral nodes. As a practical application, we consider the
damage detection on the physical Internet at the level of the
autonomous system (AS). We use the AS topology provided
by the DIMES project [11]. In this case, to simulate realistic
damages, we remove nodes according to their geographical
position. In doing so, we simulate critical events, such as large-
scale power outages, deliberate server switch offs [27], or other
major localized catastrophic events [28]. Interestingly, also in
this case, our methodology allows us to statistically identify the
extent and location of the damage with reasonable accuracy.

The paper is organized as follows: In Sec. II, we present
the sampling method used. In Sec. I1I, we introduce a measure
that provides a general estimation of the damage extension in
sampled networks. In Sec. IV, we provide a method to infer
the status of single nodes using a p-value test. In Sec. V, we
validate this method by applying it to the physical Internet
network. Finally, in Sec. VI we present our conclusions and
final remarks.

II. SHORTEST-PATH SAMPLING OF
UNDAMAGED NETWORKS

The sampling of networks via shortest paths consists in sending
probes from a set of nodes that have been defined as sources
toward another set of nodes chosen to be targets. Each probe
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travels through the network following a shortest path and
records each node and link visited, returning a path. This is,
to a first approximation, what is executed by Internet mapping
projects that use the traceroute tool [8] as a probing method.
This methodology infers paths by transmitting a sequence
of limited-time-to-live transmission control protocol/Internet
protocol (TCP/IP) packets from a source node to a specified
target on the Internet. The nodes visited along the way send
their IP addresses as a response and create the path. The union
of all the paths returned by the probes creates the sampled
picture of the network. However, mapping the real physical
Internet is complicated, and existing approaches have major
limitations [4]. For example, visited nodes can fail to provide
their IP address, and wrong or outdated forwarding route
registries can result in forwarding route indications that are not
optimal. Our study is inspired by the traceroute tool, although
we assume that probes follow the shortest paths, neglecting
the real-world limitations aforementioned.

Here, we focus on undirected and unweighted networks
consisting of N nodes and M edges G(N,M). We fix
a set of sources S = (s1,52,...,5n,) and a set of targets
T = (#1,t2, . . . ,tn,) among the N nodes, withNg and N7 being
the total number of sources and targets, respectively. For each
pair of nodes, taken in the two sets, a shortest-path probe is sent.
After all of the Ng x Ny probes have reached their targets, all
the resulting paths are merged in a sampled network that we
denote as G*(N*,M™). Here, and in the rest of the paper, the
star symbol indicates sampled quantities, so N* is the number
of discovered nodes and M* is the number of discovered links
via the shortest-path sampling.

In general, for each source-destination pair, we can have two
or more equivalent shortest paths. More precisely, there could
be different strategies to numerically simulate the shortest-path
probing:

(1) Unique shortest path. The shortest path between a node
i and atarget T is always the same independently of the source
S. Each shortest path is selected initially, and they will never
change.

(2) Random shortest path (RSP). Each shortest path is
randomly selected every time among the equivalent ones.

(3) All shortest paths. All possible, equivalent, shortest
paths between shortest paths are discovered.

In the following, we will use the RSP probing strategy
[20,29-31]. Both sources and targets are chosen randomly
among all the nodes. Inspired by real Internet probing, we
investigate scenarios in which the order of magnitude of
sources is Ny = O(10), while the order of magnitude of the
density of targets, pr, is O(1 0. Along with the raw number
of discovered nodes, we also keep track of the visit probability
p; for each visited node i, defined as the ratio between the
number of shortest-path probes passed through the node i and
the total number of probes sent Ng x Nr:

NgxN:
pi= NS X NT ’

where §; ; is equal to 1 if the node i is seen by the probe j. In the
limit in which both Ng and N7 approach N, the probability
p becomes the betweenness [20]. Instead, in more realistic
cases where the number of sources and targets is small, the
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FIG. 1. (Color online) Probability distribution function (pdf) of
nodes visit probability for undamaged UCM (blue solid line) and
ER (orange dashed line) networks. The two peaks that deviate from
the overall heavy-tailed behavior occurat p; = 1/Ngand p; = 1/Nr,
and represent the visit probability of sources and targets, respectively.
The curves are the average over 100 independent simulations.

