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Bridging the gap between efficacy trials and
model-based impact evaluation for new
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In Tuberculosis (TB), given the complexity of its transmission dynamics, observations of

reduced epidemiological risk associated with preventive interventions can be difficult to

translate into mechanistic interpretations. Specifically, in clinical trials of vaccine efficacy, a

readout of protection against TB disease can be mapped to multiple dynamical mechanisms,

an issue that has been overlooked so far. Here, we describe this limitation and its effect on

model-based evaluations of vaccine impact. Furthermore, we propose a methodology to

analyze efficacy trials that circumvents it, leveraging a combination of compartmental models

and stochastic simulations. Using our approach, we can disentangle the different possible

mechanisms of action underlying vaccine protection effects against TB, conditioned to trial

design, size, and duration. Our results unlock a deeper interpretation of the data emanating

from efficacy trials of TB vaccines, which renders them more interpretable in terms of

transmission models and translates into explicit recommendations for vaccine developers.
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Despite the global decline in tuberculosis (TB) burden
during the present century, it still remains one of the
greatest threats to public health worldwide. According to

the last Global TB Report of the World Health Organization
(WHO)1, 10 million people developed TB during 2018 and 1.45
million people were killed by it. Furthermore, the impact of
HIV–TB co-infection2,3, accounting for 251,000 of these deaths1,
and the emergence of multi- and extensively drug-resistant TB
strains4,5 is devastating. These realities point to the pressing need
for the development of new control methods and epidemiological
interventions, namely the introduction of a new vaccine. As of
today, the research community is engaged in pursuing many
different candidates for a new TB vaccine, 12 of which are being
tested in clinical trials1.

However, the development of TB vaccines is plagued with
many conceptual challenges that make difficult the evaluation of
different candidates across the clinical pipeline6. The lack of
protection correlates for TB7,8 hinders early efficacy evaluations,
which forces researchers to wait until late stages, typically phases
2b and 3 of the clinical pipeline to assess vaccine efficacy. These
trials require the recruitment and monitoring of thousands of
individuals in high TB incidence settings during several years. In
this regard, the neatly designed phase 2b trial of the MVA85A
vaccine advanced a solid quantitative framework for defining
minimum cohort sizes and follow-up periods in contemporary
epidemiological settings, even though it failed to provide evidence
of significant protection9. More studies have followed its steps,
including different types of phase 2b trials for other vaccines,
such as H4:IC3110 and the M72/AS01E11, which showed 54%
efficacy (95% CI: 2.9–78.2%) against active TB in adult indivi-
duals already exposed to Mycobacterium tuberculosis (M.tb).

Phase 2b clinical trials can be designed to estimate different types
of vaccine efficacy, including prevention of infection (POI), pre-
vention of disease (POD) and prevention of recurrence (POR)12.
Once these effects have been estimated for a given vaccine, its
potential impact is estimated through the use of mathematical
models of pathogen transmission13. However, trial-derived readouts
of vaccine efficacy do not always guarantee an unequivocal inter-
pretation from a TB modelling perspective. This is due to the
extreme complexity of the natural history of the disease, which
enables different dynamic mechanisms through which a vaccine can
provide protection.

After an initial infection with M.tb, the causative agent of TB,
some individuals develop TB within incubation periods of less
than ’2 years14 (i.e. fast progression). On the other hand, others
succeed at containing the infection and become asymptomatic,
latent TB-infected individuals (LTBI). LTBI subjects remain so
often for the rest of their lives, although they can suffer endo-
genous reactivation of the disease, even decades after the first
infection event. Finally, they can also be re-infected and progress
quickly to TB only after the secondary infection. These three
possible routes to disease can be described as sketched in
Fig. 1a13,15,16, which arguably reflects one of the most elementary
model architectures, among the different options that can be used
to describe the initial stages of the transmission chain of M.tb.
that include a description of the incubation period of fast pro-
gression, a key ingredient for our analyses17.

From this outlook, a vaccine can confer POD through different
mechanisms. On the one hand, it may act by decreasing the
fraction of individuals that undergo fast progression to TB after
an infection—or reinfection—event. However, it is also possible
that the vaccine delays the onset of active TB, slowing down the
dynamics of fast progression instead of preventing it. These two
possible mechanisms have different dynamical interpretations,
and in principle, may appear independent and not necessarily
correlated. Factors that affect the probability of an individual to

develop a fast or slow path to disease are environmental and
genetic. However, little is known about whether or how they
impact the delay observed between infection and onset of
symptoms in TB cases associated with recent transmission18.

The main focus of this work is the analysis of an apparently
simple interpretation problem: in a POD clinical trial, how does
one distinguish between a vaccine that prevents fast progression
upon infection, or reinfection, from a vaccine that delays it? Two
main types of trial designs are analyzed in this work: trials such as
the one conducted for the MVA85A vaccine9, conducted in
cohorts of naive individuals, and trials such as the study for the
M72/AS01E vaccine11, which involved the recruitment of
already- sensitized subjects. In both cases, we formally describe
the issue and characterize its negative impact on our ability to
produce unbiased impact evaluations for vaccines. Finally, we
propose an additional set of analyses that allow us to distinguish
among the possible vaccine mechanisms at play and discuss their
range of applicability under different epidemiological scenarios,
age of participants, trial dimensions and designs.

Results
Mapping prevention readouts onto multiple vaccine mechan-
isms. In an elementary version of M.tb. transmission models
(Fig. 1a), susceptible individuals (S) are defined by their absence
of immunoreactivity to TB—typically showing negative results to
an Interferon-gamma-release assay19 (IGRA)—and get infected at
a rate β. Upon infection, they split between two classes of infected
individuals: F—fast progression to disease—with probability p, or
L, associated with LTBI, with the remaining probability 1� p.
Individuals in groups F and L differ in their risk to develop active
TB per unit time. While fast progressors develop the disease (D)
at a rate r associated with typical transition times lower than 2
years14, LTBI individuals can remain so for decades20, only
eventually falling sick, at a rate rL≪ r. Furthermore, latently
infected individuals can get re-infected, after which, a fraction of
them will progress rapidly to disease too. This event occurs at a
rate that is proportional to the product of the basal infection rate
times the probability of fast progression upon infection (βp),
modulated by a coefficient q that accounts for the protection
against fast progression to TB upon reinfection that LTBI con-
fers21. For vaccinated subjects, parameters β, p and r may be
reduced to ð1� εβÞβ, ð1� εpÞp and ð1� εrÞr, respectively, as a
consequence of the action of the vaccine (in all three cases ε< 1).
Typically, trial duration is too short, and cohort size too small, to
observe protective effects related to the rate of progression to
disease from LTBI (see Supplementary Methods, module I, and
Supplementary Fig. 1).

