SCIENTIFIC

REP?RTS

SUBJECT AREAS:

STATISTICAL PHYSICS,
THERMODYNAMICS AND
NONLINEAR DYNAMICS

CIVIL ENGINEERING
APPLIED MATHEMATICS
SCIENTIFIC DATA

Received
1 November 2012

Accepted
18 April 2013

Published
10 May 2013

Correspondence and
requests for materials
should be addressed to
G.P. (giovanni.petri@
isi.if)

Entangled communities and spatial
synchronization lead to criticality in
urban traffic

Giovanni Petri', Paul Expert?*, Henrik J. Jensen?* & John W. Polak®

1Sl Foundation, Via Alassio 11/c, Turin, ltaly, 2Complexity and Networks Group, Imperial College London, London SW7 2AZ, UK,
3Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2PG, UK,
“4Centre for Neuroimaging Sciences, Institute of Psychiatry, De Crespigny Park, King’s College London, London SE5 8AF, UK,
“Department of Mathematics, Imperial College London, London SW7 2AZ, UK.

Understanding the relation between patterns of human mobility and the scaling of dynamical features of
urban environments is a great importance for today’s society. Although recent advancements have shed light
on the characteristics of individual mobility, the role and importance of emerging human collective
phenomena across time and space are still unclear. In this Article, we show by using two independent
data-analysis techniques that the traffic in London is a combination of intertwined clusters, spanning the
whole city and effectively behaving as a single correlated unit. This is due to algebraically decaying
spatio-temporal correlations, that are akin to those shown by systems near a critical point. We describe these
correlations in terms of Taylor’s law for fluctuations and interpret them as the emerging result of an
underlying spatial synchronisation. Finally, our results provide the first evidence for a large-scale spatial
human system reaching a self-organized critical state.

ince their appearance, cities have been one of the main catalysts of human economical, social and cultural

development. In recent years, the formation and internal dynamics of urban environments' have been

progressively regarded as the outcome of multilayered interactions of economic, infrastructural and social
factors: a network of networks” very much akin to highly structured, biological organisms, and also sharing
similar vulnerabilities®. In this analogy, transportation networks naturally identify with circulatory systems,
supporting the urban ecosystem through enhanced mobility of people and goods*°. Thus, in order to guarantee
its smooth functioning, it is extremely important to be able to correctly describe and predict traffic dynamics at
the metropolitan scale.

In the eighty years since Greenshields’s seminal paper on the Fundamental Diagram’, the relation between
traffic density and flow, great leaps have been taken toward the understanding of the complicated non-linear
phenomena that precede and follow the break down of free flow giving way to a variety of different congested
states: stop-and-go waves, wide moving jams and extended jams®’.

Alongside traffic flow theory, the impact of different travel behaviours and traffic control schemes have been
studied in depth', for example in connection with the effect of pre-travel and real time travel information and
variable travel demands'"'?, real and perceived information uncertainty'>'* and its cognitive cost", inequality
among drivers'® or different user responses to travel information'’.

More recently, attention shifted to the information feedback effects of advanced traffic control systems'®° and
the most promising (non equilibrium assignment) routing methods based on decentralised collection and
projection of real-time information®-**, usually inspired by swarm or ant colony methods**. All of these methods
focus on devising the best strategy to collect traffic information and forecast traffic conditions in order to
minimise travel times.

Data-driven studies on urban traffic at the city level are instead less common, due to the inherent technical
difficulties in recording and managing large quantities of traffic data. Although recently this tendency has
reversed due to increased availability of data for large urban areas, a macroscopic description of traffic in dense
complex environments like modern world cities is still an open problem, warranting approaches inspired by a
combination of traffic flow theory and statistical mechanics. The emblematic example is the current discussion
about the existence and definition of a meaningful Macroscopic Fundamental Diagram (MFD), the relation
between urban traffic density and resulting flow at the city level. Various proposals for a well-defined state space
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for urban networks® " have been put forth, revolving on the iden-
tification of “reservoirs”, spatial units exhibiting uniform traffic dis-
tributions and properties.

The approach to congestion management based on perimeter
control and reservoirs has been shown to be effective. Here we
approach the topic of macroscopic urban traffic from a complemen-
tary point of view: instead of looking for the optimal partition of the
sensors given the constraints of uniform traffic features and spatial
proximity, we ask whether the system itself displays such a partition
when we focus on the dynamical features of the traffic time-series.

In this regard, London offers an unique opportunity. Because of its
history, it is characterised by a complex multi-core topology that
cannot be easily reproduced by standard models of geometrical, or
spatial, growing networks®>**. It displays very broad distributions of
road lengths and capacities in addition to broad distributions of
degrees and centralities of the dual graph®. All these features make
it a particularly challenging and non-trivial testbed for studying
large-scale traffic behaviour.

In this article, we analyze an extensive dataset of London’s traffic
through the goggles of two recently proposed methodologies of hier-
archical topological clustering, called Partition Decoupling Method
(PDM)* and Spatial community detection®® and show that the
attempt to self-consistently extract robust “traffic spatial units” high-
lights instead a rich, multilayered community organization.

