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Abstract

Background: Community structure is one of the key properties of complex networks and plays a crucial role in their
topology and function. While an impressive amount of work has been done on the issue of community detection, very little
attention has been so far devoted to the investigation of communities in real networks.

Methodology/Principal Findings: We present a systematic empirical analysis of the statistical properties of communities in
large information, communication, technological, biological, and social networks. We find that the mesoscopic organization
of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure,
which can be used as ‘‘fingerprints’’ of specific network categories. While community size distributions are always broad,
certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path
lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for
communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose
roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within
their communities, has a characteristic distribution for each category.

Conclusions/Significance: Our findings, verified by the use of two fundamentally different community detection methods,
allow for a classification of real networks and pave the way to a realistic modelling of networks’ evolution.
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Introduction

The modern science of complex systems has experienced a

significant advance after the discovery that the graph representa-

tion of such systems, despite its simplicity, reveals a set of crucial

features that suffice to disclose their general structural properties,

function and evolution mechanisms [1–8]. Representing a

complex system as a graph means turning the elementary units

of the system into nodes, while links between nodes indicate their

mutual interactions or relations. Many complex networks are

characterized by a broad distribution of the number of neighbors

of a node, i.e. its degree. This is responsible of peculiar properties

such as high robustness against random failures [9] and the

absence of a threshold for the spreading of epidemics [10].

Another important feature of complex networks is represented

by their mesoscopic structure, characterized by the presence of

groups of nodes, called communities or modules, with a high

density of links between nodes of the same group and a

comparatively low density of links between nodes of different

groups [11–14]. This compartmental organization of networks is

very common in systems of diverse origin. It was remarked already

in the 1960’s that a hierarchical modular structure is necessary for

the robustness and stability of complex systems, and gives them an

evolutionary advantage [15].

Exploring network communities is important for three main

reasons: 1) to reveal network organization at a coarse level, which

may help to formulate realistic mechanisms for its genesis and

evolution; 2) to better understand dynamic processes taking place

on the network (e.g., spreading processes of epidemics and

innovation), which may be considerably affected by the modular

structure of the graph; 3) to uncover relationships between the

nodes which are not apparent by inspecting the graph as a whole

and which can typically be attributed to the function of the system.

Therefore it is not surprising that the last years have witnessed

an explosion of research on community structure in graphs. The

main problem, of course, is how to detect communities in the first

place, and this is the essential issue tackled by most papers on the

topic which have appeared in the literature. A huge number of

methods and techniques have been designed, but the scientific

community has not yet agreed on which methods are most reliable

and when a method should or should not be adopted. This is due

to the fact that the concept of community is ill-defined. Since the

focus has been on method development, very little has been done

so far to address a fundamental question of this endeavor: what do
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communities in real networks look like? This is what we will try to assess

in this paper.

Previous investigations have shown that across a wide range of

networks, the distribution of community sizes is broad, with many

small communities coexisting with some much larger ones [12,16–

19]. The tail of the distribution can be often quite well fitted by a

power law. Leskovec et al. [20] have carried out a thorough

investigation of the quality of communities in real networks,

measured by the conductance score [21]. They found that the

lowest conductance, indicating well-defined modules, is attained

for communities of a characteristic size of *100 nodes, whereas

much larger communities are more ‘‘mixed’’ with the rest of the

network. For this reason they suggest that the mesoscopic

organization of networks may have a core-periphery structure,

where the periphery consists of small well-defined communities

and the core comprises larger modules, which are more densely

connected to each other and therefore harder to detect. Guimerá

and Amaral have proposed a classification of the nodes based on

their roles within communities [22].

However, the fundamental properties of communities in real

networks are still mostly unknown. Uncovering such properties is

the main goal of this paper. For this purpose, we have performed

an extensive statistical analysis of the community structure of

many real networks from nature, society and technology. The

main conclusion is that communities are characterized by

distinctive features, which are common for networks of the same

class but differ from one class to another. Remarkably, such

characterization is independent of the specific method adopted to

find the communities.

Methods

As our target is to study the statistical features of communities, we

need to employ data sets on large networks containing high numbers

of communities of varying size. Our data sets contain *105{106

nodes, with exception for protein interaction networks (PINs), where

the largest available data sets are of the order of 104 nodes.