When a clinical trial is conducted in cohorts of susceptible
individuals (IGRA negative), the entire dynamical process
represented in Fig. 1a can be observed within the context of the
study. Concerning the infection end point, it is usually addressed
by IGRA conversion, while disease is defined upon standard TB
diagnosis criteria9. The classical approach to interpret the results
of these studies consists of analyzing the times elapsed until
requirements of infection and disease end points are verified
(Fig. 1b, c), to infer two independent efficacy parameters by using
survival analysis: efficacy against infection VEinf and against
disease VEdis (i.e. POI and POD12). However, according to the
transmission model in Fig. 1a, these two vaccine efficacy
observations can arise from at least three independent mechan-
isms: reduction of susceptibility to infection (via εβ > 0), reduction
of the probability of fast progression (εp > 0) and reduction of the
rate of fast progression to disease (εr > 0).

All that said, the nature of the question under analysis turns
evident: how to estimate three independent vaccine mechanisms
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ðεβ; εp; εrÞ from only two measurements of vaccine efficacy
ðVEinf ;VEdisÞ? Regarding POI, we can match the efficacy
measured to a reduction in the probability of getting infected
upon contact with an infectious individual: VEinf � εβ. Instead,
vaccine’s POD is more complex, and a single readout of VEdis is
compatible with different combinations of effects on fast
progression probabilities and transition rates to disease (see
Suppplementary Methods, module II and Supplementary Fig. 2).
This can be demonstrated mathematically, by deriving a relation
VEdis ¼ f ðεp; εr; εβÞ that bounds the parameters (Fig. 1d, case
where VEinf ¼ εβ ¼ 0, see Supplementary Methods, module II).
Importantly, this issue is an unavoidable consequence of
incubation periods of fast progression to TB being of the same
order of the maximum follow-up periods affordable in this type
of trials. This makes it possible to confound an eventual delay in
incubation (i.e. εr) with genuine vaccine-mediated prevention of
fast progression to TB (i.e. εp). In this sense, this is not an artefact
of the modelling architecture chosen, and the same ambiguity can
be easily parameterized choosing other possible architectures, as
long as these include a description of the time of incubation of
fast progression to TB17.

Once the problem is identified, we interrogate whether vaccines
acting through different combinations of (εp; εr) that are

compatible with a common value of VEdis also produce
equivalent impacts when applied on large populations. To answer
this question, we capitalized on a model designed to describe M.
tb. transmission in trans-national settings16 (Supplementary
Methods, module III, and Supplementary Fig. 3). By using this
model, we simulated the introduction of different types of
vaccines at the end of 2025, in a high-burden country such as
Ethiopia, and estimated their impact, measured as the total
number of TB cases prevented until 2050, upon a future
immunization campaign targeting newborns, assuming, in an
ideal scenario, 100% vaccine coverage and long-lasting vaccine
effects (Fig. 1e). For this particular case, a vaccine preventing fast
progression to disease (via εp) is expected to prevent as many as
256,000 more TB cases (95% CI: 104–466 × 103) than a vaccine
based on delaying it (via εr), even if the values of these parameters
in either case (εp ¼ 0:5 vs εr ¼ 0:74) are compatible with the
same efficacy readout VEdis ¼ 50% obtained from a 4-year trial.
This amounts to a relative difference of 104% (95% CI: 44–180%)
with respect to the least favourable case. Such deviation is also
significant for more realistic duration of vaccine protection effects
(120% (95% CI: 50–219%)) for 1% immunity waning per year,
and 176% (95% CI: 72–319%) for 5%, see Supplementary
Methods, module III and Supplementary Fig. 4).
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Fig. 1 Equal prevention readouts from vaccine efficacy trials can map to multiple vaccine mechanisms and expected vaccine impacts. a Elementary M.tb.
transmission model. S=susceptible, F=infected, fast progression to disease, L=infected, slow progression to disease (LTBI), D=active TB. The
epidemiological parameters (black) can be modified by the vaccine effects (blue). b From the distributions of transition times between the beginning of the
trial (green dots) until end-point infection (orange arrows), survival curves are built for the control and vaccine cohorts, and from their analysis, VEinf is
estimated. c Equivalent schematics for the estimation of VEdis from survival analysis of transition times from trial’s beginning (green) to the end point
associated with active TB (red arrows). d Curve of values of (εp,εr) compatible with a measurement of POD of VEdis ¼ 0:5 after 4 years of follow-up
(assuming no POI, i.e. εβ ¼ 0). We have marked five different points in this curve, with different balances between εp and εr, to be used in the next
example. e Foreseen impacts obtained after introducing the vaccines highlighted in d in Ethiopia, at the end of 2025. Blue bars: vaccine impacts. Grey bars:
difference in impact estimated between each vaccine and the least impactful case of a vaccine acting enterily through εr (lightest blue). Impacts are
estimated by using a large-scale transmission model16 as the number of TB cases prevented in the country by the vaccine during the period 2026–2050.
Error bars (black bars) represent the 95% confidence interval.
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Gauging vaccine mechanisms from trial data (naive cohorts).
Next, we introduce an analytical approach to estimate indepen-
dently the different mechanistic contributions to vaccine POD,
namely εr and εp. While εβ is directly equivalent to the POI
readout (εβ � VEinf ), and can thus be estimated through Cox
regression, εr and εp cannot, since multiple combinations of them
are compatible with a single-efficacy readout (Fig. 1d).