The first layer of the PDM results represents the typical behaviour
of sensors and identifies similarity classes on the network that are in
general spatially extended and mutually overlapping. Hence, defin-
ing spatially separated regions from the dynamics alone encounters a
fundamental obstacle in the correlations within the traffic network.
This is confirmed by the second layer, which describes the fluctua-
tions around the expected behaviour. At this level, the communities
found (with one significant exception) span the whole network,
implying system-wide fluctuations and strong effects over long
ranges (up to 12 km).

An independent analysis based on a spatial, data-driven, modu-
larity approach™ closely reproduces the results of the second layer of
the PDM method and also provides a key for interpretation: the
spatial correlation function of the fluctuations decays as a power-
law over more than 12 km, covering the whole city.

In addition to the algebraically decaying spatial correlation func-
tion, we found 1/f power spectra over all sensors, which is the typical
sign of long memory effects. The joint presence of long range tem-
poral and spatial correlations in the network are typical indicators of
critical systems. Moreover, as it is the internal dynamics of the system
that drives it in this critical state, it is said to be in a self-organised
critical state. Although the precise origin of self-organised criticality
has been much debated since the introduction of the topic, it is seen
as an “emerging collective phenomena”. The term collective is used
because the spatially large correlation lengths of systems near the
critical point (in a standard phase transition) imply that a mac-
roscopic part of the system is involved; and it is emerging because
in critical systems the large-scale coordination and the long-time
memory (1/f) appear as a macroscopic manifestation of interactions
at the microscopic level (which in this case corresponds to the single
street level). In our case,the relationship between the scaling exponent
of the correlation function and the Hurst exponent of the ensemble
fluctuation scaling strongly suggests that the critical state is brought
about by an underlying spatial synchronization, which in this par-
ticular case can be understood as the interaction between queues in
the network, and is consistent with biological examples of synchron-
ization across large distances (e.g. forest masting)’**” and with the
marginal synchronization predicted for non-conserved systems™.

Results
Partition decoupling method. The Partition Decoupling Method
(PDM) is a topological clustering technique proposed by Leibon

et al.** (see Methods) and successfully applied to the analysis of a
section of the equities market™ and of gene expressions. Through
recursive clustering and “scrubbing” steps, the method allows to
progressively uncover finer features in the data and finally yields
a multi-layered community structure, where each layer encodes
qualitatively different information in contrast to standard hierar-
chical clustering methods. For our dataset, the PDM yields two
layers before stopping.

First layer. The first-layer characteristic vector of a community
I represents the expected flow at given time on the sensors
belonging to community L In the same way, using the community
assignment of sensors, we can also obtain a characteristic occupancy
vector for each community. These two vectors together allow us to
define a MFD for each community.

The partition for the first layer contains 15 communities
(Figure 1). The sizes of the communities range between 1% to about
20% of the total number of sensors. We found different spatial pat-
terns for communities: some (e.g. panels a, b and ¢ of Figure 1) are
composed by sensors distributed in spatially contiguous portions of
the network, identifying particular regions as for example in the
north-west and the south-east areas of London; others on the con-
trary appear to be scattered across the whole urban network. In
addition, communities are often largely spatially overlapping. The
uncovered modules therefore are not independent units that par-
tition the traffic network in spatial areas, or reservoirs, as one might
perhaps have expected. On the contrary, through the correlation of
the timeseries, these units define classes of sensors sharing similar
traffic features. Because the latter are also influenced by the position
in the urban network (e.g. the centre of London versus peripheral
suburban areas), these classes in some cases show localization in
particular areas of the network. Moreover, the spatial overlap of
the communities is consistent with this picture: the traffic measured
by sensors belonging to a given region is the product of the super-
position of the region and of the sensor’s specific collocation (on a
side road, on a high flow street). This can be seen by looking at the
differences between the characteristic series of the communities. The
MEFD provides a graphical representation of the state space of traffic
flow, characterizing its congestion or free flow behaviour. The bot-
tom panel of Figure 1 shows the traffic flow as a function of density
for each of the characteristic series, highlighting the differences
between the activity patterns of the classes of sensors identified
through the PDM.

Second layer. Using the characteristic series of the first layer to scrub
the data, one can look for second order effects in the correlation of
traffic flow (Figure 2). Note that, by construction, the second layer is
effectively probing the structure of the fluctuations in the traffic flow.
The PDM returns four communities: three, containing 97% of the
sensors, span the whole network, implying that fluctuations in
London are correlated over the whole city. The fourth clearly
identifies the Vauxhall-Park Lane corridor, one of the major routes
that crosses London in the North-South direction, suggesting a
special role for this area, which is dominated by its internal
fluctuations.