nodes visit probability is just an approximation of this quantity
[20]. Considering this limit, we show the distribution of p in
Fig. 1 in both UCM and ER networks with 10° nodes. The
number of sources is 15 and the target density is 0.2. The
curves show a power-law behavior, except for the presence of
two peaks, representing the visit probability of sources and
targets. The peak for large values of p; is the consequence
of the sources’ visits and appears in correspondence to p; =
Psource = 1/Ng, Vi € S. The other peak is due to targets and
occurs for p; = prrgers = 1/Nr, Vi € T [32].

III. DAMAGE DETECTION

In order to introduce damage in the network, we consider
that Np nodes are not functional, i.e., a fraction pp = Np/N
of nodes and all of their links are removed from the network
G. We define the damaged network Gp(Np,Mp), where the
subscript D denotes damage. Damaged nodes are selected
either randomly or according to a degree based strategy in
which nodes are removed according to their position in the
degree ranking (hubs first or leaves first). While target nodes
can be damaged, we assume that no sources are damaged. In
these settings, we aim at inferring the damage using shortest-
path sampling by looking at the number of nodes discovered
before and after the damage occurs.

Shortest-path probes are sent between each pair of source-
target nodes. The sampled network after the damage G5, differs
in general from the sampled view G* of the original undamaged
network because of the changed topology due to the missing
nodes. To quantify the damage, we introduce the quantity
Np
N*
where N* and N are the number of discovered nodes in the
undamaged and damaged network, respectively. If no damage
occurs, the number of nodes discovered in Gp is similar to
the one discovered in G so that N* ~ N}; and M ~ 0 [33].
If less nodes are seen in Gp than in G, then M > 0, with
M =1 representing the extreme case in which no nodes are
discovered in the damaged network. Interestingly, the quantity
M can also assume negative values. Indeed, it is possible to
see more nodes in Gp with respect to G. Although this case

M=1-
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FIG. 2. (Color online) The behavior of M is shown for three
different damage strategies: random (red squares), small degree
nodes first (green diamonds), and hubs first (blue circles). (a) UCM
scale-free graph. Inset: The behavior of M when high degree nodes
are removed first is compared to the quantity (/)p,, as a function
of pp. (b) ER random graph. For the UCM network, the minimum
indicates the enhanced discovery given by the lack of hubs. Each plot
is the median among 100 independent assignments of sources and
targets. Error bars illustrating the 95% confidence interval are too
small to be visible at this scale.

may sound counterintuitive at first, a closer look at the effect
in the topology induced by removing nodes clearly explains
its meaning. Indeed, by removing some central nodes in the
network (in the next section, we discuss this point in detail),
the length of the shortest paths might increase on average as
well as the number of discovered nodes.

Numerical simulations

We measure the quantity M in damaged homogeneous
and uncorrelated heterogeneous networks [1-3,34] generated
through the ER and the UCM algorithm, respectively. The
network size is fixed at N = 10° nodes, and the number of
sources and target density are Ny = 15, and py = 0.2, respec-
tively. The average degree is k = 8 for both the topologies.
The exponent y for UCM is 2.5. As mentioned above, sources
and targets are randomly selected. We consider different
damage strategies in which the removed nodes are selected
atrandom or based on their degree. We further divide the latter
strategy considering two cases in which nodes are removed in
increasing (hubs first) or decreasing order of degree (leaves
first).

Figure 2 shows M as a function of p for the three different
attack mechanisms, for the two different types of network. The
top panel presents data for the UCM network. The random
nodes removal strategy gives the same qualitative behavior as
the one in which the small degree nodes are attacked first. This
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is not surprising, since the probability that a randomly selected
node has a small degree is extremely high due to the power-law
degree distribution of the network. The two strategies select,
on average, the same category of nodes. A big difference can
be noted when nodes are attacked in decreasing order of degree
(high degree nodes, hubs, are attacked first). For small values
of pp, the value of M assumes negative values, meaning that
more nodes are discovered in the damaged network than in the
undamaged one. Indeed, hubs act as shortcuts for network
connectivity. Their failure causes the rerouting of probes
toward lower degree nodes and the consequent growth of the
average length of the shortest paths (/). As pp increases, this
trend is contrasted by the progressive fragmentation of the
network in many disconnected components.

