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The basic reproductive number, R0, is one of the most common and most
commonly misapplied numbers in public health. Often used to compare out-
breaks and forecast pandemic risk, this single number belies the complexity
that different epidemics can exhibit, even when they have the same R0. Here,
we reformulate and extend a classic result from random network theory
to forecast the size of an epidemic using estimates of the distribution of
secondary infections, leveraging both its average R0 and the underlying
heterogeneity. Importantly, epidemics with lower R0 can be larger if they
spread more homogeneously (and are therefore more robust to stochastic
fluctuations). We illustrate the potential of this approach using different
real epidemics with known estimates for R0, heterogeneity and epidemic
size in the absence of significant intervention. Further, we discuss the differ-
ent ways in which this framework can be implemented in the data-scarce
reality of emerging pathogens. Lastly, we demonstrate that without data
on the heterogeneity in secondary infections for emerging infectious diseases
like COVID-19 the uncertainty in outbreak size ranges dramatically. Taken
together, our work highlights the critical need for contact tracing during
emerging infectious disease outbreaks and the need to look beyond R0.
1. Introduction
In 1918, a typical individual infected with influenza transmitted the virus to
between one and two of their social contacts [1], giving a value of the basic repro-
ductive number—R0, the expected number of secondary infections by a single
infected individual introduced in a completely susceptible population—of
between 1 and 2. These are similar to values of R0 for the 2014 West Africa
Ebola virus outbreak, yet Ebola virus disease infected a tenth of 1% of the
number of individuals believed to have been infected by the 1918 influenza
virus [2,3]. The two diseases are of course vastly different in symptoms and mor-
tality, butmostmodels to estimate the final size of an epidemic tend to ignore these
features and instead focus on the actual spread through secondary infections.
Similarly, the century separating the two epidemics saw vast improvements in
healthcare and public health measures, as well as changes in human behaviour,
which all help explain the massive discrepancy between Ebola virus disease in
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2014 and influenza in 1918 [4]. There is another critical but
sometimes overlooked difference between these two diseases:
heterogeneity in the number of secondary cases resulting
from a single infected individual. Indeed, most individuals
infectedwith Ebola virus gave rise to zero additional infections
while a few gave rise to more than 10 [5,6]. Here, we demon-
strate analytically that quantifying the variability in the
numberof secondary infections is critically important for quan-
tifying the transmission risk of common and novel pathogens.

The basic reproduction number of an epidemic, R0, is the
expected number of secondary cases (note, we use the word
‘case’ in a generic sense to represent any infection, even if too
mild to meet the clinical case definition [7]) produced by a pri-
mary case over the course of their infectious period in a
completely susceptible population [8]. It is a simple metric
that is commonly used to describe and compare the transmissi-
bilty of emerging and endemic pathogens [9]. IfR0 = 2, one case
turns to two, on average, and two turn to four as the epidemic
grows. Conversely, the epidemic will die out if R0 < 1.

Almost 100 years ago, work from Kermack & McKendrick
[10–12] first demonstrated how to estimate the final size of an
epidemic, integrating over all time to ignore the dynamics
and focus on the final fraction of individuals reached by the epi-
demic, R(∞). Specifically, they considered a scenario such that:

(i) the disease results in complete immunity or death,
(ii) all individuals are equally susceptible,
(iii) the disease is transmitted in a closed population,
(iv) contacts occur according to the law of mass action, and
(v) the population is large enough to justify a deterministic

analysis.

Under these assumptions, Kermack and McKendrick
showed that an epidemic with a given R0 will infect a fixed
fraction R(∞) of the susceptible population by solving

R(1) ¼ � 1
R0

ln [1� R(1)]: (1:1)

This solution describes a final outbreak size equal to 0 when
R0≤ 1 and increasing roughly as 1− exp(−R0) when R0 > 1.
Therefore, a larger R0 leads to a larger outbreak, which infects
the entire population in the limit R0→∞. This direct relation-
ship between R0 and the final epidemic size is at the core of
the conventional wisdom that a larger R0 will cause a larger
outbreak. Unfortunately, the equation relating R0 to final out-
break size from Kermack and McKendrick is only valid when
all the above assumptions hold, which is rare in practice.