Spatial modularity and temporal correlations. The results of
the spatial modularity optimization (see Methods) support this
interpretation. Spatial modularity returns a larger number of
communities (78), which, when ranked by their size s, scale as a
power law s” with exponent v = 1.09 = 0.01 (adj-R*> = 0.97). The
largest one contains 70% of the sensors and is akin to the three large
communities found by the PDM second layer, spreading over the
whole network, while the remaining ones are small and localized (see
Figure S.8 in the SI). Moreover, we find that the second largest
community also identifies -although with additional noise- the
same North-South corridor found by the PDM. The closeness of
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Figure 1 | Spatial localization and functional classes of sensors: first PDM layer. The top panel displays the communities found for the first layer of the
PDM analysis. In the bottom panel, the Fundamental Diagram (relation between traffic density and flow) of the characteristic series of each community is
shown, with the same colour code as the spatial visualization. Communities are seen to emerge from two effects: spatial proximity (e.g., sensors in the
north-east portion of Central London) and the dynamical properties of the traffic on the sensor (e.g., sensor near a junction as opposed to on a high-flow
link). The groups of localized and spatially overlapping communities (e.g., {4, b, ¢}, {f, & h}) in fact display markedly different behaviours in the
relationship between the density and flow, as shown by the Fundamental Diagrams. Therefore, spatially constrained uniform traffic regions cannot be
consistently defined. The value of s over each community picture represents the fraction of nodes belonging to each community. Note in particular that
the largest one , community o(r, ~0.2), spatially extends over the whole network and is characterized by extremely low flows for all densities, clearly
identifying network spots with major congestion issues.
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Figure 2 | Correlation of traffic fluctuations: second PDM layer. The communities on the second PDM layer are obtained by studying the correlation
patterns of the detrended traffic flows. The characteristic series of the first layer are used for the detrending as detailed in the Methods section.

Interestingly, communities 4, b and d are characterized by a large heterogeneity in terms of number of sensors, spatial distribution and spatial overlap.
Therefore, fluctuations show unexpected large-scale coordination across the catchment area. Against these pervasive fluctuations, community ¢ emerges
as a particular case: it identifies very well an important north-south corridor across Central London, where fluctuations are strong enough to emerge

against the background.

the results of the partitions given by the PDM second layer and the
Spatial modularity is quantified by the distance between the two
partitions measured by the Normalised Variation of Information®:
0.37. This figure reflects the difference in number of communities
together with the similarities of the most important ones. In addition,
to confirm that the structure unveiled by the Spatial modularity is
genuinely caused by spatio-temporal synchronisation as argued
below, we performed N = 100 randomisation of the sensor’s
position, while keeping their time-series the same. This gives a z-
score of 35 for the modularity value found with the original positions,
showing that the spatial organisation of the system is crucial (see SI
for more details). The Spatial modularity, in addition to reproducing
the most important results of the PDM, provides also a key to
interpret the origin of the spatial overlap of communities and the
power law shape of the spectra. In fact, Spatial modularity is a way of
taking into account the spatial constraints of the system in the
community detection. In the spatial null model, the fundamental
element is the deterrence function f, defined in Eq. (5). In general,
fmeasures the expected strength of a link between nodes at a given
spatial distance. So, the optimal partition will cluster together nodes
that are more similar or more interacting than expected at a certain
distance. In our case, the links are (same time) correlations and
therefore the deterrence function is the two-point correlation
function at zero lag, C(r, T = 0), in other words, it is the expected
correlation between two sensors separated by a physical distance r.
We find two regimes separated by a characteristic sensor distance r,
~ 200 m (Figure S.11 in the SI). The case r < r, typically corresponds
to sensors on the same road and the coarse-graining of our data does
not allow us to identify the functional shape conclusively. None-
theless there appears to be a steep —faster than algebraic— decay up

to 1. For r = ry instead, C(r, t = 0) displays a clear power-law decay
r# with f = —0.26 = 0.01 (adj-R* = 0.98) up to about 12 km
(Figure 3). We repeated the measure in the case of lagged
correlations (t = 30 mins) and found that the functional form
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Figure 3 | Spatial correlations of traffic fluctuations. The correlation
functions C(r,7) for delay © = 0 (blue) and t = 30 min (gray) decay
algebraically as a function of the spatial distance r. The measured slope is
p = —0.26 = 0.01 implying a very slow decay of correlations for distances
larger than 100 m).The plot for 7 = 30 min has been lowered for visibility,
since the the two curves overlap.
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remains a power law with the same exponent. These results suggest
the presence of two mechanisms: one that is responsible for the inter-
nal unidimensional link dynamics, where correlations decrease
rapidly (possibly exponentially) in space, and a second that
emerges at the network level, as the outcome of the different
interacting flows. The crossover distance r, between the two
regimes corresponds to the emergence of a large connected
component for the spatial network (see SI). Therefore, the power
law correlations are a feature of traffic at the network level, that is
lost at the level of a single road segment or similarly sized areas of the
city.

Long-range correlations usually emerge in systems with local
interactions in the vicinity of a critical point®, that is near a
(second-order) phase transition. When this happens, the whole sys-
tem behaves as one dynamical module, where the underlying topo-
logical structure and details of the interaction determine the precise
critical behaviour (the universality class). The large spanning com-
munity found in the community detection is then just the repres-
entation of this phenomenon. What is less clear, however, is how
algebraic correlations can emerge for lengths r > r,.

