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We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of
the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase
diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The
diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At vari-
ance with traditional coevolution models, in which all spins of each connected component of the graph have
equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge
to a state in which spins of opposite sign coexist in the same component organized in compact clusters of
like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.
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In recent times there has been an increasing attention, by
the statistical physics community, toward applications to so-
cial systems and relative phenomena �1�. The goal is the
description and possibly the prediction of collective features
of processes involving large numbers of individuals without
detailed information on the characteristics of the single ele-
ments, much like it happens in the physics of phase transi-
tions �2�. Many simple models have been devised, inspired
by intuitive ideas on how social interactions between indi-
viduals take place. Such models are often variations of
known models of statistical physics or entirely new and in-
teresting types of dynamics. The main ingredients are a
graph, representing the social network of interactions �ac-
quaintances� between individuals, and a set of local rules,
indicating how the state of an agent is affected by �or affects�
the state of its neighbors. The graph may be a lattice or have
a more complex topology, reflecting properties observed in
real social networks �3–5�. Usually one studies the model
dynamics on a given graph topology, which remains frozen
during the whole evolution of the process. However, in real
social phenomena the dynamics of states is often coupled to
the transformation of the social network where the process
takes place, as the network evolves as well, and the time
scales of the two evolutions may be comparable. So, a real-
istic description of social processes must consider the coevo-
lution of state dynamics and network topology. In the last
years several coevolution models have been proposed
�6–17�. The interaction rules of such models combine both
changes in the states of the agents and in the link structure of
the underlying graph. Frozen states of the dynamics are usu-
ally characterized by a network composed of one or more
connected components with all agents in each component
being in the same state. Indeed, the dynamics of states in
each component becomes independent of the dynamics rul-
ing the states of the other components and, while the agents
of each component converge to the same state, such a state
will usually be different from one component to another. In
several models both scenarios, i. e. one component with all
agents in the same state and two or more separate compo-
nents each in a different state, can be reached by suitable

choices of the parameter weighing the relative importance of
the dynamics of the states versus that of the graph topology
�8,9,11,13–15�. Such a scenario is quite simple but it is not
very realistic. For example, these models cannot describe the
situation in which different groups of people sharing the
same state �domains� coexist in the same component, some-
thing which is likely to happen in society. In this article, we
present the first model that accounts for this situation as well.
Our model is based on a simple Glauber-type dynamics for
Ising spins �18�. It can also be seen as a sort of threshold
model �19� where disorder is in the topology and not in the
thresholds. We show that, in spite of its simplicity, the model
has a very rich behavior, with several phases, separated by
transitions involving both the spin states and the graph topol-
ogy.

The starting point is a random graph in the manner of
Erdös-Rényi �20� with N nodes and M links, with M = �k�N

2 ,
�k� being the average degree of the graph. We stress that the
main results do not depend on the initial network topology
because the rewiring dynamics leads inevitably to a random
network with a Poisson degree distribution. Agents lie on the
nodes of the graph, and are endowed with binary states
�spins� �= �1, which are initially assigned at random with
equal probability 1/2. The dynamics of the model is defined
by iterating the following update rule:

�1� A node i is selected at random: we indicate with ki the
number of its neighbors and with li the number of neighbors
in the same state.

�2� If li /ki�s, where 0�s�1, the node is stable and
nothing happens; otherwise a neighbor j with � j��i is ran-
domly chosen and: with probability �, i cuts its link to j and
attaches it to a randomly chosen node l such that �l=�i and
l is not already connected to i �23� �rewiring�; with probabil-
ity 1−�, i adopts j’s state �spin flip�.

The model has two relevant parameters: the threshold s
and the probability of rewiring �. The threshold sets the
minimum fraction of neighbors in the same state that a node
must have to be stable. In this respect it is a measure of the
sensitivity of agents against the social pressure exerted by
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neighbors with opposite state. If s is very small virtually all
nodes are stable, i. e. they do not flip their spin nor rewire
their connections. On the contrary, if s is close to 1 only
nodes fully surrounded by nodes in the same state are stable.
When s=1 /2, the spin dynamics is essentially the Glauber
dynamics of Ising spins at zero temperature. For s�1 /2 the
dynamics is rather uninteresting as already in the initial con-
dition typically nodes have at least half of the neighbors in
the same state and hence they are stable. Therefore we focus
on the range 1 /2�s�1. In general, the presence of a thresh-
old allows for the existence of unsatisfied links �i.e., links
joining agents with different states� in stable states of the
system, at variance with standard coevolution models. The
rewiring probability � is a measure of the relative impor-
tance of the rate at which the network evolves with respect to
the rate at which the state of the node changes. The extreme
values correspond to pure spin dynamics on a fixed network

topology ��=0� and to pure network evolution with no spin
dynamics ��=1�.