As a result, relying on R0 alone is often misleading when
comparing different pathogens or outbreaks of the same patho-
gen in different settings [13–15]. This is especially critical
considering that many outbreaks are not shaped by the ‘aver-
age’ individuals but rather by a minority of super-spreading
events [13,16,17]. To more fully quantify how heterogeneity
in the number of secondary infections affects outbreak size,
we turn towards network epidemiology and derive an
equation for the total number of infected individuals using
all moments of the distribution of secondary infections.
2. Random network analysis
Random network theory allows us to relax some of assump-
tions made by Kermack and McKendrick, mainly to account
for heterogeneity and stochasticity in the number of
secondary infections caused by a given individual. We first
follow the analysis of [18] and define

G0(x) ¼
X1
k¼0

pkxk (2:1)

as the probability generating function (PGF) of the distribution
fpkg of the number of contacts individuals have (their degree).
In other words, a randomly chosen node has a degree equal to
k with probability pk. If we instead select an edge at random,
thedegree of the node at either of its two endswill be distributed
according to k pk/〈k〉 since an edge is k timesmore likely to reach
a node of degree k than a node of degree 1. Here hki ¼ P1

k¼0 kpk
is the average degree and acts as a normalization constant. We
define the excess degree as the number of other edges a node
has when it has been reached via one of its edges. Since the
excess degree equals the degree of a node at the end of an
edge minus 1, the excess degree distribution is generated by

G1(x) ¼ 1
hki

X1
k¼1

kpkxk�1 ¼ G0
0(x)

G0
0(1)

, (2:2)

where G0
0(x) denotes the derivative of G0(x) with respect to x.

We now assume that the network in question is the net-
work of all edges that will transmit a disease if either of the
two nodes at its ends were infected. Consequently, G1(x) gen-
erates the number of secondary infections that individual
nodes would cause if infected. Consequently, the connected
component to which a node belongs (the maximal subset of
nodes between which paths exist between all pairs of
nodes) will be infected should that node be the first infected
individual (the patient zero). In this framework, the size of
the largest possible epidemic corresponds to the size of the
giant connected component (GCC).

To calculate the size of the GCC, we first look for the
probability u that following a random edge leads to a node
not part of the GCC. For that node to not be a part of the
GCC, none of its other neighbours should belong to it
either, which occurs with probability uk−1 if that node has a
degree equal to k. Since u is defined for any edge, we take
the average over the excess degree distribution, which
yields the self-consistent equation whose solution is u

u ¼ 1
hki

X1
k¼1

kpkuk�1 ¼ G1(u): (2:3)

Equation (2.3) is a condition of self-consistency since both sides
describe the same quantity, u, under twodifferent perspectives,
which allows us to solve for u. The left-hand side is our defi-
nition of the probability u that a random edge followed in
one direction does not lead to an infinite component; whereas
the right-hand side calculates this probability from the perspec-
tive of the excess degree of the node reached through the
random edge. The size of the GCC is a fraction of the full popu-
lationN that wewill denote R(∞) because it corresponds to the
potential, macroscopic, outbreak size. Noting that a node of
degree k has no edge leading to the GCC with probability uk,
R(∞) corresponds to the fraction of nodes with at least one
edge leading to the GCC

R(1) ¼
X1
k¼0

pk(1� uk) ¼ 1� G0(u): (2:4)

Data on the distribution of secondary infections inform us
about G1(x) directly, but our choice of G0(x) represents our
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assumptions on patient zero: is the first case different from sub-
sequent cases? If not, we could use G0(x) =G1(x) to obtain final
size estimates of a branching process as described in [13] but
that would ignore the fact that patient zero was not chosen by
following a person-to-person transmission link, a network
bias described in [19]. When assuming a relationship between
G0(x) and G1(x) as in equation (2.2), G0(x) will still have one
degree of freedom remaining, p0, which requires further
assumptions to be made to set its value (which we introduce
in equation (3.8)). Putting all these different assumptions
under the same framework will allow us to explicitly compare
them.