To solve this issue, in addition to the custom estimation of the
efficacy against infection VEinf � εβ and disease VEdis, we add a
third independent statistical analysis to estimate εr from the
comparison of the transition times between end-point infection
and end-point disease across cohorts (Fig. 2a). To do so, we
assume that all TB cases observed in a trial correspond exclusively
to fast progressors (see Supplementary Methods, module I and
Supplementary Fig. 1). This allows us to derive an analytical
expression for the expected distribution of transition times
observed between IGRA conversion and TB diagnosis
t ¼ tdis � tinf , conditioned to the moment IGRA conversion
happened. This distribution t ¼ Ψðrcohort; tinf Þ has as its only
parameter the transition rate to disease of the cohort under
analysis: r, or rð1� εrÞ for the control and vaccine group,
respectively. We infer these parameters from the data in both
cohorts, by using a maximum-likelihood approach, and compare
them to estimate εr (see Fig. 2b, and Methods).

Thanks to this independent estimation of εr, we can now use
the analytical relationship VEdis ¼ f ðεβ; εr; εpÞ previously derived
(see Fig. 1d), to solve for the only parameter that remains
unknown: εp, as detailed in the Supplementary Methods,
module II. As a result, we obtain a full description of the vaccine
through the estimations of the three effects ðεβ; εr; εpÞ that drive
both POI and POD.

We then used Monte-Carlo methods to test the performance of
our approach, by simulating clinical trials of different dimensions
for different vaccines (Fig. 2c)22. For a cohort size N and follow-
up period T , we use as inputs the ground-truth values of the
vaccine parameters ðεβ; εr; εpÞ, and simulate the stochastic
development of possible realizations of the trial by using an
agent-based implementation of the model represented in Fig. 1a.
The outcome of such simulation is a set of two vectors of
transition times to infection and TB across participants. Since the
model is stochastic, we iterate to obtain a set of simulated trials
that yield a distribution of most-likely outcomes conditioned both
by trial dimensions and vaccine characteristics. For each
simulation, we apply our method to characterize the vaccine
and evaluate its goodness comparing the results with the a priori-
known ground-truth values.

As a first metric to quantify our method’s performance, we
need to ensure that the estimates produced lie within epidemio-
logically meaningful ranges often enough. To ensure that, we
define such meaningful intervals for the vaccine-mediated
reduction of fast transition rates (εr) and probability of fast
progression (εp) by imposing a series of basic requisites (see
Methods: a vaccine cannot delay fast progression to disease to
make it slower than slow progression, or modify probabilities of
fast progression that go beyond the interval ½0; 1�, etc.). Then, we
identify the simulations, that due to insufficient statistics, derive
into parameter estimates that go beyond those intervals, and label
them as failed attempts. In Fig. 2d we represent the fraction of
simulations yielding valid inferences of vaccine descriptors, for
the vaccines in Fig. 1d.

As for the comparison between the distribution of inferred
estimates and ground-truth values, our method succeeds at
producing median estimators that closely resemble the ground
truth for different vaccines (Fig. 2e: maximum deviation
between median estimates and ground-truth values equal to

0.03 s.d.), albeit a vast uncertainty was caused by the low
sample size.

Uncertainty may thus compromise the feasibility of our
approach, especially if trials are too small, or brief, to ensure
sufficient statistics. To shed light on this issue, we simulated trials
of different sizes and durations for the two vaccines represented
in Fig. 2e, and obtained, in each case, the probability of obtaining
a valid simulation yielding an inferred parameter for the driver
mechanism that is valid (thus excluding failed trial attempts), and
statistically significant (95% CI not crossing zero). As we see in
Fig. 2f, a vaccine that reduced the probability of fast progression
(εp, up) is easier to characterize than a vaccine that delays it (εr,
bottom). For a trial of N ¼ 3000 and T ¼ 4 years, the first
vaccine will be successfully characterized with p ¼ 0:95, while for
the second vaccine, that probability of success goes down to
p ¼ 0:75.

In addition, we were interested in addressing how robust the
performance of our approach is to variation in the basal
epidemiological parameters, especially those that are known to
vary more significantly across epidemic settings and age strata:
the infection rate β and the probability of fast progression p. To
do that, we simulated and analyzed ensembles of 500 trials under
alternative scenarios where β, p or the level of protection against
disease of LTBI individuals, q, were allowed to vary around their
reference values (β ¼ ð0:03; 0:05; 0:069; 0:09; 0:11Þ, p ¼
ð0:1; 0:15; 0:2; 0:3; 0:375; 0:5Þ q ¼ ð0:1; 0:15; 0:21; 0:3; 0:4Þ, see
Supplementary Fig. 5). Reassuringly, the method performance is
similar in all these alternative scenarios compared with what is
shown in Fig. 2, yielding parameter estimates that deviate
marginally with respect to the ground-truth values (bias lower
than 0:06 s.d. in all scenarios tested there). This includes
incidence rates lower than those observed in the reference setup
(down to β ¼ 0:03, bias lower than 0.065 s.d. for each of the
parameters, in either εr or εp-based vaccines), and lower values of
the fast progression probability, comparable to those typically
assumed for adolescents and adults (p ¼ 0:15, bias lower than
0.021 s.d.)16.

Finally, while all the results presented in Fig. 2 correspond to a
vaccine that provides POD, but not POI (i.e. εβ ¼ 0), in
Supplementary Fig. 6 we show that for vaccines conferring at
the same time significant levels of POI and POD, the methods
presented here can be equally applied, even if, in this scenario, the
mechanistic variability underlying POD becomes quantitatively
less important.

Impact evaluation of empirically characterized vaccines. In the
previous sections, we described our method to estimate the dif-
ferent mechanistic contributions to vaccine POD from the ana-
lysis of IGRA-negative trials data. We also illustrated, in Fig. 1e,
how the impacts that vaccines leaning on different combinations
of these mechanisms compare. However, in that analysis, the
uncertainty of impact estimates does not come from vaccines
descriptions, which were still considered error-free, but was
propagated from the inputs of the transmission model used
(Supplementary Methods, module III). Therefore, it remains
pending to address what is the role of the additional uncertainty
introduced in impact forecasts that is due to our limited resolu-
tion when estimating vaccine parameters.