The phase diagram of the model has a remarkably rich
structure. To study its features, we monitor the behavior of
some standard observables, the magnetization m=�i�i /N
and the density of unsatisfied links �=�i�jAij�1
−	��i ,� j�� /M, where Aij is the element of the adjacency
matrix of the graph �Aij =1, if i and j are neighbors, other-
wise Aij =0� and 	 is Kronecker’s delta function. Moreover
we consider the convergence time tc, defined as the time
needed to reach a frozen configuration, at which the dynam-
ics stops �i.e., li /ki
s for any i�. In Fig. 1 we report in the
plane �s ,�� the numerical value of tc, as well as the value of
�m� and � and the number of connected components of the
graph, after a very long run, sufficient to reach the stationary
state. From the behavior of the convergence time, it is clear
that the parameter space is divided into two regions. In the

(a)

(c)

(b)

(d)

FIG. 1. �Color online� Dependence on the threshold s and the rewiring probability � of several variables: the convergence time tc �top
left�, the absolute value of the magnetization �top right�, the density of unsatisfied links �bottom left� and the number of connected
components �bottom right�. Data are obtained from numerical simulations on a graph with N=50 000, �k�=10. The darker color in the top
left panel means that the convergence time is larger than 150 times the number of nodes. Data in the three other panels are computed after
1.5�106 iterations.
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upper left zone �denoted as S−0� there is a phase with on-
going dynamic activity. In this region the convergence time
tc diverges exponentially with N so that it is effectively infi-
nite for systems of any reasonable size. However, the system
reaches a stationary state, with constant value of the observ-
ables. Elsewhere, instead, the dynamics leads in a finite time
to an absorbing frozen state with no dynamics. The two re-
gions are separated by an absorbing-state phase transition
�21�. The values of �m� and � indicate that the active phase is
disordered: the average magnetization remains zero and the
density of unsatisfied links remains high. In this phase, due
to the high value of s, sites are rarely stable and they keep
rewiring, looking for similar partners, as in Refs. �11,12�.
The structure of the absorbing phase is much richer, as one
can identify several distinct subphases, with various types of
internal organization. For small values of � and s, there is a
phase �A-I� where �m�=1 and �=0. Here the relatively slow
rewiring process allows spin ordering to be completed while
the topology remains globally connected. The opposite oc-
curs in the upper right corner of the parameter space �phase
A-II�. For large s and �, the value of � is the same of the A-I
zone, but in the A-II zone the number of connected compo-
nents is 2: the system splits into two topologically separated
sets of similar size, one of them fully ordered with �=1 and
the other with �=−1. Phases A-I and A-II correspond to
those found in the voter model �13�. To understand the orga-
nization of the system in the rest of the plane, we study the
presence and extent of homogeneous domains, intended as
subsets of nodes of the network with two properties: �1� all
nodes of the subset are in the same state and �2� any pair of
nodes of the subset can be joined with a path within the
subset. We then measure two new observables: the number
of homogeneous domains in the network and the relative size
of the largest of them. In Fig. 2 we plot these two observ-
ables as a function of s for a fixed large value of the rewiring
probability �. It is possible to identify two new phases, de-
limited by two threshold values sp and sq �indicated by the
two vertical dotted lines�.

For s�sp there are just microscopic domains and their
number is proportional to the number of nodes in the net-

work. In this phase �A−0� spanning the whole range of � for
s�1 /2, m=0, and �	1 /2. Stability is rather easy to reach
for all nodes, after few spin flips or link rewirings. We stress
that A−0 and S−0 are different: in the case of A−0 an ab-
sorbing state is always reached, while for S−0 the system
reaches only a dynamic stationary state. At s=sp a percola-
tion transition �22� takes place: for sp�s�sq the dynamics
lasts long enough to allow for the formation of macroscopic
domains �typically two� that grow bigger as s is increased up
to the point where they occupy the whole system �phase
A–D�. Finally, for still higher values of the threshold s
sq
the macroscopic domains become topologically disconnected
from each other and coincide with the two connected com-
ponents of the network �phase A-II�.