In order to estimate how much the network has been
fragmented by the damaging process, we define the quantity
Pay as the average of the ratio between the nodes of the
components in which each source is located by the total
number of nodes N of the undamaged network. After a
certain amount of nodes are removed, the graph undergoes
disconnection and more than one component appears. At this
point, a shortest-path probe can reach only the nodes belonging
to the component where the source is located. Components
with no sources will no longer be accessible. p,y is a decreasing
function of pp, assuming the value 1 when there is no damage,
whereas it becomes p,y = Ng/N in the limit of pp ~ 1, when
only the sources survive and each of them constitutes one
component. Neither (/) or p,, alone explains the presence of
the minimum quantity M in the plots. Instead, the product
of the two (I)p,y does: It represents the average number of
nodes discovered by each shortest-path probe rescaled by the
number of nodes effectively available to be discovered. The
relation of this quantity with the minimum for M is shown
in the inset of Fig. 2(a). The argument above is confirmed
by the behavior of M in ER graphs. Here, removing the
nodes with higher degree has a much smaller impact on the
topology, and consequently, there is no increase in the amount
of nodes discovered in the damaged graph G, with respect
to the original one G. The plot of M for hubs removal in the
ER network does not show a minimum, and substantially, the
damage detection works similarly for all damage strategies.

IV. SINGLE NODE DAMAGE DETECTION

While the measure M quantifies the damage at the global
level, it does not provide any information about specific nodes
of the network. In this section, we address the damage of
individual nodes by assuming that the information gathered
during the exploration of the undamaged network constitutes
the null hypothesis of our measure, namely, that none of
the nodes is damaged. We start by monitoring the network
G, assuming that it is not damaged. Every time we send a
shortest-path probe, we obtain a better approximation of the
sampled network G* with increasing number of discovered
nodes N*. At the same time, we collect information about
how many times a probe passes through a node i resulting in
visit probability p; defined in Eq. (1). Later, the network is
damaged according to one of the strategies discussed above
and sampled via shortest-path probes. By definition, any
node that is discovered during the sampling is not damaged.
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However, the situation is less clear for nodes that have not
been discovered. Indeed, the reason why a node is not seen
can be either that it is actually damaged or that the sampling
has missed it because the damage has altered the shortest-path
routing. In order to infer the state of undiscovered nodes, we
use a p-value test [35] applied to the visit probability p;. More
precisely, we calculate the probability (1 — p;)* of not seeing
the node i after a number 7 of shortest-path probes. T can
assume any integer value from 1 to Ngx Nr. The p-value test
consists of imposing the equality between this quantity and an
arbitrary confidence level C:

C=(1-p)". 3)

Note that after imposing the equality, 7; has the index i as for
p;- This is because t; is different for each node. By taking the
logarithm on both sides of the equation, we obtain

_ In C
~In(1—py)’

If the node i has not been seen at least once before 7; probes
have been sent, then we can state that i is damaged with
statistical confidence C. Here, we are assuming that the visit
probability of nodes does not change after the damage. This
holds up when the damage is a relatively small perturbation
and does not change the connectivity of the network or its
dynamical properties [3,36,37]. After the p; values have been
determined for all of the nodes, the value of C tunes the number
of probes to be sent before declaring a node damaged. If C
is selected to be large, nodes will be considered as damaged
much earlier but with a small statistical confidence, leading to
a large number of false positive (Fp) detections. Conversely, if
C is set to be small, more probes are needed to state if a node is
damaged or not. The accuracy improves, and the final response
will eventually return only actual damaged nodes, the true
positive damaged nodes (7p). On the other hand, the number
of probes needed to reach this level of statistical confidence
will be much higher, resulting in a longer sampling process.