Regardless of the specifics of the chosen model and of its
underlying assumptions, equation (2.4) provides the size of
the largest possible epidemic in the limit of infinite popu-
lation size. Similarly to the Kermack–McKendrick solution,
this approach provides an almost exact mapping to the
final size of the dynamical spreading process without
describing the temporal dynamics since we are effectively
integrating over time by considering only transmissions that
occur and ignoring when they occur [20]. There are however
methods to use a branching process perspective or extend
PGFs to temporal dynamics by considering inter-generation
time [21,22].
3. Results
The network approach naturally accounts for heterogeneity,
meaning that some individuals will cause more infections
than others. The network approach also accounts for stochasti-
city explicitly: even with R0 > 1, there is a probability 1−R(∞)
that patient zero lies outside of the giant outbreak and there-
fore only leads to a small outbreak that does not invade the
population. However, the analysis in terms of PGFs is
obviously more involved than simply assuming mass-action
mixing and solving equation (1.1). In fact, the PGFs G0(x) or
G1(x) require a full distribution of secondary cases, which
will in practice involve the specification of a high-order poly-
nomial. Previous network models [19,23] tend to specify
G0(x) then deriveG1(x), but our approach focuses on secondary
infections and G1(x) to unify the network and branching pro-
cess perspectives [13,24]. Doing so clarifies our assumptions
and allows us to simplify further.

To further this approach, we propose reformulating the
classic network model in terms of the cumulant generating
function (CGF) of secondary cases. The CGF K(y) of a
random variable X can be written as K(y) ¼ P

knyn=n!,
where κn are the cumulants of the distribution of secondary
infections. These are useful because the cumulants are easier
to interpret, i.e. κ1 is simply the average number of secondary
cases R0, κ2 is the variance, κ3 is related to the skewness and κ4
is related to the kurtosis of the full distribution, etc. By defi-
nition, a PGF G(x) of a random variable is linked to K(y)
through G(x) = exp[K(lnx)]. Therefore, we can replace the
PGF G1(x) for the distribution of secondary infections by a
function in terms of the cumulants of that distribution.

3.1. Analysis of cumulants and derivation of
Kermack–McKendrick

We can easily derive Kermack and McKendrick’s result from
this framework since their solution assumes a well-mixed
population, which corresponds to a Poisson distribution of
secondary infections. We first re-write G1(x) in terms of the
cumulants κn as

G1(x) ¼ exp
X1
n¼1

1
n!
kn( ln x)

n

" #
, (3:1)

which is a particularly convenient representation for a
Poisson distribution because its cumulants κn =R0 for all
n > 0. Moreover, since G0(x) =G1(x) in the Poisson case, the
final outbreak size of the Kermack–McKendrick analysis
will be set by uKM =G1(uKM), or

uKM¼ exp
X1
n¼1

1
n!
R0(lnuKM)n

" #
¼ exp

h
R0(uKM�1)

i

aRKM(1)¼1� exp[R0(uKM�1)]¼1�exp[�R0RKM(1)]:

(3:2)

Taking the logarithm of the exponential term from this last
equation yields equation (1.1).

The solution to u =G1(u) gives the probability that every
infection caused by patient zero fails to generate an epidemic.
For more general distributions, it is useful to rewrite equation
(3.1) as

u ¼ G1(u) ¼ exp
X1
n¼1

1
n!
kn( ln u)

n

" #

¼ exp R0j ln uj � 1
2
s2j ln uj2 þ 1

6
k3j ln uj3 � 1

24
k4j ln uj4 . . .

� �
(3:3)

to highlight its alternating nature because the logarithm of u
is negative (u is a probability) such that its nth power is posi-
tive when n is even and negative when n is odd.