Based on this evidence, we schematically represent in Fig.
3 the phase-diagram of the model. Our simulations, per-
formed up to size N=50 000, seem to indicate that the pa-
rameter space is divided into genuine phases separated by
well-defined transition lines. However, a detailed investiga-
tion of the nature of all of them �and of the associated critical
behavior� is numerically very demanding and goes beyond
the scope of the present paper.

Some of the features of the phase-diagram are recovered
�see Fig. 3� via a mean-field �MF� approach, similar to the
one in Ref. �13�. At each step, a node with k links is ran-
domly chosen. Since the rewiring dynamics leads to a net-
work with a Poisson degree distribution, the probability Pk�t�
to extract a node with k links is supposed to be a Poisson
distribution with mean �k� at each step. Denote with j the
number of unsatisfied links and with Pk,j the probability that
the chosen node is not stable and hence must be updated.
With probability �Pk,j a random unsatisfied link is rewired.
In this case, the density of unsatisfied links changes by ��
=− 2

�k�N . On the contrary, with probability �1−��Pk,j the state

number of
domains

relative size of the
largest domain

(a) (b) (c)

FIG. 2. �Color online� Number of domains and density of the
largest domain as a function of s obtained from simulations on a
graph with �k�=10 and �=0.95.

A-II

FIG. 3. �Color online� Schematic representation of the phase
diagram obtained from numerical simulations on a graph with N
=50 000, �k�=10, after 1.5�106 iterations. We can identify two
types of phases: the dynamic stationary phase �denoted by S−0�
and four absorbing phases �denoted by A�, divided by the black
solid line. Each absorbing phase is characterized by a different or-
ganization of the network in domains �see text for details�. The
�red� dot-dashed line corresponds to the numerical solution of
mean-field equations.
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of the node is flipped and the density of unsatisfied links
changes by the quantity ��= 2�k−2j�

�k�N . Using these expressions,
it is possible to write the time evolution master equation for
a generic update rule

d�

dt
= �

k

Pk

1/N�
j=0

k

Bk,j
���Pk,j
�1 − ��

2�k − 2j�
�k�N

− �
2

�k�N�
= F�,s��� , �1�

where 1 /N is the temporal interval between successive steps
and Bk,j

��� is the probability to find a node with j unsatisfied
links. In a MF spirit, all nodes of the network can be consid-
ered equivalent and the probability to have an unsatisfied
link can depend only on the global observable �. Thus, the
probability to have an unsatisfied link is taken independent
for each node and is well approximated by a binomial distri-
bution Bk,j

���= � k
j ��

j�1−��k−j.
In the case of the voter model the update probability is

simply j /k, and it is possible to analytically solve it �13�. In
our model, the update probability is Pk,j =
�j /k+s−1�,
where 
�x� is the Heaviside step function. Due to the nonlin-
earity of Eq. �1� an analytical expression can be found only
for s=1. In such a case the right-hand side of Eq. �1� has the
simple expression

F�,s��� = 2�1 − ���1 − 2�� −
2

�k�
�

− e−�k���2�1 − ���1 − �� −
2

�k�
�
 . �2�

For �s sufficiently small, the stationary solution of Eq. �1�
has then the form �s= 2��k��1−��−1�

�k��2+�k��1−��−3�� . For ���c�s=1�
= �k�−1

�k� there is an active stationary state with �s
0. For
larger values of � the density of unsatisfied links is zero,
corresponding to an absorbing phase. The transition is pre-
dicted to be continuous. For �k�=10 the critical value is
�c�s=1�=0.9, in agreement with numerical simulations. It is
possible to determine numerically the transition line �c�s�
for any value of s. The resulting curve is reported in Fig. 3.

The simple model we have proposed offers a surprisingly
rich variety of possible scenarios by varying the two param-
eters s and �. In particular, phase boundaries correspond to
magnetization, connectedness and/or percolation transitions.
The most striking feature, absent in all other models of co-
evolution, is the existence of a phase where stable homoge-
neous domains coexist in the system even if the latter is not
split into components. This feature is due to the presence of
the threshold s: models characterized by a threshold are
likely to display this type of behavior and represent a prom-
ising option for a realistic description of social phenomena.
We stress however that the goal of this paper was not a
description of a specific real world phenomenon, but rather
the investigation of what are the possible qualitative out-
comes when threshold dynamics and rewiring operate simul-
taneously.
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