To answer this question, we turn to the model used to estimate
vaccine impacts in large-scale settings described before (Fig. 1e),
which we now use to estimate how does the uncertainty in
vaccine characterization propagate into impact evaluations. To do
that, we simulate sets of trials for vaccines of efficacy against
disease (VEdis) of 25, 50 and 75%, leaning on different
combinations of the effects on fast transition rates (εr) and
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probabilities (εp). Then, we use our inference method to estimate
the values of these parameters, and use those estimates, along
with their corresponding aggregated uncertainty intervals, to feed
the transmission model and estimate vaccine impact. The site and
period chosen for vaccine evaluation correspond to Ethiopia for a
hypothetical vaccination strategy implemented on newborns

between the end of 2025 and 2050. The results of these analyses
are shown in Fig. 3. As shown before for the reference case of
VEdis ¼ 50%, for efficacy equal to 25 and 75%, we also observe
significant differences in impact when comparing vaccines that
depend on the two mechanisms studied (relative difference
between a εp-based vaccine and a εr vaccine equal to 201% (95%
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Fig. 2 Methods for characterizing vaccine mechanisms from the analysis of clinical trials conducted on naive cohorts. a Inference of εr. From the
distribution of times from infection (orange) to disease (red), we obtain the rates of fast progression to TB in each cohort: either rc ¼ r (control), or
rv ¼ rð1� εrÞ (vaccine). b Transition times of control (left) and vaccinated cohort (right: vaccine acting through εr) between IGRA conversion and disease
onset. By using likelihood maximization, we infer within-cohort transmission rates to disease rc an rv , which are associated with expected values for the
transition times (blue, continuous lines) that closely resemble the a priori-known analytical predictions (dashed lines). From these estimates, εr is
estimated as 1� rv=rc. c Schematic representation of the computational pipeline used in this work for the analysis of clinical trials conducted on IGRA-
negative cohorts, structured in three modules. Module I: trial simulation: From a given vaccine (εβ; εr; εp) and trial dimensions (N; T) we simulate 500
equivalent trials. Module II: vaccine characterization: then, we analyze the outcomes of the simulated trials to estimate εβ, εr and εp. Module III: impact
evaluation. We use the comprehensive transmission model developed in ref. 16 to evaluate the impact associated with the characterized vaccines. d
Fraction of valid realizations of a trial yielding epidemiologically plausible vaccine parameterizations, (excluding failed attempts). e Vaccine characterization
of εβ; εr; εp. Error bars represent the 95% confidence interval. f Estimated probability of obtaining a trial result, leading to a successful characterization of εp
(up) or εr (bottom) (CI not crossing 0 at a 95% confidence level for the parameter whose ground-truth value is non-zero).
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CI: 52–541%) for VEdis ¼ 0:25, and 32% (95% CI: 2.5–55%) for
VEdis ¼ 0:75, with respect to the vaccine acting through εr).

Concerning impact uncertainty, vaccine characterization adds
to the rest of uncertainty sources of the transmission model,
contributing to total impact CIs with a fraction that varies from
3.3 to 85.3%, depending on vaccine efficacy levels and
mechanisms. Under our transmission model, this uncertainty
prevents us from rejecting the null hypothesis of null impact in
more than one-half of the cases explored: those of vaccines based
exclusively on εr and/or those characterized by low VEdis (25%),
as well as for the mixed vaccine with VEdis ¼ 50%. Be it as it
may, Fig. 3 highlights again the pertinence of our approach,
since the differences between the impacts estimated by vaccines
leaning on different combinations of εr–εp for the same values of
VEdis (grey bars) are still significant regardless of how uncertain
vaccine characterization is.

Clinical trials conducted on IGRA-positive cohorts. The results
presented in previous sections pertain to clinical trials conducted
on cohorts of IGRA-negative individuals. However, the results
from the candidate M72/AS01E11 have shifted the focus to an
alternative design, based on the recruitment of IGRA-positive
subjects (Fig. 4a). In this case, we could expect to find two dif-
ferent subpopulations of individuals in each of the cohorts. First,
a group of subjects who were infected on average a long time ago,
and are assumed to be LTBI carriers, were characterized by a low
risk of endogenous progression to active TB (slow-latency
reservoir, L). On the other hand, we will have a second type of
participants, who generally were infected more recently and who
would be progressing through the subclinical TB spectrum23, and
are thus at a high risk of progressing to active disease in the next
few months (i.e. fast-latency reservoir F). Considering that, it is
evident that in this case, the same kind of multiple-interpretation
issue that we described above is equally pertinent. Now, the
vaccine might be delaying the progression to disease of the second
group (through εr), or it might protect the individuals of the first
group against disease progression after a secondary infection
event registered during the trial (an effect that we parameterize as
ε̂p, which would relate to what we observed in the previous sec-
tions through the relation (1� ε̂p)�(1� εβ)(1� εp). As for the
eventual effect of a vaccine on rL, this could possibly be observed
only if, at the same time, we have an arguably prohibitive cohort
size and/or trial duration, as well as a negligible contribution of
fast progressors or reinfections (meaning, being in a low-burden
setting). Since these conditions are not met in the type of studies

that the community is currently engaged in refs. 9,11, the obser-
vation of these effects in the trials here analyzed would be
extremely unlikely, and therefore, we decided not to introduce it
in our models.

Despite such simplifying assumption, now it is harder to
distinguish the different dynamical mechanisms that could be at
play from analytical means alone. This is because of two main
reasons. First, we can derive, similar to the IGRA-negative case,
an analytical relationship between a readout of efficacy against
disease VEdis, and the vaccine effects on fast progression
probabilities and rates: ε̂p−εr (see Supplementary Methods,
module II). However, the relationship has now an unknown free
parameter—the relative weight of individuals in the two
subpopulations F and L—that turns the curve of values ε̂p−εr
compatible with a given efficacy readout of VEdis, and an
estimation of εβ, into the envelope of a whole family of curves
(shaded area in Fig. 4b). This exacerbates, by construction, the
multiplicity of different combinations of vaccine mechanisms that
could underlie the readout of a trial. The second reason is that,
even if we knew how many of the individuals begin the trial in the
F vs L reservoirs, we would not have enough information to
estimate independently the eventual vaccine-mediated delay of
incubation periods of fast progressors εr, for the times at which
these were infected would still be unknown.

As a consequence, the interpretation of the outcomes of a trial,
such as the one of M72/AS01E11, is hindered by the very study
design, and as a consequence, the uncertainty of any vaccine
impact evaluation that does not obviate the possibility of
observing different vaccine mechanisms of action gets compro-
mised. As shown in Fig. 4c this translates into a wide variety of
possible impacts (maximum impact is 136% higher than the
minimum one (95% CI: 58–229%)), all of them associated with
vaccines compatible with a single readout of VEdis ¼ 50%, that
adds up to the uncertainty that is intrinsic to the production of
model-based forecasts themselves.