This concept of phase transition and criticality for traffic is not
new. A number of works in traffic flow theory investigated the prop-
erties of the transition from free flow to synchronized flow to con-
gested flow on road segments®*. In order for the continuous
approximation to stand, sizable lengths of road were needed. The
same holds for most of the phenomena predicted (and observed) in
traffic flow, e.g. stop and go waves, wide moving jams, jam fronts
propagation®.

In a dense urban environment, on the contrary, the situation is
more complicated: due to the spatial constraints and richer infra-
structure, the road segment flow dynamics does not dominate any-
more, the concept of continuous flow density breaks down and most
of the dynamics is in the queues, the street network topology and the
traffic control. These elements are endogenous to the network as a
whole, but not to the single link traffic variables. Nagel** proposed
that the interaction between the traffic and some traffic control
strategies might result into a critical state*. This state would max-
imize throughput, but also minimize predictability. Indeed it would
be characterized by power-law spatial correlations, fluctuations on all
scales and usually long memory effects, encoded in the 1/f spectra of
the observables in the system.

In Nagel’s case, the control parameter was the network density and
the order parameter the individual travel time*. At the point of
maximum flow in the Fundamental Diagram, the travel time started
increasing and a divergence of the error on the estimated travel time
for individual cars was observed. These divergences are a general
feature of (second-order) critical systems and result in fluctuations
of all amplitudes on all scales near and at the critical point. Due to the
nature of our dataset, it is not possible to measure the individual
travel times. Despite that, we can probe memory effects in the net-
work looking at the spectra of the occupancy and flow timeseries.
Figure 4 shows the power spectra for the detrended flow and occu-
pancy data, averaged over the sensors. Both show a peak, corres-
ponding to a daily period (w4, = 107° Hz), and an underlying
clear power law dependency with exponents o~ —0.9 and
o, >~ — 1 respectively.

Scaling in power spectra of traffic flow was observed in a number
of different traffic situations®>*** and related to the existence of
a self-organized maximum through-put state for unidimensional
flows on long streets (with infinite length or periodic boundaries),
where jams of all sizes appear producing a fractal landscape of densi-
ties. We see here that this feature survives also in urban flow, despite
the finiteness of urban road segments and the presence of network
infrastructure and traffic control.

Finally, power-law spatial correlations and 1/f spectra are the typ-
ical indicators of self-organized criticality. This means then that

London, as a large spatial interacting system, displays a system span-
ning coherent state and in this sense it resembles a critical system.

Origins of correlations. The traditional way to study the critical
features of a system is through its critical exponents. However, due
to the poor resolution of the data and the non-uniform distribution
of the sensors, it is very hard to devise a reliable renormalisation
scheme on our dataset”. An alternative path is to look at the
scaling of fluctuations (FS), also known as Taylor’s law*”*°, that has
found wide application across different fields, from biology to
infrastructure science.

It states that the fluctuations of a positive extensive quantity scale
as a power law of the average value the quantity itself, with the value
of the scaling exponent encoding information about the underlying
processes. In particular, it is possible to define also an ensemble
fluctuations as follows. Consider a system composed by many ele-
ments, indexed by i and equipped with a positive quantity f;, that -in
our case- will be the sensors and their corresponding flows (i, fi(t)).
Let us assume further that each element can be grouped according to
some other quantity, usually referred to as the size S of the element
due to the seminal paper by Taylor®, which treated the crop yield of
fields of different sizes. In our case, we associate to each sensor i its
average traffic occupancy <0,> and denote the ensemble average
over sensors with similar occupancy o as’”:

fomyr S A 1)
%oy =0

where M, is the number of sensors with average occupancy equal to
o. The variation inside each class is then given simply by:

o 7 712
=[]~ [f] (2)
and finally FS is written as
Go ot f3" (3)

The ensemble fluctuations exponent o, is usually found in the inter-
val 1/2 < ag < 1. For the sensors’ data, oz = 0.87 * 0.02 (adj-R*> =
0.95) (see Figure 5). The value of oy is usually found between the
two extreme values 1/2 and 1, which correspond to fluctuations
dominated by random internal dynamics and by external forcing
respectively. The measured oy then implies that the network traffic

10°

10t

10 107
Frequency (Hz)

Figure 4 | Power spectra of traffic variables. Flow (purple) and occupancy
(green) present very clear power-law scaling behaviour with exponent

of ~ —0.9 and o, =~ — 1 respectively. The long-range memory effects span
a wide range of temporal scales, persisting over weeks. The observable peak
at gqy >~ 107 Hz corresponds to the daily correlations. The occupancy
data have been lowered for visibility.

| 3:1798 | DOI: 10.1038/srep01798



dynamic is not dominated by either, but rather emerges from a
combination of the two. More importantly, it provides us with new
insights into the nature of the critical properties we observe. In fact, it
is known® that for complex systems whose components display
long-range correlations of the form C(r) ~ rV =2, where Hy is the
Hurst exponent®, one has that Hy, = o. For the spatial correlations,
we measured the exponent § = 0.26 = 0.01, hence a predicted Hurst
exponent Hy = 0.87 = 0.03, which is compatible with the measured
scaling exponent.