The alternating sign of contribution from high-order
moments in equation (3.3) can be interpreted as follows.
A disease needs a high average number of secondary infec-
tions (high κ1 =R0) to spread, but, given that average, a
disease with small variance in secondary infections will
spread much more reliably and be less likely to stochastically
die out. Given a variance, a disease with high skewness
(i.e. with positive deviation contributing to most of the var-
iance) will be more stable than a disease with negative
skewness (i.e. with most deviations being towards small sec-
ondary infections). Given a skewness, a disease will be more
stable if it has frequent small positive deviations rather than
infrequent large deviations—hence a smaller kurtosis—as
stochastic die out could easily occur before any of those
large infrequent deviations occur.

Our re-interpretation already highlights a striking result:
higher moments of the distribution of secondary cases can
lead a disease with a lower R0 to invade a population more
easily and to reach a larger final outbreak size than a disease
with a higher R0. This result is illustrated in figure 1.

3.2. Normal distributions and the impact of variance
A second useful application of the cumulants formulation
involves diseases with a large reproductive number R0

whose distribution of secondary infections can be convin-
cingly modelled by a normal distribution. Using a normal
distribution for the distribution of secondary infections is
only valid for very large R0 since we have to both model a
discrete distribution with a continuous one and ignore
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Figure 1. Final size of outbreaks with different average R0 and heterogeneity k
in the distribution of secondary cases. We use a negative binomial distribution
of secondary cases and scan a realistic range of parameters. The range of par-
ameters corresponding to estimates for COVID-19 based on a binomial negative
distribution in large populations is highlighted by a red box (see [25] and table
1). Most importantly, with fixed average, the dispersion parameter is inversely
proportional to the variance of the underlying distribution of secondary cases.
The degree of freedom, p0, is here set by setting the average number of infec-
tions around patient zero to be less than or equal to R0. The Kermack–
McKendrick solution would correspond to the limit k→∞, and could be
more appropriate in some dense and well-mixed settings.
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negative numbers of secondary infections. The advantage of
this approximation is that while the raw moments of a
normal distribution are quite complicated, the cumulants
are simple: κ1 is equal to the mean R0, κ2 is equal to the var-
iance σ2 and all other cumulants are 0. We can thus write

G1(x) ¼ exp R0 ln xþ 1
2
s2( ln x)2

� �
¼ xR0þs2

2 ln x (3:4)

and solving for u =G1(u) yields

u ¼ exp � 2
s2 (R0 � 1)

� �
: (3:5)

This equation can then be used for direct comparison of
the probability of invasion of two different diseases with
normal distributions of secondary infections. Given a trans-
mission event from patient zero to a susceptible individual,
disease B will be more likely to invade the population than
disease A if

s2
A

s2
B
,

R0,A � 1
R0,B � 1

: (3:6)

For example, a disease with half the basic reproductive
number of another will still be more likely to invade a popu-
lation and lead to a larger outbreak if its variance is less than
or close to half the variance of the other disease.

Altogether, the results of the previous subsections show
that taking into account the contribution of these higher
moments should yield different, hopefully better, estimates
for the final size of real outbreaks. To test this hypothesis,
we now introduce a more specific network model.

3.3. Negative binomial network model
We present a specific network model assuming the number of
secondary infections to be distributed according to a negative
binomial distribution parametrized by its average R0 and
dispersion k [13]. Its PGF is

G1(x) ¼
X1
n¼0

nþ k � 1n
R0

R0 þ k

� �n
1� R0

R0 þ k

� �k
xn

¼ 1þ R0

k
(1� x)

� ��k

: (3:7)

The general network theory formalism requires the speci-
fication of the PGF G0(x) that is related to G1(x) via equation
(2.2). Specifying G1(x) therefore fixes G0(x) up to a constant
and to a multiplicative factor. Without loss of generality,
we set

G0(x) ¼ p0 þ (1� p0)g0(x) (3:8)

with 0≤ p0≤ 1, g0(0) = 0 and g1(1) = 1. Equation (2.2) becomes

G1(x) ¼ g00(x)
g00(1)

, (3:9)

from which we compute

g0(x) ¼
ð
g00(x) dx ¼ g00(1)

ð
G1(x) dx

¼ � kg00(1)
R0(1� k)

1þ R0

k
(1� x)