The results in Fig. 4 correspond to a vaccine of VEdis ¼ 50%,
analyzed on a trial conducted on a population affected by the
same epidemiological parameters used in Figs. 1–3, with the
exception of the probability of fast progression upon infection,
that is fixed at p ¼ 0:15 to capture the situation of adolescents/
adults, instead of newborns16. This is motivated by the fact that
recruitment of IGRA-positive individuals is easier in older
individuals than in infants, and as such, this type of design is
more commonly considered within the context of studies
conducted on adolescents and/or adults (see, e.g. ref. 11). The
impacts evaluated in Fig. 4c correspond to a vaccine implemented
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Fig. 3 Impact evaluation of empirically characterized vaccines: mechanism effects on expected impact and uncertainty. a, b, c Vaccines characterized from
an efficacy readout of VEdis ¼ 25%, VEdis ¼ 50% and VEdis ¼ 75%, respectively. Blue bars: impact estimates for different vaccines. Two different
contributions to the overall impact uncertainty are distinguished: Gold bars: intrinsic contribution coming from general inputs of the transmission model.
Black, dashed bars: extra contribution from uncertain vaccine characterizations. Grey bars: differences in impact between each vaccine and the least
impactful case of a vaccine acting 100% through εp (leftmost, light blue bar in each panel). Error bars represent the 95% confidence interval.
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on adolescents too (applied on 15-year-old individuals), showing
that the differential effects of vaccine mechanisms on impact
estimates also appear beyond the context of vaccines applied on
newborns.

Discussion
As we discussed above, in clinical trials of TB vaccines conferring
POD, vaccine protection can be attributed to several dynamical
mechanisms. More specifically, a vaccine can provide protection
by either slowing down fast progression to disease, or by pre-
venting it, and these mechanisms cannot be disentangled by
classical survival analysis alone. This makes trial readouts hard to
reconcile with transmission model architectures, which con-
stitutes an unexpectedly relevant issue because, as we show,
vaccines that differ in the mechanisms through which POD takes
place are expected to cause significantly different impacts, even
when they appear as equally effective in the context of a clinical
trial. In this regard, our results indicate that prevention of fast
progression to TB upon infection should be recognized, unlike
the delay of incubation periods, as a preferred product char-
acteristic for TB vaccines24. Vaccines that are based on a delay of
incubation are comparatively less impactful and harder to char-
acterize successfully than their counterparts. This observation is
equally valid regardless of the target age group, for it is robust
under a series of alternative epidemiological assumptions,
including values of the basal parameters characteristic of both
infants and adults.

The problem of identifying the vaccine mechanism at play is
harder to tackle depending on the type of trial design. For trials
conducted on IGRA-negative cohorts, it is possible to identify the
vaccine mechanisms at play, which helps to reduce bias in vaccine
evaluations. Instead, a trial design based on the recruitment of
IGRA-positive subjects presents intrinsic limitations that prevent
the usage of statistical techniques to distinguish between the
mechanisms underlying vaccine protection. In this case, there are
two key pieces of information that remain hidden to the modeller:
the fraction of recruited participants who are on their way to
progression to the active disease at the beginning of the trial, and
the times when they were first infected. Without access to these
data, the POD readouts obtained from these designs are harder to
interpret in terms of transmission models, and impact forecasts
derived from them turn extremely uncertain, even more so than
these customarily are. It is worth highlighting that this issue has

nothing to do with an additional, and obvious limitation of
IGRA-positive designs, namely, that they do not allow estimating
possible POI effects. Instead, the problem here described implies
that in the absence of further evidence, it is impossible to estimate
how impactful the POD effects characterized in one such trial
might be in a large-scale setting.

Our conclusions are not exempt of other limitations. First, the
possible vaccine mechanisms of action analyzed here are not the
only possible. In principle, a vaccine can disrupt the dynamics of
the natural history of the disease at any point (see e.g. ref. 25), and
yet these effects would be virtually impossible to observe in trials
within phases 2b/3 such as the ones here discussed. Furthermore,
it is important to highlight that model-based impact evaluation of
vaccines is always a daunting task, especially in TB. The impor-
tance of aspects such as the uneven quality of the empirical evi-
dence behind the many parameters these models rely on, or the
assumption that all IGRA-positive readouts can be interpreted as
real latent infection cases cannot be overstated14. Also, hetero-
geneities in clinical outcomes due to either host, pathogen or
environmental variability impose an additional layer of com-
plexity that goes beyond the phenomena discussed here, whose
interaction with vaccine function needs to be assessed too.
Concerning the impact estimates that we provide in this study,
they have been obtained from vaccine assumptions that are to a
great extent an idealization (i.e. 100% coverage levels, long-lasting
duration of protection and immediate acquisition of immunity
upon vaccination, see Methods, and Supplementary Methods
(module III) for details). However, the differences between the
cases associated with different mechanisms, which is the main
result here presented, are robust under different vaccine scenar-
ios, such as different basal efficacy levels, different ages of the
target populations, different levels of protection waning and
combinations of POI/POD effects (see Supplementary Methods
(module III) and Supplementary Fig. 6).

Concerning our ability to distinguish the vaccine mechanisms
at play in the case of IGRA-negative designs, there are two
additional limitations to highlight. First, similar to the current
methodology, our approach can only be of use if sufficient sta-
tistics is available. This means high levels of basal TB incidence,
and big enough trial dimensions—time and cohort size—as pre-
viously discussed. Finally, an additional limitation concerns the
maximum duration of trials for which our methods, in their
original form here presented, would still be sensible. This
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Fig. 4 Vaccine characterization from clinical trials conducted on IGRA-positive individuals. a Section of the transmission chain that is observed during a trial
conducted on cohorts of IGRA-positive individuals. Recruiting IGRA-positive participants turns possible to observe a vaccine-mediated protection against
fast progression to TB upon reinfection during the trial (i.e. ε̂p), in addition to a delay in the transition rate to disease (εr). b Family of curves that bound
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limitation arises because of two different reasons. First, our ability
to estimate εr relies on the assumption that all individuals that
develop active TB during the trial are fast progressors. This
assumption is less accurate, and introduces bias, as the follow-up
period increases, even if it is still approximately valid until T ’
10y (see Supplementary Methods, module I). Second, both
infection and disease risks in tuberculosis are known to be
strongly age-dependent16. This would discourage the usage of a
single set of basal epidemiological parameters (mainly β and p) to
describe the behaviour of a cohort, during the entire duration of a
study, if this is too long. This would not impose a conceptual
hindrance to the applicability of our approach, since the methods
here described could be granted with age structure in order to
estimate vaccine effects conditioned to the variation of basal
epidemiological parameters with age and how vaccine effects
change with time since vaccination, provided that enough sta-
tistics are available.