The value of C is an input of the method, and it can be
chosen by opportunely tuning the trade-off between a poor
but fast sampling that produces a high number of Fp and
an accurate but slow sampling that generates more 7p. We
evaluate the performances of the damage detection strategy
measuring its precision and recall. In particular, the precision
« is defined as

4)

T

Tp
o0=—. (5)
Tp + Fp
The recall r is instead
T
r= o, (©)
Tp + Fy

where Fy indicates the number of false negatives, i.e., nodes
damaged but not detected. In a given network, precision and
recall are functions of the parameter C. In Fig. 3 we plot « for
different values of C in both UCM and ER networks. In the
top panel, we remove top degree nodes and set pp = 1073, As
expected « increases as C decreases. Interestingly, in the case
of the UCM topology, the increase is slower. Indeed, we can
notice that o reaches an arbitrary level of 90% (dashed line)
for C = 10719, while in the case of the ER network, the same
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FIG. 3. (Color online) Precision « as a function of C for (a) hubs
removal with fraction of removed nodes pp = 0.001 and (b) random
nodes removal with fraction of removed nodes pp = 0.01. The black
dashed line indicates o = 0.9. Dots represent the average over 100
independent simulations, and error bars illustrate the 95% confidence
interval.

level is reached for C = 1075, The extremely low values of C,
especially in the case of the UCM network, is justified by the
presence of the logarithm function in the numerator of Eq. (4).
Considering the big absolute value of the denominator for big
pi, very low values of C are required to have t; ranging from 0
to Ng x Nr.The quite different value of C in the two networks,
for top degree nodes removal, can be explained considering the
distribution of p; of the nodes that will be damaged in the case
of hubs removal (Fig. 4). In the UCM network, the top degree
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FIG. 4. (Color online) Probability distribution function (pdf) of
nodes visit probability in the undamaged UCM (a) and ER
(b) networks restricted to nodes that will be later damaged with two
different strategies. Curves are the average over 100 independent
simulations.
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FIG. 5. (Color online) Recall r as a function of C for (a) hubs
removal with fraction of removed nodes pp = 0.001 and (b) random
nodes removal with fraction of removed nodes pp = 0.01. Dots
represent the average over 100 independent simulations, and error
bars illustrate the 95% confidence interval.

nodes have a much higher visit probability than the rest of
the nodes. Large values of p; combined with C via Eq. (4)
produce small values of t;, allowing all removed nodes to be
promptly declared damaged. The downside of this effect is the
onset of a large number of Fp that leads to smaller precision.
In the ER network, instead, the role of high degree nodes is
not so determinant, and their visit probability is almost indis-
tinguishable from that of random nodes. As a consequence,
larger values of C are required to produce t; small enough to
allow the algorithm to declare the nodes damaged.

In Fig. 3(b), we show the same curve for the random dam-
aging strategy setting pp = 1072. In this case, the behavior
of « in the two topologies is very similar, and it is due to the
p distributions that in both networks span the entire range of
possible visit probabilities, thus reproducing the same curves
shown in Fig. 1.

InFig. 5, we study the recall r as a function of C. In this case,
we can see that 7 reaches 1 for all the values of C investigated
when damaging hubs in an UCM network. All damaged nodes
are detected during the sampling. This is, again, a consequence
of the very large visit probabilities for high degree nodes in
the UCM network, which allows prompt detection of hubs
removal. In the ER network, instead, the presence of low visit
probability nodes among those in the top degree ranks require
larger values of C in order to send enough probes to declare
nodes damaged and improve the recall. It is crucial to stress that
Tmax = Ns X Nr. Any node that for a given C is characterized
by 7, > Tmax Will not be evaluated by the algorithm. In the
bottom panel, we see the recall for random nodes removal in
both topologies. Here, the behavior of r is similar for both
UCM and ER networks as a consequence of the similar visit
probability distributions.