� �1�k

þC, (3:10)

with k≠ 1, and where C and g00(1) are fixed by imposing
g0(0) = 0 and g1(1) = 1. Rearranging the terms, we find that

g0(x) ¼
1� 1� R0x

R0 þ k

� �1�k

1� k
R0 þ k

� �1�k , (3:11)

from which we finally obtain

G0(x) ¼ p0 þ (1� p0)
1� 1� R0x

R0 þ k

� �1�k

1� k
R0 þ k

� �1�k (3:12)

with k≠ 1. The case k = 1 must be treated separately and
yields

G0(x) ¼ p0 þ (1� p0) 1� ln [1þ R0(1� x)]
ln [1þ R0]

� �
: (3:13)

From equations (3.12) and (3.13), we find that the average
number of secondary infections caused by patient zero is

G0
0(1) ¼ (1� p0)

(1� k)R0

k
1

k
R0 þ k

� �k�1

�1

(3:14)

if k≠ 1, and

G0
0(1) ¼ (1� p0)

R0

ln [1þ R0]
(3:15)

if k = 1. The average number of secondary infections caused
by patient zero can therefore be greater or smaller than R0.
Since patient zero should not be expected to create more
secondary cases than the next generation of infections, we
set the value of p0∈ [0, 1] such that G0

0(1) is as close as poss-
ible to R0 whenever G0

0(1) . R0.



Table 1. Estimates for R0 and for the negative binomial distribution dispersion parameter, k, used in figure 2 (
a and b, respectively, denote 95% and 90% confidence

intervals). The proportion of susceptible individuals infected as reported either in the literature or by the US Centers for Disease Control and Prevention. For severe acute
respiratory syndrome (SARS) the proportion of infected was taken from serosurveys among wild animal handlers (15%) and among healthcare workers (<1%) [27]. For
influenza (2009), we took data on school-aged children. For COVID-19, we present emerging evidence surrounding the final proportion of infected individuals after the
first outbreak waves at the level of large communities [28,29] and a school [30], which all fall around 15%, and at the level of dense groups like a fishing vessel with
a value around 86% [31]. Note that the estimates of the proportion of infected individuals, for R0 and for k, were not necessarily inferred from the same populations.
Such information is rarely, if ever, available for the same outbreak, unfortunately. COVID-19, coronavirus disease 2019; MERS, Middle East respiratory syndrome.

disease location year prop. infect. R0 k reference

MERS global 2013 0% 0.47 (0.29–0.80)a 0.26 (0.09–1.24)a [21,32]

SARS global 2003 0–15% 1.63 (0.54–2.65)b 0.16 (0.11–0.64)b [13,27,33]

smallpox Europe 1958–1973 55% 3.19 (1.66–4.62)b 0.37 (0.26–0.69)b [13,34]

influenza Baltimore (USA) 1918 40% 1.77 (1.61–1.95)a 0.94 (0.59–1.72)a [35,36]

influenza Italy 2009 39% 1.321 (1.299–1.343)a 8.092 (5.170–11.794)a [37,38]

COVID-19 global 2020 13–16% and 86% 2.5 (1.4–12)a 0.1 (0.04–1)a [25,28–31,39–41]
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A large-scale epidemic is predicted by this framework
[18] if

G0
1(1) ¼ R0 . 1, (3:16)

as in the analysis by Kermack & McKendrick [10–12]. Its size,
R(∞), is computed with G0(x) as

R(1) ¼ 1� G0(u), (3:17)

where u is the solution of

u ¼ G1(u), (3:18)

which we solve using the relaxation method [26] with an
initial condition randomly chosen in the open interval (0, 1).