Our ultimate goal is to narrow the gap between trial-derived
efficacy estimations and model-based impact evaluations. We
demonstrated that at least for some particular trials’ archi-
tectures, the combination of Monte-Carlo methods and com-
partmental models constitutes a powerful resource that allows
us to make substantial progress in that direction, and to give
advice to trial designers about the differential advantages of
different possible trial dimensions and designs, beyond other
practical implications that are already profusely discussed in the
field. As demonstrated in this work, it is necessary to reconcile
the interpretation of trial results with the formulation of the
mathematical models used to evaluate vaccine impact. This is
key in order to reduce uncertainty in impact evaluations,
improve the evaluation of candidate vaccines and reduce risk in
the decision-making processes of funding agencies and public
health authorities. We foresee that this notion will also be
relevant for the design and analysis of future, possibly different
phase 2b/3 trials of other vaccines.

Methods
Module I: in silico clinical trial simulations. To simulate trials on IGRA-negative
cohorts, we calibrate the baseline parameters of the transmission model in Fig. 1a
to reflect the current epidemic situation in a reference setting. For that, we chose
the target cohort of newborns living in Worcester, South Africa, where the
MVA85A study took place from 2009 to 20129. The transition rate from LTBI to
disease is assumed to be rL ¼ 7:5 ´ 10�4 y�1, in accordance with previous biblio-
graphical estimations15. According to ref. 21, we consider that LTBI individuals
have a 79% less risk of progressing to TB upon reinfection, which is captured by
the parameter q ¼ 0:21. Finally, the probability of fast progression has been fixed
to p ¼ 0:375 that is compatible with previous observations about the high prob-
ability of developing fast progression during the first few months of life26. Once
those parameters are fixed, the baseline transmission rate β and the transition rate
from fast latency to disease r were estimated to be β ¼ 0:069 y�1 and r ¼ 0:97 y�1

to reproduce the proportion of infections and TB cases observed in the control
cohort of the MVA85A trial (12.8% and 2.3% after 2 years, respectively). Even
though these parameters are representative of epidemiological risks of newborns,
we also explored alternative scenarios, including parameterizations compatible with
other age groups, as detailed in Supplementary Fig. 5.

Next, we arbitrarily define a vaccine by providing the triad of vaccine efficacies
ðεβ; εr; εpÞ, describing its effects on the infection rate, the transition rate to disease
and the probability of fast progression, respectively. While a value of, for example,
εβ ¼ 0 means no protection against infection, εβ ¼ 1 means total protection.

Once all the dynamical parameters governing M.tb. transmission dynamics in
both cohorts are set up, we use an agent-based model to describe the evolution of N
individuals per cohort during a follow-up period of T . Here, we apply Monte-Carlo
methods to simulate, individually, the fates that each participant in one such trial
might meet according to the different probabilistic risks per unit time of getting
infected, eventually re-infected and/or progressing to disease through either the fast
or slow routes, as described in detail in the Supplementary Methods, module I.
After a trial is simulated, the times when each individual enters into the disease,
and/or infection end points are registered, and discretized to a time step of
3 months to reproduce the temporal resolution between consecutive analyses
(IGRA for infection and/or TB diagnosis tests for active TB) that one would
observe in an actual trial such as the MVA85A study9.

Module II: data analysis of trial outcomes. In practice, the efficacy readouts of
POI and POD (VEinf and VEdis) are estimated by using survival analysis (Cox
regression27). In the case of vaccine POI, the readout of VEinf obtained this way
can be directly associated with a reduction of the risk of infection upon contact
with an infectious subject, that is, VEinf � εβ . However, VEinf can only be esti-
mated from a trial based on IGRA-negative subjects9, but not IGRA-positive11.

Vaccine-mediated POD can be estimated from trials recruiting IGRA-negative
or IGRA-positive individuals, though. However, the existence of different
mechanisms compatible with a single readout of VEdis poses a series of conceptual
challenges to its estimation through classical survival analysis that supports the
adoption of the more elementary approximation VEdis ¼ 1� ρ, where ρ is the
fraction of the total number of diseased individuals observed in both cohorts at the
end of the trials: ρ ¼ DvðTÞ=DcðTÞ. This choice is justified by a series of
observations. On the one hand, it permits the derivation of an analytic relation
between VEdis and the mechanistic parameters ðεβ; εr; εpÞ, which is key to our
approach. On the other hand, it produces estimates for VEdis that only deviate
residually from the readouts obtained from survival analyses (relative deviation
lower than 8%, see Supplementary Methods, module II). Finally, using survival
analysis to determine VEdis is problematic, since at least for some of the possible
vaccine mechanisms, the hypothesis of proportional risks, which is the major
conceptual requisite for Cox regression to be applied safely, is not respected. These
issues are discussed in detail in the Supplementary Methods, module II.

Furthermore, in trials conducted on IGRA-negative cohorts, εr can be estimated
from a truncated fit of uncensored sub-cohorts’ transition rates. In this case, a vast
majority of all TB cases can be expected to correspond to fast progression after the
first infection event (see Supplementary Methods, module I). Furthermore, if we
assume that transition from active disease upon infection is a Poisson process—as
it is customarily assumed in the TB modelling literature15,28,29—the theoretical
probability distribution function (PDF) of the time t ¼ tdis � tinf between infection
and disease in the control cohort corresponds to an exponential curve
f ðtjrÞ ¼ re�rt , from which the average transition time hti ¼ 1=r and its associated
variance σ2t ¼ ht2i � hti2 ¼ 1=r2 can be easily obtained by integrating the
moments of the PDF.