Numerical simulations in synthetic networks

We apply the statistical criterion developed in the previous
section to the two types of synthetic networks, UCM and ER,
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FIG. 6. (Color online) Recall r (blue circles) and normalized
number of false positive f, (orange squares) for high degree nodes
removal as a function of number of probes in UCM (a) and ER
(b) networks. The fraction of removed nodes is pp = 0.001. The
values of confidence level C are 107'° and 10~ for UCM and ER
networks, respectively. Points are the median among 100 realizations
with independent choice of sources and target. Error bars illustrate
the 95% confidence interval.

with 10° nodes and two damaging strategies, high degree and
random nodes removal. We send shortest-path probes from 15
sources to a number of targets equal to a fraction pr = 0.2
of total nodes. In order to compare the results of this part of
the study for different topologies and damage strategies, we
arbitrarily fixed the C value of the one correspondent to a
precision of o = 0.9 in each system.

Let us first consider UCM networks subject to the removal
of the top 100 nodes ranked according to the degree (pp =
1073). In Fig. 6, we plot the recall r and the normalized number
of Fp, f, = Fp/(Tp + Fy), as a function of 7. Interestingly,
the recall reaches 1 quickly. The absence of the hubs is
promptly detected by the method. In Fig. 7, we show the
behavior of the same quantities in the case of the random
removal of nodes considering pp = 1072, In this case, the
recall increases slowly, while f, remains constant after an
initial increase. An interesting feature of the r curve is the
presence of a jump. This is the consequence of the peak in the
distribution of p; that is mapped into 7; via Eq. (4). It occurs at
the value of © corresponding to pirgers = 1/Nr and is caused
by the enhanced visit probability of target nodes. Since targets
are assigned randomly in UCM networks, they are probably
small degree nodes that are visited as if they are set to be
targets. This implies that a specific number of probes equal to

In C _ In C
ln(l - plargets) B ln(l - 1/IVT)

is necessary to be able to say if targets are damaged or not.
Since targets are 20% of the nodes, once Tiygers 1S reached,
a conspicuous amount of nodes can be declared damaged or
not. It is worth noting that only the number of Tp increase
in correspondence with the jump, and f, do not exhibit any
discontinuity. This means that we have a better view of the
damage without affecting the accuracy.

(7

Ttargets —
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FIG. 7. (Color online) Recall r (blue circles) and normalized
number of false positives f, (orange squares) for random nodes
removal as a function of the number of probes in UCM (a) and ER (b)
networks. The fraction of removed nodes is pp = 0.01. The value of
confidence level C is 1073 for both the UCM and ER networks. Points
are the median among 100 realizations with independent choice of
sources and target. Error bars illustrate the 95% confidence interval.

Let us now consider ER networks subject to removal of
nodes in decreasing order of degree. In Fig. 6(b), we plot r and
fp as afunction of . As for the case of the UCM network, the
recall increases, even if slower, and reaches the maximum val-
ues at 0.9. Similar behavior for both the topologies is observed
in the case of the random removal of nodes (see Fig. 7).

V. NUMERICAL DAMAGE DETECTION
IN GEOLOCALIZED NETWORKS

In this section, we consider a sample of the real Internet
topology network at the level of AS where each node
is an autonomous system of known geographical location
[10,21,38], and links represent the physical connections among
them. Topologies are available for download in the DIMES
project webpage [11]. We focus on the largest connected
component of ASs that is made by 32 852 nodes.

We test damage detection in two relevant classes of realistic
attacks that affect either all nodes in the same country, or
all nodes inside a radius & with epicenter E. Both of these
strategies are geography based, but they describe different
scenarios. The first represents a deliberate shut-down such
as what allegedly happened in several countries during the
Arab spring [27]. The second one refers to localized events
such as blackouts, earthquakes, or other catastrophic events
[28]. Also, in this case, we fix the number of sources Ng = 15
and the density of targets py = 0.2. According to one of the
two geographic based strategies, we remove Np nodes from
the original AS network. The main difference between this
case and those discussed in the previous sections is that the
networks here have geographical attributes. The measure of
damage detection should then be able to return both the entity
and the geographical location of the damage. We use the same
method already discussed for synthetic networks. We decided
to damage all of the AS nodes in Italy as an example of an entire
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FIG. 8. (Color online) Map of Europe showing the detected
Italian damaged nodes in the real AS network. Each circle represents
one AS, and its size is proportional to the degree. Green circles
are the working nodes, blue ones are the Tp, and orange ones are
the Fp. Nodes located at sea are an effect of the finite accuracy of
geographical coordinates provided.