The relations just used were first formulated in the context of
ecological models, in particular the Sataka-Iwase model of trees
masting® after the observation of large scale synchronization of for-
ests across thousands of kilometers. However, since they involve only
the form of the correlation function and the properties of the fluc-
tuation scaling can be used in a more general context. In this frame-
work o = 1 would correspond to perfect synchronization and o = 1/2
to random fluctuations. For our dataset, the results indicate the pre-
sence of strong, yet partial spatial synchronization that spans the
whole system and is the driving mechanism behind the scale-free
fluctuations observed through the power spectra and the correlation
function.

Discussion
Recent approaches to the control of the macroscopic dynamics of
traffic in urban networks****** pivot on the identification of network
reservoirs, or modules, characterized by uniform traffic conditions.
These modules are very important because they allow the definition
of a meaningful MFD for the whole unit, which in turn allow to
devise control strategies for the whole network in terms of units,
reducing significantly the complexity of the control problem.
However, we find that the detection of modules directly on the
correlation network of London’s traffic highlight the presence of
spatially overlapping traffic communities. Moreover, the MFDs
obtained for communities of the first PDM layer show different
internal dynamical properties.

Often modules identified through similar activity patterns and
thus reciprocal correlations are considered functional units of a
system, because they are thought to represent structures which

evolve coherently, e.g. market sectors in studies of correlations of
stock options’ prices* or separated regions in traffic on information
and urban networks*'. We prefer however to refer to these units as
activity units since in our system it is not clear what function a given
module would execute. Moreover, in order for a function to be per-
formed, modules do not necessarily need to correlate their activity
but rather coordinate to achieve a given goal*. The emerging com-
munity structure can be understood in terms of the temporal and
spatial scale-free character of traffic flow fluctuations: the spatial
overlap of communities is a consequence of the system being corre-
lated over long distances. Hence, at the dynamical level London is
best described as a composition of spatially entangled and dynam-
ically diverse traffic profiles, displaying collective fluctuations.

The analysis of the ensemble fluctuation scaling showed that the
origin of the latter lies in an underlying spatial synchronization,
which can be thought of as a large scale coordination between queues.
Due to the limitations of the dataset, it was not possible to investigate
whether this criticality provides the best throughput (as suggested by
Nagel®) or rather represents a danger, e.g. when significant conges-
tion occurs, e.g. as result of accidents or failures near important
or central bottlenecks. Although reducing drastically the density
provides a natural solution, this does not seem likely to happen.
Therefore whether the synchronisation is advantageous or not, any
attempt at traffic control should take into account the possibility that
such long range effects might arise.

In a large multicentric city like London, a large number of
demand-side factors, including household activity generation,
scheduling and allocation**** and mode and time of day choice, are
likely to underly the aggregate traffic dynamics. While all these fac-
tors strongly contribute to the expected traffic patterns across the
network, our analysis focused on the correlation structure of the
fluctuations and therefore conveys information about how traftic
at different locations coevolves. In this perspective, it is natural to
expect that traffic control systems could be the cause of the appear-
ance of the long range effects, especially in the presence of global
traffic control schemes which could centrally create such fluctua-
tions. Despite not having detailed information about London’s
current traffic control scheme, a few considerations on the traffic
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Figure 5 | Ensemble Fluctuation Scaling of traffic variables. Collecting sensors in classes based on their average occupancy, the variation of the expected
flow within each class scales algebraically with exponent oz = 0.87 = 0.02, which is compatible with an underlying synchronization mechanism of the

traffic flow.
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control’s role can be made on a theoretical basis. London’s Urban
Traffic Control divides the city in four spatially separated regions for
which the SCOOT system optimizes traffic signals. If the traffic
control had a significant impact on the correlation structure of the
network, it would be reasonable to expect that the community detec-
tion would highlight this. Instead, we found no trace of such regions
in the correlation patterns of fluctuations, making an active role of
traffic control in the large scale coordination less likely. Moreover,
power-law spatially correlated fluctuations and long memory have
been previously observed in simulations of simple lattice gas mod-
els**, where no control was present and the dynamics consisted only
in repulsive interactions between particles on adjacent sites. Hence, it
is possible that system-spanning fluctuations emerge from the
queueing and spill-over effects between links across the city, inde-
pendently of the traffic control.

Finally, it would be of great interest to perform the same type of
analysis in different cities (e.g., Manhattan, for its grid structure, or
Sao Paolo for its extreme density of cars), as this would allow to
explore the phase diagram of urban traffic as a function of the street
organisation and density of cars in order to determine the optimal
city layout to minimize traffic problems.

Methods

Dataset. The dataset contains traffic flow records measured using 3256 inductive loop
detectors operated by Transport for London and which form part of the SCOOT
dynamic traffic control system™. The detectors are located mostly in the Central
London area but also with some sensors as far as Tottenham to the north, Brixton to
the south, Stamford to the east and Chiswick to the west. The area covered is roughly a
square with a side of 15 km and the data refers to one month of continuous measures
(September 2009). Each sensor is able to measure the number of passing vehicles
(flow) and the fraction of time the sensor spends covered (occupancy, a good proxy for
traffic density).

