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Abstract Online social networking platforms have the

possibility to collect an incredibly rich set of information

about their users: the people they talk to, the people they

follow and trust, the people they can influence, as well as

their hobbies, interests, and topics in which they are

authoritative. Analyzing these data creates fascinating

opportunities for expanding our understanding about social

structures and phenomena such as social influence, trust

and their dynamics. At the same time, mining this type of

rich information allows building novel online services, and

it represents a great resource for advertisers and for

building viral marketing campaigns. Sharing social-net-

work graphs, however, raises important privacy concerns.

To alleviate this problem, several anonymization methods

have been proposed that aim at reducing the risk of a pri-

vacy breach on the published data while still allowing to

analyze them and draw relevant conclusions. The bulk of

those proposals only considers publishing the network

structure, that is a simple (often undirected) graph. In this

paper we study the problem of preserving users’ individual

privacy when publishing information-rich social networks.

In particular, we consider the obfuscation of users’ iden-

tities in a topic-dependent social influence network, i.e., a

directed graph where each edge is enriched by a topic

model that represents the strength of the social influence

along the edge per topic. This information-rich graph is

obviously much harder to anonymize than standard graphs.

We propose here to obfuscate the identity of nodes in the

network by randomly perturbing the network structure and

the topic model. We then formalize our privacy notion, k-

obfuscation, and show how to evaluate the level of

obfuscation under a strong adversarial assumption. Exper-

iments on two social networks confirm that randomization

can successfully protect the privacy of the users while

maintaining high-quality data for applications, such as in-

fluence maximization for viral marketing.

1 Introduction

Analyzing the structure of social networks is of interest in a

wide range of scientific disciplines and applications.

However, such practice is limited by the privacy concerns

associated with publishing such sensitive information in

raw form. The first naı̈ve solution is to de-identify the

social graph by removing the identifying information such

as the user name, the user id or the email address. How-

ever, as shown by Backstrom et al. (2007), the mere

structure of the released graph may reveal the identity of

the individuals behind some of the nodes. Hence, one needs

to apply a more substantial procedure of sanitization on the

social graph before its release. Following this observation,

several anonymization methods have been proposed in the

literature, aiming at reducing the risk of a privacy breach

on the published data, while still allowing to analyze them

and draw relevant conclusions. Almost the totality of this

literature (which we survey in Sect. 2) focuses on simple

undirected and non-weighted graphs. Assuming such
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simple graph structures is overly restricting, as social net-

work data contain much more information than the simple

graph, and building real-world applications requires this

richer setting.

It is a matter of fact that online social-networking

platforms have the possibility to collect an incredibly rich

set of information about their users: the people they talk to,

the people they follow and trust, the people they can

influence, as well as their hobbies, interests, and topics in

which they are authoritative. Having the possibility to mine

this richer set of data, one can get better understanding

about social structures evolution, the dynamics of social

influence and the interplay among the two (Weng et al.

2013). At the same time, mining this type of rich infor-

mation allows to build novel online services, and it rep-

resents a great resource for advertisers and for building

viral marketing campaigns (Kempe et al. 2003). In this

paper we study the problem of privacy-preserving publi-

cation of topic-dependent social influence networks. A

topic-dependent social influence network is a directed

graph where each edge is enriched by a topic model that

represents the strength of the social influence along the

edge per topic. Specifically, for each directed edge

e ¼ ðv; uÞ, representing the fact that u follows v, or that v

can influence u, we have an associated vector we ¼
ðw1

e ;w
2
e ; . . .;w

T
e Þ where T is the number of topics and ws

e

represents the strength of influence of v on u for topic

1� s� T , or in other terms, the likelihood that information

in topic s will propagate from v to u. (For example, if

e ¼ ðv; uÞ and ws
e ¼ 0:3, it means that out of, say, 10

actions performed by v and which are related to the topic s,
u is expected to follow v and perform 3 of those actions.)

Consider for example the social network in Fig. 1. This

toy example describes the social influence relations

between Alice, Bob, Carol and David (denoted as A,B,C,

and D, respectively, in the figure), with regard to three

topics—(music, sports, politics). Alice is a famous music

critic that Bob, Carol and David follow. As can be seen,

they are affected by her opinions on music, but her stands

on other topics have almost no influence on them. Carol is

a friend of both Bob and David, but the latter two do not

know each other. Carol is very much involved in sports and

politics, and has a mutual high influence in politics on Bob

and in sports on David. All three are interested also in

music and have mutual influence with regard to that topic

too, but it is less strong than Alice’s influence.