However, in a clinical trial, the period of measure cannot be arbitrarily
extended, which implies that the maximum transition time that can be observed for
a subject who was initially infected at tinf is truncated at tmax ¼ T � tinf , where T
stands for the follow-up period of the trial. This situation implies that the integrals
needed to obtain the expected value of the transition time must be truncated as
well, which ultimately makes hti to depend itself on tinf :

htiðtinf Þ ¼
R T�tinf
0 tf ðtjrÞdt
R T�tinf
0 f ðtjrÞdt

¼ 1
r
� e�rðT�tinf Þ T � tinfð Þ

1� e�rðT�tinf Þ ð1Þ

Similarly, by truncating the integrals of the second moment of the distribution,
we can obtain its dependence with time at infection, ht2iðtinf Þ, and ultimately
derive the corresponding expression for the variance of observed transition times as
a function of tinf :

σ2t ðtinf Þ ¼ �e�rðT�tinf Þ 1þ ðrðT � tinf Þ þ 1Þ2� �þ 2 1þ rðT � tinf Þe�rðT�tinf Þ
� �

r2 1� e�rðT�tinf Þð Þ

� 1
r2

� ðT � tinf Þ2e�2rðT�tinf Þ

1� e�rðT�tinf Þð Þ2
ð2Þ

Equations (1) and (2) describe how observed transition times from infection to
disease and their variance are expected to be biased towards lower values as the
infections occur later during the trial. This is simply because the later the infection
takes place, the less time available to observe a transition to disease is left. These
expressions allow us to isolate the effect of that bias, and to infer, using only data
from individuals developing active TB during the trial, the transition rate r within
the control cohort, using a Maximum Likelihood approach (R package bbmle30)
along with its confidence intervals (95% reported). Then, the exercise is repeated in
the vaccine cohort, whose transition rate rv , in terms of our transmission model
would be expressed as the product rð1� εrÞ, which yields the following expression
for the vaccine effect on the fast progression rate εr :

εr ¼ 1� rv

r
ð3Þ

Finally, we obtain an estimation of the CI for εr by propagating the independent
uncertainties of rv and r.

Our ability to estimate the vaccine-mediated effects on the incubation rates that
are captured by εr depends, by construction, on being able to observe those times in
the context of a trial, implying registering the moment when individuals undergo
IGRA conversion, and then, fall sick. Once again, this obviously implies that
observing this effect is only possible if we recruit IGRA-negative individuals. In a
trial conducted on already-infected subjects, the eventual effects that a vaccine
might have on incubation rates could never be isolated.

Once εr is obtained from the method described above, the next step consists of
inferring the last unknown vaccine mechanism εp. In a trial conducted on IGRA-
negative subjects, the effect of the vaccine on the infection rate is captured by
εβ � VEinf , and as such, can be inferred by using Cox regression (R package
OIsurv27). Furthermore, εr has been independently estimated by analyzing times of
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progression from infection to disease, as described above. In order to infer the third
vaccine effect—reduction of fast progression probability εp—we seek for an
analytical relationship VEdis ¼ f ðεβ � VEinf ; εp; εrÞ that will allow us to solve for εp
once the other parameters, including VEdis ¼ 1� ρ, have already been estimated.

We can obtain this relationship, represented in Fig. 1d, by deriving analytical
expressions for the expected time evolution of the numbers of susceptible, infected
and diseased individuals in a trial. To that end, we now use a deterministic
compartmental model based on ordinary differential equations, which is solved as
follows. If we call S, F, L and D the number of individuals in each subpopulation,
these evolve in time according to the following coupled differential equations:

dSðtÞ
dt

¼ �ð1� εβÞβSðtÞ ð4Þ

dFðtÞ
dt

¼ ð1� εβÞβð1� εpÞpSðtÞ � ð1� εrÞrFðtÞ þ ð1� εβÞβð1� εpÞpqLðtÞ ð5Þ

dLðtÞ
dt

¼ ð1� εβÞβð1� ð1� εpÞpÞSðtÞ � rLLðtÞ � ð1� εβÞβð1� εpÞpqLðtÞ ð6Þ

dDðtÞ
dt

¼ ð1� εrÞrFðtÞ þ rLLðtÞ ð7Þ

where the three vaccine descriptors ðεβ; εp; εrÞ are absent (i.e. set to zero) in the
control cohort. In this model, we implicitly assume that the individuals in the
cohorts correspond to a small fraction of the total population (of the country, area,
etc. being modelled), and thus, their contribution to overall transmission once they
are sick can be neglected. By integrating this model analytically and independently
in each cohort (see Supplementary Methods, module II), we can define the disease
ratio ρ � DvðtÞ=DcðtÞ, and obtain an analytical expression for it that depends on
the observation time t, and the vaccine descriptors ðεβ; εp; εrÞ:

ρ ¼ ρðt; εβ; εp; εrÞ ð8Þ
Then, we evaluate ρðt ¼ T; εβ; εp; εrÞ at the end of the trial, along with its

uncertainty, which is propagated assuming that both Dv and Dc come from two
independent binomial distributions (total number of tests equal to cohort size).
Finally, by using the independent estimators of εβ and εr as well as their uncertainty
estimates, obtained as detailed above, we get our final estimate of εp and propagate
its corresponding confidence interval. As discussed before, the disease ratio ρ
defines by itself our estimate of VEdis, since VEdis ¼ 1� ρ. This is the reason why
the functional relationship ρðt ¼ T; εβ; εp; εrÞ can also be expressed as
VEdisðεβ; εp; εrÞ, or in the specific case where εβ is assumed to be known (after
survival analysis) as VEdisðεp; εrÞ, as in Fig. 2a, for example.

As noted previously, it is expected that the intrinsic efficacies of the vaccine are
comprised between 0 and 1, where 1 would mean total efficacy and 0 no effect at
all. However, it is possible for a vaccine to have a negative effect. In the case of
efficacies affecting rates (i.e. εβ and εr) there is no formal lower limit and a rate
equal to 1 (associated with ε ¼ �1) would mean an instantaneous process,
although a conservative enough limit of −300 is implemented to avoid numerical
instabilities. On the contrary, εp works as a modifier of a probability, which implies
that ð1� εpÞp has to be comprised between 0 and 1, by introducing a lower limit
for εp, i.e. εp;min ¼ 1� 1

p. Furthermore, the existence of such lower bound in εp
generates in turn an upper bound for εr, since these two parameters are bound (see
Supplementary Methods, module II) through the relationship VEdisðεβ; εp; εrÞ.
Notwithstanding this, the inference of εr is agnostic to the value of ρ or εp, and as a
consequence, for poor statistical settings—most often in the case of vaccines
delaying fast progression—some individual trial realizations lead to vaccine
descriptor estimates that lie beyond these epidemiologically meaningful intervals
for parameters εp and εr.