3.4. Comparison of estimators with empirical data
Wenowcompare the final outbreaksize estimates fromequation
(1.1) (Kermack and McKendrick) with estimates from equation
(3.17) with a negative binomial offspring distribution (table 1).
Ideally, this validation would use estimates of final outbreak
size, R0 and k inferred from the same population, but un-
fortunately these are rarely, if ever, available. Similarly, once
interventions are put in place and/or substantial behavioural
change occurs, all methods that do not account for these effects
will over-estimate the total outbreak size [42]. To attenuate some
of these issues, we focus on outbreaks where no vaccine was
available or before large interventions were put in place: small-
pox in unvaccinated populations, the 1918 influenza pandemic,
school children prior to the availability of the 2009 H1N1 vac-
cine, as well as for severe acute respiratory syndrome (SARS)
among specific communities such as wild animal handlers
(other smaller estimates correspond to healthcare workers).
Importantly, focusing on smaller local outbreaks also allows
us to mitigate any effect of reseeding in the same population
as our approach describes a single transmission chain.

As predicted, figure 2 shows that the Kermack and
McKendrick formulation consistently and significantly over-
predicts the outbreak size across six different pathogens
where we could find confidence interval estimates for R0 and
for the negative binomial over-dispersion parameter (k). All
network approaches produce estimates of the total outbreak
size which are consistent with reported prevalence. Despite
the inherent problems associated with such validations, net-
work models appear to provide a much more reasoned
estimate of the total risk to any given population, and predic-
tions very close to the most recent seropositivity estimates for
the COVID-19 outbreak in a German municipality [28] and in
obstetric patients presenting for delivery [29].
4. Discussion
From re-emerging pathogens like yellow fever and measles to
emerging threats like Middle East respiratory syndrome
coronavirus and Ebola, the World Health Organization
monitored 119 different infectious disease outbreaks in 2019
alone [43]. For each of these outbreaks, predicting both the
epidemic potential and the most likely number of cases is
critically important for efficient and effective responses.
This need for rapid situational awareness is why R0 is so
widely used in public health. However, our main analysis
shows that not only is R0 insufficient in fully determining
the final size of an outbreak, but having a larger outbreak
with a lower R0 is relatively easy considering the randomness
associated with most transmission events and the hetero-
geneity of physical contacts. To address the need for rapid
quantification of risk, while acknowledging the shortcomings
of R0, we use network science methods to derive both the
probability of an epidemic and its final size.

These results are not without important caveats. Specifi-
cally, we must remember that distributions of secondary
cases, just like R0 itself, are just as much a product of a patho-
gen as of the population in which it spreads. For example,
aspects of the social contact network [44], metapopulation
structure [45], human mobility [46], adaptive behaviour [47]
and even other pathogens [48,49] all interact to cause com-
plex patterns of disease emergence, spread and persistence.
Therefore, great care must be taken when using any of
these tools to compare outbreaks or to inform current
events with past data. In addition, it remains a challenge to
determine the final outbreak size in the absence of interven-
tions, re-seeding, etc., and after properly accounting for the
initial number of infectious individuals and the proportion
of the population that is susceptible to infection. For these
reasons, we focused on empirical studies that included data
on the initial conditions in the population.

Figure 2 only used a few known outbreaks to validate the
different approaches because data on secondary cases are
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Figure 2. Using published estimates of R0 and the dispersion parameter k, we estimated the total outbreak size for six different diseases using three versions of the
network approach and compared them with the classic Kermack–McKendrick solution. The confidence intervals span the range of uncertainty reported for R0 and k.
The black markers show reported total outbreak sizes (total proportion of susceptible individuals infected) for each disease. For influenza, we report the estimated
proportion of school-aged children infected. For COVID-19, we use tentative markers showing the range of attack rates measured in different contexts as there is
currently no consensus for what constitutes a typical COVID-19 outbreak. We highlight though the differences between the final size estimates for COVID-19: most
typify the observed over-dispersed nature of transmission, except for the outbreak on a fishing vessel (right side point) where contacts are more well mixed and thus
better characterized by a Kermack–McKendrick transmission process. The red circles are the estimated proportion infected using the method developed by Kermack
and McKendrick, i.e. equation (1.1). The other markers show the estimated proportion infected obtained with equation (3.17) under different assumptions about
patient zero: the model described in the main text, which ensures that the expected number of secondary infections caused by patient zero is at most R0 (blue
squares); the same model but assuming p0 = 0 such that no individuals have exactly zero contact (cyan stars); and a network version of [13], where G0(x)≡ G1(x)
such that patient zero is no different from subsequent patients (green triangles). See table 1 for data and additional information.
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rare. In practice, three types of data could potentially be used
in real time to improve predictions by considering secondary
case heterogeneity. First, contact tracing data, whose objective
is to identify people who may have come into contact with an
infectious individual. While mostly a preventive measure to
identify cases before complications, it directly informs us
about potential secondary cases caused by a single individ-
ual, and therefore provides us with an estimate for G1(x).
Both for generating accurate predictions of epidemic risk
and controlling the outbreak, it is vital to begin contact tra-
cing before numerous transmission chains become widely
distributed across space [50,51].