This type of representation is a concise, yet meaningful

summary of activity and behavioral information that is

useful in various applications. For instance, it is used for

topic-specific influence analysis in social networks in

general (Liu et al. 2010; Tang et al. 2009) and in micro-

blogs in particular (Bi et al. 2014; Weng et al. 2010).

Several authors have analyzed the interplay between topics,

linguistic factors, and the dynamic of information and

opinions diffusion in Twitter (Dyagilev and Yom-Tov

2013; Romero et al. 2011). Beyond the mere analysis, such

topic-enriched graphs can be used for better behavioral

targeting and advertising in social networks (Gur 2013), for

influence maximization (Aslay et al. 2014; Barbieri et al.

2012; Chen et al. 2015), or for influence-aware product

design (Barbieri and Bonchi 2014).

The enriching of edges with topic weights suggest a

multi-layering of the network, where each topic induces a

different layer of the network with its own set of weighted

edges between the nodes. The need to generalize ‘‘tradi-

tional’’ network theory by developing and validating a

framework and associated tools to study multi-layer sys-

tems in a comprehensive fashion arose already few decades

above in several disciplines. Since then the study of multi-

layer networks has become one of the most important

directions in network science. We refer the reader to the

review (Kivel et al. 2014) where the authors discuss the

history of multi-layer networks, and related concepts, and

review the exploding body of work on such networks.

The semantic richness of the data that we want to

publish has also a negative effect: the obfuscation of the

individual identities becomes a task much harder than in

the standard simple graph setting. Consider an adversary

that wants to target a specific individual in the released

network. For such target individual the adversary might

easily know her in-degree (the number of people she fol-

lows) and out-degree (the number of her followers).1

Moreover, the adversary might collect in the same way the

target’s social activity (e.g., her posts and reposts). As the

topic model is published by the data owner (namely, the

topics behind each component of the edge vector are

known), the adversary can use his background knowledge
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Fig. 1 A social influence network: each directed edge is labeled with

a vector that represents the strength of the social influence along the

edge for different topics (Tang et al. 2009; Liu et al. 2010; Barbieri

et al. 2012; Aslay et al. 2014, 2015; Chu et al. 2014; Chen et al.

2015)

1 For instance, in Twitter in-degree and out-degree are public

information.
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to estimate the topic-wise influence strength along each in-

coming or outgoing edge. Such rich information on the

target node usually distinguishes that node from all other

nodes in the network, making the task of preserving the

individual privacy of the node by ‘‘blending in the crowd’’

much harder.

In this paper we propose a method for identity obfus-

cation in social influence networks, under a strong adver-

sarial assumption as described above, by means of random

perturbation of the network structure and the associated

topic-dependent influence information.

Our contributions are summarized as follows:

– We study, for the first time, the problem of protecting

the identity of users when publishing social network

data enriched with topic-dependent social influence

information, i.e., a topic-dependent social influence

network. We propose a method based on random

perturbation of the network structure and the associated

topic model.

– We then formalize our privacy notion, k-obfuscation,

and show how to evaluate the level of obfuscation

achieved by the random perturbation method under a

strong adversarial assumption.

– We experiment on two real-world datasets, where the

topic-dependent influence associated with each social

link is learned from real propagations data, using the

expectation-maximization method of Barbieri et al.

(2012). In our experiments, we report the levels of

identity obfuscation achieved and the utility preserved

in the perturbed data for different levels of strength of

the randomization.

– The utility preserved in the randomized data is shown

in terms of structural properties of the social graph, and

by running topic-aware influence maximization queries

(Barbieri et al. 2012; Aslay et al. 2014, 2015; Chen

et al. 2015) on the original and on the perturbed graphs.

The rest of the paper is organized as follows. In Sect. 2 we

survey the state of the art in social network anonymization.