In order to obtain global estimates and confidence intervals for vaccine
descriptors, we follow a three-step approach. First, we generate a set of
500 synthetic clinical trials for each vaccine analyzed. Second, for each of these
simulated trials, we infer the values of the vaccine descriptors εβ; εp and εr along
with their confidence intervals: that of εβ from Cox regression, that of εr,
propagated from the maximum-likelihood estimates of rc and rv and finally that of
εp propagated from the other two, and from the CI of the disease ratio ρ, as
explained in more detail in the Supplementary Methods, module II. Finally, we
assume that the true values of these parameters come from an unweighted mixture
of normal distributions, each of which is associated with the log transform of one
minus the outcome of each simulated trial. The final value and CI of each of the
three vaccine descriptors are associated with the median and 95% CI of such
distribution mixture, back in the linear scale. Through this approach, we get a
global estimation of the accuracy and precision of our method as a function on the
predefined vaccine’s characteristics and trial dimensions, which we have
introduced in the TB-spreading model for the forecasts of vaccine impacts (and
their corresponding confidence intervals).

In the case of trials conducted on IGRA-positive cohorts, the system of
equations analogous to eqs. (4)–(7), describes the model depicted in Fig. 4a:

dFðtÞ
dt

¼ �ð1� εrÞrFðtÞ þ ð1� ε̂pÞβpqLðtÞ ð9Þ

dLðtÞ
dt

¼ �rLLðtÞ � ð1� ε̂pÞβpqLðtÞ ð10Þ

dDðtÞ
dt

¼ ð1� εrÞrFðtÞ þ rLLðtÞ ð11Þ
Despite their apparent simplicity, these equations hide a very relevant

hindrance with respect to the previous case, namely, the fact that, as detailed in the
Supplementary Methods, module II, their solution introduces an additional
parameter Fo, that represents the initial number of fast progressors who are
recruited in the cohorts (even assuming it is the same in both) at the beginning of
the trial. This parameter, that in principle cannot be easily determined during trial
recruitment, introduces an unknown degree of freedom in the functional
relationship between VEdis and the vaccine parameters, which now would be
expressed as VEdis ¼ f ðFo; εβ; ε̂p; εrÞ. As a result, where we had a single curve to
capture the relation between εp; εr and VEdis (for εβ ¼ 0, Fig. 1d), we have now the
envelope of a parametric family of curves (Fig. 4b).

Module III: model-based impact evaluations of TB vaccines. Once we have
discussed how to characterize a given vaccine from the outcomes of different
types of trials, we evaluate and compare the potential impact of these hypo-
thetical vaccines when applied on larger populations. To do so, we take
advantage of the detailed M.tb. transmission model described in ref. 16, devel-
oped by the authors as a tool for the description of M.tb. transmission in trans-
national settings characterized by different TB burden levels, different demo-
graphic trends and mixing patterns across age groups. Conceptually, this model
is a generalization of the increased complexity of the reduced transmission
model sketched in Fig. 1a and formalized around the simple system of ordinary
differential equations shown through Eqs. (4)–(7). The most important differ-
ence between both formulations is that while the elementary transmission
model described in this work is suited to capture the time evolution of the
fraction of susceptible, infected and sick individuals only within the trials’
cohorts and only during the development of the study, the more complex
version developed in ref. 16 describes the situation in the entire population,
during larger time spans (decades). In our case, the model is calibrated to
reproduce TB incidence and mortality rates in Ethiopia in the period
2000–2015. Once the model is calibrated, we use it to produce forecasts
until 2050 under two different scenarios: one scenario of no intervention
and another one where a vaccine is introduced by the end of 2025. Then,
we obtain impact estimates of the different vaccines analyzed in this study as
the difference in total TB cases between those two scenarios.

The technical specifications of this detailed age-structured model of M.tb.
transmission can be found in ref. 16 and in the Supplementary Methods
(module III). It includes two cohorts of individuals—vaccinated and non-
vaccinated—two paths to disease—fast and slow—and six different situations
of disease, depending on treatment status (present or absent) and on its
aetiology—pulmonary (smear positive/negative) vs non-pulmonary.
Regarding treatment results, the model explicitly describes the main
outcomes defined by WHO data schemes: treatment completion, default,
failure and death, as well as natural recovery. Furthermore, several types of
infection events are taken into account, including infection of previously
unexposed individuals, exogenous reinfections of previously infected
subjects and mother–child transmission. Beyond these considerations that
affect the way that pathogen’s transmission is described within each age
group, the model contemplates that the parameters governing the dynamics are,
as it is usually done in TB modelling, different across age groups. It also
contemplates more innovative ingredients, such as heterogeneous contact
patterns among age groups that have been adapted from empirical survey
studies, and a way to describe the effects of population’s ageing on the
transmission dynamics of the pathogen. To do this, the model integrates
data from assorted bibliographic sources (see ref. 16 for further details),
demographic data from the UN population division database31 as well as
aggregated burden estimates reported for Ethiopia between 2000 and 201532.

For further details regarding the specific values of epidemiological
parameters, vaccine descriptions and uncertainty estimates, the reader is referred to
the Supplementary Methods, module III.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data underlying the results presented in this study come from computational
simulations that can be reproduced by using the code available at https://github.com/
MarioTovarCalonge/NC_Tovar_Arregui_codes
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Code availability
Code with the implementation of the novel methods introduced in this study is available
at https://github.com/MarioTovarCalonge/NC_Tovar_Arregui_codesThose include
algorithms written in Python (tested in version 3.6.7 2018-10-20), and R (tested in
version 3.4.4 2018-03-15), with dependences to the following specific libraries: scipy,
from Python, and bbmle30 and OIsurv27, from R. Scipy was used to implement Brent’s
numerical method used to solve numerically the mathematical constraints between
vaccine mechanisms and efficacy readouts. bbmle to run the maximum-likelihood
models was used to estimate within-cohort rates of transition to disease. OIsurv was used
to run Cox regression methods.
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