Table 1 lists the network datasets we have used, along with some

basic statistics. Most of them have been downloaded from the

Stanford Large Network Dataset Collection (http://snap.stanford.

edu/data/). Some networks are originally directed (e.g., the Web

graph), but we have treated them as undirected. Further details on

all networks can be found in the Appendix S1.

Overall, we have considered five categories of networks:

N Communication networks. This class comprises the email

network of a large European research institution, and a set of

relationships between Wikipedia users communicating via

their discussion pages. Note that in both cases, communication

is not necessarily personal but involves, e.g., mass emails, and

thus these networks cannot be considered as social networks.

N Internet. Here we have two maps of the Internet at the

Autonomous Systems (AS) level (i.e. nodes are groups of

routers administered by a single entity), produced by the two

main projects exploring the topology of the Internet: CAIDA

(http://www.caida.org/) and DIMES (http://www.netdimes.

org/).

N Information networks. This class includes a citation

network of online preprints in www.arxiv.org, a co-purchasing

network of items sold by www.amazon.com and two samples

of the Web graph, one representing the domains berkeley.edu

and stanford.edu (Web-BS), the other was released by Google

(Web-G).

N Biological networks. This class contains the sets of

interactions between proteins of three organisms: fruit fly

(Drosophila melanogaster), yeast (Saccharomyces cerevisiae) and man

(Homo sapiens).

N Social networks. Here we considered four datasets: a

network of friendship relationships between users of the on-line

community LiveJournal (www.livejournal.com); the set of trust

relationships between users of the consumer review site

epinions.com; the friendship network of users of slashdot.org;

the friedship network of users of www.last.fm.

Table 1. List of the network datasets used for our analysis.

Network statistics

Category name # nodes # links average degree max degree

Communication wikitalk 2,394,385 4,659,560 3.89 100,029

email 265,214 364,481 2.75 7,636

Internet caida 26,475 53,381 4.03 2,628

dimes 26,211 76,261 5.82 3,988

Information Web google 875,713 4,322,050 9.87 6,332

arxiv 27,770 352,285 25.37 2,468

amazon 410,236 2,439,440 11.89 2,760

Web BS 685,230 6,649,470 19.41 84,230

Biological dmela 7,498 22,678 6.05 178

yeast 1,870 2,203 2.36 56

human 4,998 21,747 8.70 282

Social live j 4,846,609 42,851,211 17.68 20,333

epinions 75,879 405,740 10.69 3,044

last fm 2,647,364 11,245,707 8.49 13,431

slashdot 773,60 469,180 12.13 2,539

For each network we specify the number of nodes and links, the average and maximum degree.
doi:10.1371/journal.pone.0011976.t001
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The problem of choosing a method for detecting communities is

a very delicate one. First, very efficient algorithms are needed,

because the networks we study are large. This requirement rules

out the majority of existing methods. Second, as discussed above,

there is no common agreement on an all-purpose community

detection method. This is because of the absence of a shared

definition of community, which is justified by the nature of the

problem itself. Consequently, there is also arbitrariness in defining

reliable testing procedures for the algorithms. Nevertheless, there

is a wide consensus on the definition of community originally

introduced in a paper by Condon and Karp [23]. The idea is that

a network has communities if the probability that two nodes of

the same community are connected exceeds the probability that

nodes of different communities are connected. This concept of

community has been implemented to create classes of benchmark

graphs with communities, such as those introduced by Girvan and

Newman [11] and the graphs recently designed by Lancichinetti

et al. [24], which integrate the benchmark by Girvan and

Newman with realistic distributions of degree and community size

(LFR benchmark). Recent work indicates that some algorithms

perform very well on the LFR benchmark [25]. In particular, the

Infomap method introduced by Rosvall and Bergstrom [26] has an

outstanding performance, and it is also fast and thus suitable for

large networks. However, as every community detection method

has its own ‘‘flavor’’ and preference towards labeling certain types

of structure as communities, relying on a single method is not

enough if general conclusions on community structure are to be

presented. Therefore we have cross-checked the results obtained

by Infomap with those produced by a very different algorithm, the

Label Propagation Method (LPM) proposed by Leung et al. [27].

The latter has proven to be reliable on the LFR benchmark and is

also fast enough to handle the largest systems of our collection.