country switch off. This translates to removing Np = 1246
nodes, equal to a fraction pp = 0.038 of total nodes. Figure 8
shows the outcome of our analysis. We want to stress that
the algorithm does not have any a priori information about the
location of the damage. Despite that, the method clearly returns
ITtaly as an affected country. Few other nodes are wrongly
classified as damaged. The reason for the presence of Fp can
be due to statistical fluctuations or to some Fp nodes strongly
linked to the Italian T’ so that the deletion of the latter prevents
them from being visited. For the second type of geographical
damage, we decide to switch off all the ASs within a radius
of 50 km around the city of Boston, MA, in the USA. This
corresponds to Np = 176 and pp = 0.0054. Also, in this case,

FIG. 9. (Color online) Map of part of the United States east coast,
which shows the nodes in the real AS network after damaging the
city of Boston within a radius of 50 km. Each circle represents one
AS, and its size is proportional to the degree. Green circles are the
working nodes, blue ones are the 75, and orange ones are the Fp.
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FIG. 10. (Color online) Precision « (blue circles) and recall r
(orange squares) as a function of C for Italian nodes removal (a) and
damaging of nodes around the city of Boston within a radius of 50 km
(b) in the real AS network.

the method is able to detect the correct location of the damage
as shown in Fig. 9. In both cases of geographical damaging,
the recall is almost constant and close to the value 0.2 as shown
in Fig. 10. Indeed, the algorithm is almost only detecting the
fraction of damaged nodes that are also targeted. Because
of the homogeneous distribution of target nodes, this fraction
corresponds to pr = 0.2. The comparison between Figs. 10(a)
and 10(b) reveals that both precision and recall vary more with
C when damaging local areas than for the shutdown of entire
countries. In the first case, for big values of C, the precision
drops while the recall slightly increases. This means that a
less strict choice of C allows the discovery of more nodes.
However, the Fp grow more than the Tp. So, a little gain in
recall is contrasted by a big loss in precision.

As for the artificial networks, in the case of one coun-
try damaged, we choose C to achieve a precision of 0.9
(C =1072). In the case of local damaging, there is no value
of C that allows us to reach such a precision. For this reason,
and considering the diverse nature of the two strategies, we
fix the arbitrary value to o = 0.75 (C = 107°). Although
the recall never exceeds 0.3 in both damage detections, the
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method provides a good result considering the small number
of damaged nodes, the completely random displacement of
source and target nodes, and the lack of any ad hoc search
strategy.

VI. CONCLUSIONS

In this paper, we addressed the problem of damage detection
in large-scale networks. We assessed the effectiveness of
shortest-path probing for damage detection in the case of in-
complete network sampling. We considered different network
topologies, damage strategies, and defined basic metrics for the
measurement of damage. We provided a statistical criterion
for the classification (damaged and undamaged) of single
nodes based on the p-value test. Although this criterion allows
false positives, i.e., nodes wrongly considered as damaged,
it consents to fine-tune the statistical confidence level in
order to optimize the trade-off between precision and probing
load in the system. The numerical investigation according
to this criterion allows the study of damages in partially
sampled networks with tunable precision. In the case of real-
world networks such as the Internet AS graph, we damaged
the network according to geographical features simulating
critical events on specific areas or deliberate shutdown of an
entire country, as for political reasons. Also in this case our
methodology is able to identify the entity of the damage and,
more importantly, its location.

The method we have proposed can represent a first step
towards a strategy for the continuous monitoring of large-scale,
self-organizing networks. Possible variations of the shortest-
path sampling can be envisioned and combined with more
elaborate, diffusive walkers strategies that optimize network
discovery. Furthermore, we have studied only the random
displacement of sources and targets. Detection of damages
could be improved by opportune choice of sources and targets
or by a different schedule of probes delivery. This point will
be addressed in future works.
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