In Sect. 3 we describe the data model, introduce our pri-

vacy notion, and state our adversarial assumption. Then, in

Sect. 4, we describe the random perturbation method that

we use. Section 5 contains the computational derivations

for assessing the level of obfuscation which is offered by

the perturbed data. Finally, we report in Sect. 6 our

experimental findings, and conclude in Sect. 8.

2 Related work

Providing a comprehensive survey of the wide literature on

identity obfuscation in social networks is beyond the scope

of the current paper. Interested readers may consult the

various available surveys (Hay et al. 2010a; Wu et al.

2010). The work in this area can be broadly classified in

three categories: generalization by clustering nodes (Cor-

mode et al. 2009; Hay et al. 2010b); deterministic alter-

ation of the graph by edge additions or deletions (Cheng

et al. 2010; Liu and Terzi 2008; Zou et al. 2009); and

randomized alteration of the graph by addition, deletion or

switching of edges (Hay et al. 2007; Liu et al. 2009; Ying

and Wu 2008).

In the last category of methods, which is more relevant

to our paper, Hay et al. (2007) study the effectiveness of

random perturbations under degree-based re-identification

attack. Given a node v in the real network, they quantify

the level of anonymity that is provided for v by the per-

turbed graph as ðmaxufPrðv j uÞgÞ�1
, where the maximum

is taken over all nodes u in the released graph and Prðv j uÞ
stands for the belief probability that u is the image of the

target node v. Their experimentation indicated that the

required perturbation for achieving meaningful levels of

anonymity reduces utility significantly.

Bonchi et al. (2011) take a different approach, by con-

sidering the entropy of the a posteriori belief probability

distributions as a measure of identity obfuscation. The

rationale is that while using the a posteriori belief proba-

bilities as a local measure, the entropy is a global measure

that examines the entire distribution of these belief prob-

abilities. Bonchi et al. show that the entropy measure is

more accurate than the a posteriori belief probability, in the

sense that the former distinguishes between situations that

the latter perceives as equivalent. Moreover, the obfusca-

tion level quantified by means of the entropy is always

greater than the one based on a posteriori belief probabil-

ities. By experimenting on three large datasets and com-

paring to Liu and Terzi (2008), they demonstrate that

random perturbation could be used to achieve meaningful

levels of obfuscation while preserving a variety of graph

characteristics.

Ying and Wu (2009) study the problem of how to

generate a synthetic graph that matches given features of a

real social network, in addition to a given degree sequence.

They propose a Markov chain-based feature-preserving

randomization.

Hanhijärvi et al. (2009) study a similar problem, in the

context of statistical hypothesis testing, albeit not from a

privacy perspective. Their goal is to assess the significance

of the graph mining results, and therefore they need to

ensure that the final randomized samples are taken uni-

formly at random from the set of all graphs with the same

statistics as the original data.

Recently, Boldi et al. (2012) suggested a new approach

for obfuscating graph data by means of randomization,

based on injecting uncertainty to the edges of the social
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graph and publishing the resulting uncertain graph. As

opposed to the methods which obfuscate graph data by

adding or removing edges entirely, the method of Boldi

et al. (2012) uses finer grained perturbations that add or

remove edges partially, thus possibly achieving compa-

rable levels of obfuscation with smaller changes in the

data. While almost all of the above studies focus on

simple graphs, Liu et al. (2009) analyze the case in which

the social network edges are weighted, considering two

kinds of data characteristics to be preserved for data

utility sake: how to keep the lengths of shortest paths

between nodes within an error bound, and how to main-

tain the exact shortest paths between nodes in a selected

subset.

Another line of work dealt with the design of differen-

tially private algorithms for graph and network data. Here,

the goal is to design probabilistic algorithms for answering

queries on graphs so that differential privacy (Dwork 2006)

is respected. Some of those algorithms enable to provide

perturbed answers for specific (and known upfront) queries

on the graph, such as number of triangles, MST cost,

degree distribution or small subgraph counts, e.g., Hay

et al. (2009, 2010c), Karwa et al. (2014), Lin and Kifer

(2013) and Nissim et al. (2007). More recent studies (Chen

and Zhou 2013; Kasiviswanathan et al. 2013) provide

accurate answers to a larger number of queries but only for

a subclass of graphs, such as graphs with a sublinear degree

bound, dense graphs, or graphs where the tail of the degree

distribution is not too heavy.