In this work, we approach the dataset from a statistical mechanics perspective,
focusing on the graph of correlations between traffic flows as measured by the
detectors. We will therefore study the correlation matrix obtained from the traffic
timeseries as the weighted adjacency matrix of the correlation graph.

Partition decoupling method. The algorithm needs two inputs: a vector of data
(e.g., coordinates in a high dimensional space or a time series) for each node and a
similarity measure. We applied the method to the sensors’ flow data using Pearson
correlation coefficient as similarity measure. The output is a list of layers, each defined
by a partition p*={CY, ... CZ }. Each layer describes the finer structure of the data
after having accounted (scrubbed) the effects of the previous ones. Starting from the
actual data (the first layer, o = 1), we obtain for each community / = 1, ..., m in
partition @' a characteristic vector V!, constructed by averaging over the vectors
associated to the nodes belonging to I. The PDM then proceeds to the next layer (« =
1). This means removing the effect of the previous layer (« = 2) by writing the original
timeseries as a combination of characteristic vectors of layer 1 plus a residual. The
residual is then used as the basis for a new clustering detection, yielding the second
layer partition (2. The method continues until it obtains residuals which cannot be
distinguished from a random Gaussian model built from a randomization of the data
itself, making the PDM self-contained and parameter-free.

As a note to the reader, we observe that different layers convey very different
information. In particular, for traffic data the first layer communities will represent
set of sensors sharing similar expected flows. This is therefore related to the position
of the sensors in the network and spatially close sensors are likely to display strongly
correlated flows. The second layer communities instead represents how fluctuations
of traffic on top of the expected values correlate across the network. Section S1.1 of the
SI provides further details on the PDM.

Spatial modularity. As we see in the Results section, it is interesting to compare the
results of the PDM for the fluctuations of traffic (the second layer) with those of a
different community detection algorithm where the dependency on the distance
between sensors is explicit. The standard formulation of the Newman-Girvan (NG)

modularity function®:
1 SiSj
Q= (45— Py]. Py= 4)
2m ; U; 2m

where i, j € C is a summation over pairs of nodes i and j belonging to the same
community C of a partition P and therefore counts links between nodes within the
same community. s; is the strength of a node and 2m the total strength of the network.
Optimising modularity thus groups together nodes that have more in common than
what is expected by the null-model P;;. NG modularity depends strongly on the
assumptions made for the null model used in the optimisation. In the present work,
we adopt a variation of the standard NG modularity null-model, which introduces

spatial constraints in a data-driven way. The original spatial null-model* was based
on a of the variation of the gravity model*”:

P = NiNf (dy) (5)

where f, the deterrence function, can be any (generally decreasing) function of the
distance dj; between i and j and N; is an attribute of node i that plays a role similar to
the mass. In its original formulation, the deterrence function was calculated from the
flows between the nodes constituting the network. In the present work, the data do
not provide flows of vehicles between sensors, but occupancy time-series (see data
section) from which we calculated correlations matrices. Using correlation
automatically renormalise the relative importance of the nodes for our purpose, so the
mass term in the null-model can be set to 1 for all nodes. The null-model then reduces
to the deterrence function which gives the average correlation between sensors as a
function of their distance:

P =f(dy)= D @ (6)

if|dy=d

where Q; is the correlation between two sensor’s time series for a given time delay.
The deterrence function is determined directly from the data and does not require a fit
to some functional form®’, thus making the method independent from external
hypothesis. The modularity function has been optimized using the KL spectral
tripartitioning method*®. Section S1.2 of the SI provides further details on spatial
modularity optimization.

1. Bettencourt, L. M. A,, Lobo, J., Helbing, D., Kuhnert, C. & West, G. B. Growth,
innovation, scaling, and the pace of life in cities. Proc. Nat. Acad. Sci. USA
104(17), 7301-7306 (2007).

2. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from
interdependent networks. Nat. Phys. 8, 40-48 (2011).

3. Buldyrev, S. V., Parshani, R, Paul, G., Stanley, H. E. & Havlin, S. Catastrophic
cascade of failures in interdependent networks. Nature 464, 1025-1028 (2010).

4. Samaniego, H. & Moses, M. E. Cities as Organisms: Allometric Scaling of Urban
Road Networks. J. Transp. Land Use 1, 21-39 (2008).

5. Gonzalez, M. C,, Hidalgo, C. A. & Barabasi, A. L. Understanding individual
human mobility patterns. Nature 453, 779-782 (2008).

6. Roth, C,Kang, S. M., Batty, M. & Barthélemy, M. Structure of Urban Movements:
Polycentric Activity and Entangled Hierarchical Flows. PloS One 6 (1), 15923
(2011).

7. Greenshields, B. A study of traffic capacity. Highway Research Board (1935).

8. Kerner, B. & Rehborn, H. Experimental features and characteristics of traffic jams.
Phys. Rev. E 53, 1297-1300 (1996).

. Helbing, D. Verkehrsdynamik. Springer (1997).

10. Peeta, S. & Ziliaskopoulos, A. K. Foundations of dynamic traffic assignment: The
past, the present and the future. Networks and Spatial Economics 1 (3), 233-265
(2001).