Second, viral genome sequences provide information
on both the timing of the outbreak [52] and the structure of sec-
ondary cases [53]. For example, methods exist to reconstruct
transmission trees for sampled sequences using simple
mutationalmodels to construct a likelihood for a specific trans-
mission tree [54,55] and translate coalescent rates into key
epidemiological parameters [56,57]. Despite the potential for
genome sequencing to revolutionize outbreak response, the
global public health community often struggled to coordinate
data sharing across international borders, between academic
researchers and with private companies [58–60]. However,
the current COVID-19 pandemic has stimulated prompt and
widespread sharing of genomic data; this will hopefully
become standard in the future.

Third, early incidence data can be leveraged to infer
parameters of the secondary case distribution through compari-
son with simulations. Comparing the output of agent-based
simulations with reported incidence can be used to effectively
sample a joint posterior distribution over R0 and dispersion
parameter k. This approachwasusedbymost studies referenced
in table 1. Most importantly, these simulations need not be run
over long periods of time to predict final outbreak size. Instead,
they only need to be run over enough early data to infer the
parameter estimates that are then fed into our network model
to compute the final outbreak size.

As for COVID-19, figure 1 shows how the width of the con-
fidence interval on our prediction for the final outbreak size
mostly stems from uncertainty in the heterogeneity of
secondary infections, i.e. the dispersion parameter k. Note that
the estimates for R0 and k used here are from population-level
estimates (table 1) and are therefore not representative of
COVID-19 inall contexts.With limitedheterogeneity, ourpredic-
tionswould have been closer to classicmass-action forecasts and
the current pandemic of COVID-19would probably have been a
consequence not only of R0 but also of the homogeneity of sec-
ondary infections: each new case steadily leading to additional
infections. However, we note that emerging evidence, taken
from a serosurvey in the municipality of Gangelt, Germany
[28], and from universal testing in all obstetric patients present-
ing for delivery at two hospitals [29], suggests that the final
size for a single, established COVID-19 transmission chain is
around 15% of the population, which is both in agreement
with estimates from our approach and far below the final size
predicted by the Kermack and McKendrick formulation. With
recent large estimates for its heterogeneity, the observed trans-
mission could be mostly maintained by so-called ‘super-
spreading events’, which could be easier tomanagewith contact
tracing, screening and infection control [61,62].
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In conclusion,we reiterate that,when accounting for the full
distribution of secondary cases caused by an infected individ-
ual, there is no direct relationship between R0 and the size of
an outbreak. We also stress that both R0 and the full secondary
case distribution are not properties of the disease itself, but are
instead set by properties of the pathogen, the host population
and the context of the outbreak. This is best exemplified by
the widely different attack rates of COVID-19 observed in
figure 2 between the fishing vessel (85.6%) and the school
(13.7%). Both populations were roughly of the same size but
contacts in the former are denser and much more homoge-
neously mixed, leading to an outbreak consistent with the
Kermack–McKendrick solution while contacts in the latter
follow heterogeneous classroom and age patterns leading to a
lower outbreak size. Our methodology can straightforwardly
translate any of these estimates of transmission heterogeneity
into epidemic forecasts. Altogether, predicting outbreak size
based on early data is an incredibly complex challenge but
one that is increasingly within reach owing to new mathemat-
ical analyses and faster communication of public health data.
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