Recently, Xiao et al. (2014) proposed a data sanitization

solution that infers a network’s structure in a differentially

private manner. They observe that, by estimating the con-

nection probabilities between nodes instead of considering

the observed edges directly, the noise scale enforced by

differential privacy can be reduced.

Differently from the state of the art, in the present work

we consider a directed network that is enriched with topic-

dependent influence information, which translates into

vectorial weights on the edges. Such graphs are by far

harder to anonymize, because the data have to be altered

significantly to achieve meaningful levels of privacy, due

to the ‘‘curse of dimensionality’’ (Aggarwal 2005) (we

elaborate on that in Sect. 3).

Finally, in the context of viral marketing applications,

the only work about privacy we are aware of is a recent

work by Tassa and Bonchi (2014) focussing on secure

multiparty computation of social influence strength: several

players hold different pieces of data—activity logs of dif-

ferent users and the social network—and the goal is to

jointly compute the social strength along edges of the

network. That goal is very different from the goal of our

work, which is publishing a social influence graph while

protecting individual privacy.

3 Problem statement

3.1 The data model

Our data model is that of a topic-dependent social influence

network.Given a set ofTbasic topics, such a networkdescribes

the influence relations between the users in the underlying

population, where the influence depends on the topic.

Definition 1 A topic-dependent social influence network

is a directed graph G ¼ ðV ;E;WÞ with nodes V, edges

E � V � V , and vectorial edge weights W. Each directed

edge e ¼ ðv; uÞ 2 E has an associated vectorial weight

we ¼ ðw1
e ;w

2
e ; . . .;w

T
e Þ, where ws

e is the probability that user

u will be influenced by user v on topic s, 1� s� T .

3.2 The privacy model

Given a population V and the set of topics f1; . . .; Tg, we let
C ¼ CV ;T denote the set of all social influence networks over

V with respect to that set of topics. Furthermore, we let PC

denote the set of all probability distributions overC. Then the
identity obfuscationmethods that we consider here are of the

form R : C ! PC. Namely, given an input network G 2 C,
the method outputs a perturbed image of G in the form of a

network G0 2 C by randomly selecting G0 from C according

to the distribution R(G) on C. We assume that the function R

is publicly known. In our discussion hereinafter we denote

the set of nodes in G0 by U, even though it equals the set of

nodes in G, which is denoted by V. The introduction of a

different notation is needed to distinguish between the set of

nodes, as observed by the adversary in G0, and the set of

nodes in the original graph G.

The adversary knows the randomization method and the

value of the parameters that control the underlying proba-

bility distributions. He also knows some property P of his

target node. The goal of the adversary is then to locate the

image in U of a specific node v in V, given his knowledge

of P(v) and the obfuscated graph G0. For example, let us

assume, for the sake of simplicity of illustration, that all

vector weights per topic are 1 (namely, for all e 2 E,

we ¼ ð1; . . .; 1Þ), and that the method of randomization just

flips the direction of every edge e 2 E in some preset

probability p. Then the adversary is assumed to know that

this is the method of randomization and the value of p that

was used in generating G0 from G. Let us now consider the

case in which the property of the target node v that the

adversary knows is its in- and out-degrees, denoted d�ðvÞ
and dþðvÞ, respectively. Then, as this particular method of

randomization does not change the sum of those degrees,

the adversary will be able to limit his search in G0 only to

nodes u for which d�ðuÞ þ dþðuÞ ¼ d�ðvÞ þ dþðvÞ, while
all other nodes will be safely ruled out since they cannot be

2 Page 4 of 14 Soc. Netw. Anal. Min. (2016) 6:2

123



the image of v in G0. If the value of d�ðvÞ þ dþðvÞ was

unique in G, then the adversary will be able to locate the

image u of v since there will be only one node u in G0 with

d�ðuÞ þ dþðuÞ ¼ d�ðvÞ þ dþðvÞ. But if the value of

d�ðvÞ þ dþðvÞ was not unique in G, the adversary will

have, say, k suspect nodes u in G0, which are all of the

nodes in G0 for which d�ðuÞ þ dþðuÞ ¼ d�ðvÞ þ dþðvÞ.
The adversary may then use his knowledge of the ran-

domization method and the underlying parameters (p in our

example) to associate probabilities to each of those k sus-

pects as being the image of v. Our basic privacy notion

demands that this probability distribution over the suspect

nodes will not reveal ‘‘too much information’’ in a sense

that we proceed to define formally.