. De Palma, A. & Fosgerau, M. Dynamic and Static congestion models: A review.
Cahier de recherche, Ecole Polytechnique, CNRS (2010).

12. Ben-Akiva, M. E., Koutsopoulos, H. N., Mishalani, R. G. & Yang, Q. Simulation
Laboratory for Evaluating Dynamic Traffic Management Systems. Journal of
Transportation Engineering 123 (4), 283-289 (1997).

13. Wang, X. & Khattak, A. Role of travel information in supporting travel decision
adaption: exploring spatial patterns. Transportmetrica, 1-19 (2011).

14. Gao, S., Frejinger, E. & Ben-Akiva, M. E. Adaptive route choices in risky traffic
networks: A prospect theory approach. Transp. Res. Part C18(5), 727-740 (2010).

15. Gao, S., Frejinger, E. & Ben-Akiva, M. E. Cognitive cost in route choice with real-
time information: An exploratory analysis. In Transp. Res. Part a-Policy and
Practice, Univ Massachusetts, Amherst, MA 01003 USA (2011).

16. Yang, H. Multiple equilibrium behaviors and advanced traveler information

systems with endogenous market penetration. Transp. Res. Part B: Methodological

32(3), 205-218 (1998).

Bierlaire, M., Thémans, M. & Axhausen, K. W. Analysis of driver’s response to

real-time information in Switzerland. European Transport 34, 21-41 (2006).

18. Wang, Q.-X., Wang, B.-H., Zheng, W.-C,, Yin, C.-Y. & Zhou, T. Advanced
information feedback in intelligent traffic systems. Physical Review E 72(6), (2005).

19. Dong, C. F., Ma, X. & Wang, B. H. Weighted congestion coefficient feedback in
intelligent transportation systems. Physics Letters A 374(11-12), 1326-1331
(2010).

20. Chen, B. & Cheng, H. H. A Review of the Applications of Agent Technology in
Traffic and Transportation Systems. IEEE Transactions on Intelligent
Transportation Systems 11(2), 485-497 (2010).

. Claes, R, Holvoet, T. & Weyns, D. A decentralized approach for anticipatory
vehicle routing using delegate multiagent systems. IEEE Transactions on
Intelligent Transportation Systems 99 (2011).

22. Weyns, D., Holvoet, T. & Helleboogh, A. Anticipatory vehicle routing using
delegate multiagent systems. Intelligent Transportation Systems Conference, 2007.
ITSC 2007. IEEE, 87-93 (2007).

23. Narzt, W. et al. Self-Organization in Traffic Networks by Digital Pheromones.
Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE, 490-495
(2007).

1

—

1

N

2

—_

| 3:1798 | DOI: 10.1038/srep01798



24. Teodorovic, D. Swarm intelligence systems for transportation engineering:
Principles and applications. Transp. Res. Part C: Emerging Technologies 16(6),
651-667 (2008).

25. Musha, T. & Higuchi, H. The 1/ffluctuation of a traffic current on an expressway.

Jap. J. App. Phys. 15, 1271-1275 (1976).

. Helbing, D. & Huberman, B. A. Coherent moving states in highway traffic. Nature
396, 738-740 (1998).

. Helbing, D. Derivation of a fundamental diagram for urban traffic flow. Eur. Phys.
J. B70(2), 229-241 (2009).

28. Daganzo, C. F. & Geroliminis, N. An analytical approximation for the
macroscopic fundamental diagram of urban traffic. Trans. Res. B 42(9), 771-781
(2008).

29. Geroliminis, N. & Daganzo, C. F. Existence of urban-scale macroscopic
fundamental diagrams: Some experimental findings. Trans. Res. Part B 42(9),
759-770 (2008).

30. Daganzo, C. F., Gayah, V. V. & Gonzales, E. ]. Macroscopic relations of urban
traffic variables: Bifurcations, multivaluedness and instability. Trans. Res. B
45(1), 278-288 (2011).

. Mazloumian, A., Geroliminis, N. & Helbing, D. The spatial variability of vehicle
densities as determinant of urban network capacity. Phil. Trans. Roy. Soc. A
368(1928), 4627-4647 (2010).

. Crucitti, P., Latora, V. & Porta, S. Centrality in networks of urban streets. Chaos
16, 015113 (2006).

33. Masucci, A. P., Smith, D., Crooks, A. & Batty, M. Random planar graphs and the

london street network. Eur. Phys. J. B 71, 259-271 (2009).

34. Leibon, G., Pauls, S., Rockmore, D. & Savell, R. Topological structures in the
equities market network. Proc. Nat. Acad. Sci. USA 105(52), 20589-20594 (2008).

35. Expert, P., Evans, T. S., Blondel, V. & Lambiotte, R. Uncovering space-
independent communities in spatial networks. Proc. Nat. Acad. Sci. USA 108,
7663 (2011).

36. Satake, A. & Iwasa, Y. Pollen Coupling of Forest Trees: Forming Synchronized and
Periodic Reproduction out of Chaos. J. Theo. Bio. 203(21), 63-84 (2000).