Detailed descriptions of Infomap and the LPM are given in

Appendix S1. Here we just point out the profound differences

between the two techniques. Infomap is a global optimization

method, which aims to optimize a quality function expressing the

code length of an infinitely long random walk taking place on the

graph. The LPM is a local method instead, where nodes are

attributed to the same community where most of their neighbors

are. The partitions obtained by both methods for the same

network are in general different. However, the general statistical

features of community structure do not appear to depend much on

the details of partitions. In the following, only Infomap results will

be presented; for LPM, see Appendix S1.

Results

We begin the analysis by briefly discussing the distribution of

community sizes (Fig. 1). We see that, as expected, for each system

there is a wide range of community sizes, spanning several orders

of magnitude for the largest systems. This is in agreement with

earlier studies [12,16–19]. The overall shapes of the distributions

are similar across systems of the same class. Distributions for

biological networks show the largest differences, which, however, is

likely to result from noise as the networks are smaller. For

biological networks, analysis performed with the LPM shows

slightly different, well overlapping distributions (see Appendix S1).

Next, we turn to the topology of the communities, and study the

link density of communities and its dependence on community

size. The link density of a subgraph is defined as the fraction of

existing links to possible links, r~2t= s s{1ð Þ½ �, where t is the

number of its internal links and s its size measured in nodes. Here,

we use the scaled link density ~rr~rs~2t= s{1ð Þ, which also

approximately amounts to the average internal degree of nodes in

the community. We have chosen this measure since it clearly

points out the nature of subgraphs. For trees, there are always s{1
links, and hence ~rrtree~2. On the other hand, for full cliques r~1
and hence ~rrclique~s.

Fig. 2 displays the average scaled link densities ~rr as function of

community size for different networks. The dashed lines indicate

Figure 1. Distribution of community sizes. All distributions are broad, and similar for systems in the same category. Data points are
averages within logarithmic bins of the module size s.
doi:10.1371/journal.pone.0011976.g001
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the limiting cases (~rrtree~2, ~rrclique~s). We see that the link densities

in the communication and Internet networks are very close to the

lower limit, which means that their communities are tree-like and

contain only few or no loops. In communication networks, the

scaled link density does not depend on community size, whereas in

Internet graphs large communities appear somewhat denser.

Networks in these two classes are the sparsest in our collection, as

their very small average degree indicates that they are overall not

much denser than trees (see Table 1). It should be noted that in

general, the intuitive view on communities is that they are ‘‘dense’’

compared to the rest of the network. However, as the methods

applied here yield partitions, the communities of a tree-like network

are also necessarily tree-like. Contrary to the above, the much

denser information networks reveal a different picture, where

communities are fairly dense objects, with the scaled density

increasing with s. Especially in the Amazon network, communities

with s 10 are almost cliques. Social networks show yet another

pattern: the scaled density of the modules grows quite regularly with

the size s, approximately as a power law. Communities in social

networks are mostly far from the two limiting cases: they are denser

than trees, but much sparser than cliques, with the exception of

small communities which appear more tree-like. Finally, the

biological networks are characterized by two regimes: for s 10,

communities are very tree-like; for larger values of s the scaled

density increases with s. In Fig. 3 the characteristic communities of

each network class are illustrated.

The compactness of communities can be measured using the

average shortest path length ‘ within each community. Fig. 4

displays the average values of ‘ as function of community size s.

For all networks, the average shortest path lengths ‘ are very small,

‘v3 with the exception of social networks. Interestingly, all plots

reveal the same basic pattern, independently of the network class.

For very small communities, ‘ grows approximately as the

logarithm of the community size (indicated by the dashed line),

which is the ‘‘small-world’’ property typically observed in complex

networks [28]. We call these modules microcommunities. For sizes s of

the order of 10, however, the increase of ‘ suddenly becomes less

pronounced, and several curves reach a plateau. Modules with

*>10 nodes are macrocommunities. The stabilization of the average

shortest path length in macrocommunities can be attributed to the

presence of nodes with high degree, i.e. hubs, which make geodesic

paths on average short. We remark that, since most of our systems

have broad degree distributions, shortest path lengths are very

short [29], but the sharp transition we observe is unexpected and

appears as an entirely novel feature.

For communication networks, there is a plateau with ‘*2 for

sw10. As these communities are tree-like, this indicates that they

have a star-like structure where most nodes are connected to a

central hub only and thus their distance equals two. For the

Internet networks, the joint presence of low density and low

distances also means that hubs dominate the structure – here,

‘‘merged-star’’ structures consisting of two or more hubs sharing

many of their neighbors were observed (see Fig. 3d). This structure

guarantees an efficient communication between the systems’ units.