37. Eisler, Z., Bartos, I. & Kertész, J. Fluctuation scaling in complex systems: Taylor’s
law and beyond. Adv. Phys. 57(1), 89-142 (2008).

38. Middleton, A. & Tang, C. Self-organized criticality in nonconserved systems. Phys.
Rev. Lett. 74(5), 742-745 (1995).

39. Ben Avraham, D. & Havlin, S. Diffusion and Reactions in Fractals and Disordered
Systems, Cambridge Nonlinear Science Series. Cambridge University Press
(2000).

40. Gao, K, Jiang, R,, Wang, B. & Wu, Q. Discontinuous transition from free flow to
synchronized flow induced by short-range interaction between vehicles in a three-
phase traffic flow model. Phys. A 388(15-16), 3233-3243 (2009).

41. Zeng, H.-L., Guo, Y.-D., Zhu, C.-P., Mitrovi¢, M. & Tadi¢, B. Congestion patterns
of traffic studied on Nanjing city dual graph. IEEE Digital Signal Processing, 16th
International Conference 1-8 (2009).

42. Simon, H. The architecture of complexity. Proc. Am. Phil. Soc. 106 (6), 467-482
(1962).

43. Nagel, K. & Paczuski, M. Emergent traffic jams. Phys. Rev. E 51(4), 2909-2918
(1995).

44. Oppenheim, N. Urban Travel Demand Modeling: from Individual Choices to
General Equilibrium. John Wiley and Sons (1995).

45. Ortuzar, J. & Willumsen, L. G. Modelling Transport. Wyley and Sons (1994).

46. Jensen, H. J. Self-Organized Criticality: Emergent Complex Behavior in Physical
and Biological Systems, Cambridge Lecture Notes in Physics, Cambridge
University Press (1998).

2

(=2}

2

N

3

—

3

[}

47. Choi, M. Y. & Lee, H. Y. Traffic flow and 1/f fluctuations. Phys. Rev. E 52(6),
5979-5984 (1995).

48. Zhang, X. & Hu, G. 1/f noise in a two-lane highway traffic model. Phys. Rev. E
52(5), 4664-4668 (1995).

49. Song, C., Gallos, L. K., Havlin, S. & Makse, H. A. How to calculate the fractal
dimension of a complex network: the box covering algorithm. J. Stat. Mech. 3,
P03006 (2007).

50. Taylor, L. R. Aggregation, Variance and the Mean. Nature 189, 732-735 (1976).

51. Smith, H. An empirical law describing heterogeneity in the yields of agricultural
crops. J. Agric. Sci. 28, 1-23 (1938).

52. Daganzo, C. F. Urban gridlock: Macroscopic modeling and mitigation
approaches.Trans. Res. B 41(1), 49-62 (2007).

53. Fiig, T. & Jensen, H. Diffusive Description of Lattice-Gas Models. /. Stat. Phys.
71(3-4), 653-682 (1993).

54. Hunt, P., Robertson, D., Bretherton, R. & Winton, R. Scoot - a traffic responsive
method of coordinating signals. Transport Road Research Laboratory (1981).

55. Braun, R, Leibon, G., Pauls, S. & Rockmore, D. Partition decoupling for multi-
gene analysis of gene expression profiling data. BMC Bioinf. 12, 497 (2011).

56. Newman, M. Modularity and community structure in networks. Proc. Nat. Acad.
Sci. USA 103(23), 8577-8582 (2006).

57. Erlander, S. & Stewart, N. F. The gravity model in transportation analysis: theory
and extensions. VSP International Science Publishers (1990).

58. Richardson, T., Mucha, P. J. & Porter, M. A. Spectral tripartitioning of networks.
Phys. Rev. E 80(3), 036111 (2009).

59. Meila, M. Comparing Clusterings by the Variation of Information. Learning
Theory and Kernel Machines, 173-187 (2003).

Acknowledgments

The authors acknowledge Transport for London for the permission to use the traffic sensor
data and Imperial College London’s High Performance Computing cluster for
computational support. G.P. acknowledges technical assistance and helpful discussions
with Dr Rajesh Krishnan of the Centre for Transport Studies, Imperial College London.
G.P. is supported by the TOPDRIM project funded by the Future and Emerging
Technologies program of the European Commission under Contract IST-318121. P.E. is
supported by the MRC Grant U.1200.04.007.00001.01.

Author contributions
GP and PE performed the analysis, wrote the manuscript and prepared the figures. All
authors designed the research and reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Petri, G., Expert, P., Jensen, H.J. & Polak, ].W. Entangled

communities and spatial synchronization lead to criticality in urban traffic. Sci. Rep. 3, 1798;
DOI:10.1038/srep01798 (2013).

| 3:1798 | DOI: 10.1038/srep01798


http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Entangled communities and spatial synchronization lead to criticality in urban traffic
	Introduction
	Results
	Partition decoupling method
	First layer
	Second layer
	Spatial modularity and temporal correlations
	Origins of correlations

	Discussion
	Methods
	Dataset
	Partition decoupling method
	Spatial modularity

	Acknowledgements
	References