On the contrary, information, social, and biological networks have

a higher density and hence their short path lengths are due to both

the density and the presence of hubs. Hubs play the least dominant

role in social networks, as the average shortest path lengths keep

slowly increasing also for large s.

The above picture is further corroborated by Fig. 5, which

displays the ratio between the maximal observed community-

internal degree of nodes max(kin) and s{1 as a function of the

community size s. This ratio equals unity if any node is connected

to all other nodes in its community, and thus it quantifies the

dominance of the biggest hubs within communities. For

communication networks, max(kin)=(s{1) is close to unity even

for large s, in accordance with the above observations on star-like

communities. For Internet, this quantity somewhat decreases with

  

Figure 2. Scaled link density of communities as a function of the community size. Communication and Internet networks consist of
essentially tree-like communities, while communities of social and information networks are much denser. Small modules in biological networks are
often tree-like, while larger modules are denser. Data points are averages within logarithmic bins of the module size s.
doi:10.1371/journal.pone.0011976.g002

Characterizing Communities

PLoS ONE | www.plosone.org 4 August 2010 | Volume 5 | Issue 8 | e11976



s, as communities may contain multiple hubs which do not

connect to all other nodes. In information networks, there are

some differences. In the Web graphs, the largest communities

contain nodes connecting (almost) the entire community. As the

edge density in these communities is high, there may be several

such nodes – in a clique, all nodes have degree s{1. For biological

and social networks, there is a decreasing trend. Especially in social

networks, there are few or no dominant hubs in large

communities. We remark that the agreement between the curves

of Fig. 5 is more qualitative than quantitative (especially for social

and biological networks), at variance with other signatures. This is

because the plots refer to the properties of a very restricted class of

Figure 4. Average shortest path lengths ‘ within communities as a function of community size s. After an initial logarithmic ‘‘small-world’’
regime (dashed diagonal line), the average shortest path grows much slower or saturates for communities with s *> 10 nodes (dotted vertical line).
Data points are averages within logarithmic bins of module size s.
doi:10.1371/journal.pone.0011976.g004

Figure 3. Visualized examples of communities in networks of different classes. Communication networks (a: email, b: Wiki Talk) contain
very sparse communities with star-like hubs. These hubs give rise to very low shortest path lengths within communities (see Fig. 2). Star-like hubs are
also present in Internet communities (c: DIMES, d: CAIDA), which are relatively sparse as well. The CAIDA community displays a ‘‘merged-star’’
structure fairly typical for these networks (see Appendix S1). On the contrary, information networks contain dense communities up to large cliques (e:
Amazon, f: Web-BS). In biological networks, the larger the community, the less tree-like it is (g: D. melanogaster, h: H. sapiens). Finally, communities in
social networks appear on average fairly homogeneous (i: Slashdot, j: Epinions).
doi:10.1371/journal.pone.0011976.g003
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‘‘extremal’’ nodes, i.e. of the community hubs. So, on the one

hand, the noise of the curves is larger. On the other hand,

community detection methods have different ways to treat hubs:

while methods generally tend to put them ‘‘within’’ communities,

others (like Infomap) occasionally place them ‘‘between’’

communities.

Let us next take a closer look at the relationship between

individual nodes and community structure. Here, the most natural

property to investigate is the internal degree kin, indicating the

number of neighbors of a node in its community. We measure the

embeddedness of a node in its community with the ratio kin=k,

characterizing the extent to which the node’s neighborhood belongs

to the same community as the node itself. The probability

distribution of the embeddedness ratio of all nodes in their

respective networks is displayed in Fig. 6. One would straighfor-

wardly assume that on average, the embeddedness of nodes would

be fairly large, and a substantial fraction of their neighbors should

reside inside their respective communities. However, Fig. 6 shows a

more intricate pattern, where smaller values of kin=k are not at all

rare. All of our networks are characterized by a substantial fraction

of nodes which are entirely internal to their communities, i.e. have

no links to outside their community and thus kin=k~1. These

correspond to the rightmost data points in each plot, and such nodes

typically amount to over 50% of all nodes. These nodes have mostly

a low degree (such as the degree-one nodes connected to hubs in

communication networks). Networks in the same class follow

essentially a very similar pattern. Communication networks and the

Internet have very similar-looking profiles, where the distribution

has a peak around kin=k*0:5. Information networks, instead, have

a rather different profile, with an initial smooth increase reaching a

plateau at about kin=k*0:4. The biological networks, despite the

inevitable noise, also show a consistent picture across datasets. They

somewhat resemble the communication and Internet networks, with

an initial rise until kin=k*0:5, followed by a slow descent for larger

values. Social networks have a rather flat distribution over the whole

range, with little variations from one system to another. This means

that there are many nodes with most of their neighbors outside their

own community. Most community detection techniques, including

the ones we have adopted, tend to assign each node to the community

which contains the largest fraction of its neighbors. This implies that if

a node has only a few neighbors within its own community, it will

have even fewer neighbors within other individual communities.

Such nodes act as ‘‘intermediates’’ between many different modules,

and are shared between many communities rather than belonging to

a single community only. Hence it would be more correct to assign

them to more than one community. Overlapping communities are

known to be very common in social networks, and dedicated

techniques for their detection have been introduced [16,30–35].

In Appendix S1 other statistical properties of the communities

are investigated.

Discussion

Since the advent of the science of complex networks, its focus

has shifted from understanding the emergence and importance of

system-level characteristics to mesoscopic properties of networks.

These are manifested in communities, i.e. densely connected

subgraphs. Communities are ubiquitous in networks and typically

play an important role in the function of a complex system –

modules in protein-interaction networks relate to specific biolog-

ical functions, and communities in social networks represent the

fundamental level of organization in a society. The dual problem

of formally defining and accurately detecting communities has so

far attracted the most of attention, at the cost of a lack of

understanding of the fundamental structural properties of

communities. Our aim in this paper has been to uncover some

of these properties.

Our results indicate that communities detected in networks of

the same class display surprisingly similar structural characteristics.

This is remarkable, as some classes are really broad and comprise

Figure 5. The maximal observed internal degree of nodes as a function of the community size s. This quantity equals one if any node is
linked to all other nodes of its community, and thus quantifies the dominance of hubs within communities.
doi:10.1371/journal.pone.0011976.g005
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systems of different origin (e.g. the class of information networks,

which includes graphs of citation, co-purchasing and the Web). The

result is verified by two different community detection methods which

are both partition-based but rely on entirely different principles. In

accordance with earlier results, community size distributions are

broad for all systems we have studied. Link densities within

communities depend strongly on the network class. The average

shortest path length displays similar behavior across all classes,

initially increasing logarithmically as a function of community size

(microcommunities) and then slowing down or saturating for

communities of size s *> 10 (macrocommunities). In combination

with our results on link density in communities, the behavior of path

lengths reveals a picture where high-degree nodes are very dominant

in communities of certain classes (communication, Internet) and play

a less important role in the connectivity of others, especially social

networks. This picture is corroborated by the analysis of maximal

community-internal degrees of nodes. Finally, also the probability

distribution of the fraction of internal links for nodes displays a clear

signature for each of the considered classes.

The signatures we have found are a sort of network ID, and

could be used both to classify other systems and to identify new

network classes. Moreover, they could become essential elements

of network models, with the advantage of more accurate

descriptions of real networks and predictions of their evolution.

Although our results have been obtained using two different

methods, their general validity merits some discussion. As the

concept of ‘‘community’’ is ill-defined, every method for detecting

communities is based on a specific interpretation of the concept.

Furthermore, the underlying philosophies of methods can largely

differ. Methods requiring that communities are ‘‘locally’’ very

dense, such as clique percolation [16], would detect only a few

communities in the communication and Internet networks, as they

do not consider trees or stars as communities – nevertheless, this

result would be consistent for networks of the same class. On the

other hand, it is evident that partition-based methods neglect the

fact that nodes may participate in multiple communities. However,

it is worth noting that whichever method is used, the resulting

communities are actual subgraphs of the network under study, i.e.

its building blocks. Thus their statistical properties reflect the

mesoscopic organization of networks, and our results indicate that

this organization is similar within classes of networks.

A very recent paper [36] has arrived to a similar conclusion with

an entirely different approach, where taxonomies of networks are

constructed based on signatures derived from the modularity of

Newman and Girvan.

Supporting Information

Appendix S1 Appendix to the manuscript.

Found at: doi:10.1371/journal.pone.0011976.s001 (0.40 MB

PDF)
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