The above discussion implies that an adversary who

knows a property P of his target node v, and knows the

probabilistic method that was used to generate G0 from G,

may infer a probability distribution Xvð�Þ on the nodes in U,
where for every u in U, XvðuÞ is the probability that u is the

image of v in G0. Specifically, if v 2 V is the target node,

the adversary may compute for any u 2 U the value f(v, u)

which denotes the probability that a node with property

P(v) was converted, under the known randomization

model, to a node with property P(u). Consequently,

XvðuÞ ¼
f ðv; uÞ

P
u02U f ðv; u0Þ : ð1Þ

For the sake of illustration, in the example above f ðv; uÞ ¼
0 for all nodes u 2 U for which

d�ðuÞ þ dþðuÞ 6¼ d�ðvÞ þ dþðvÞ, while for all other nodes

f(v, u) may be computed based on the knowledge of d�ðvÞ
(the adversary’s background knowledge), d�ðuÞ (the

degrees as observed in G0), and p. In cases where

D :¼ dþðvÞ � dþðuÞ� 0, that probability is given by
X

0� i� minfdþðvÞ�D;d�ðvÞg
pDþið1� pÞd

þðvÞ�D�i
pið1� pÞd

�ðvÞ�i:

Indeed, if the original in- and out-degrees were

ðd�ðvÞ; dþðvÞÞ and the observed degrees of u are

ðd�ðvÞ þ D; dþðvÞ � DÞ, then such a transition could have

occurred if Dþ i of the dþðvÞ out-going edges were flipped

and i of the d�ðvÞ in-coming edges were flipped, for any

value of i� 0 such that Dþ i� dþðvÞ and i� d�ðvÞ. A
similar formula can be derived when

D :¼ dþðvÞ � dþðuÞ� 0, since then d�ðvÞ � d�ðuÞ� 0.

We are now ready to define our notion of privacy.

Definition 2 (ðk; eÞ-Obfuscation) Let G0 ¼ ðU ¼
V ;E0;W 0Þ be a perturbed image of G ¼ ðV;E;WÞ. A node

v 2 V is said to be k-obfuscated in G0 (with respect to

adversarial background knowledge P) if the entropy of the

random variable Xv over U is at least log k. The graph G0 is

a ðk; eÞ-obfuscation of G if at least ð1� eÞjVj of the nodes

in G are k-obfuscated in G0.

Consider for example the anonymization method that was

proposed by Liu and Terzi (2008) in the context of simple

(undirected and non-weighted) graphs. They assumed that the

adversary knows the degree of the target node and devised

methods to convertG into a graphG0 in which each degree that
appears in the graph is shared by at least k nodes. Hence, even if

the adversary is able to infer correctly the degree of u, the image

of v in G0, he will not be able to narrow down the number of

suspect nodes to less than k. Furthermore, as each of those

suspect nodes has the same degree, whence they are all equally

likely to be the image of v, the resulting probability distribution

Xv will have an entropy of at least log k. Therefore, as their

method renders all nodes k-obfuscated, it issues a (k, 0)-ob-

fuscation of the input graph (with respect to the adversarial

background knowledge of the target node’s degree).

Methods that issue output graphs G0 in which, for some

specific node property, every node property that appears in

the graph is shared by at least k nodes are considered to be

methods of k-anonymization. We adopt here the term ob-

fuscation (that was suggested in Bonchi et al. 2011) instead

of anonymization since randomized methods cannot guar-

antee a uniform k-obfuscation over all nodes (see e.g., also

Bonchi et al. 2011; Hay et al. 2007; Ying and Wu 2008).

While this may be considered an advantage of deterministic

methods over randomized methods in terms of the resulting

privacy, deterministic methods will not alter nodes that are

already k-anonymized (as opposed to randomized methods

that alter all nodes) and hence such anonymized graphs may

be vulnerable to attacks such as that in Backstrom et al.

(2007) (see more on that in Bonchi et al. 2011).

To illustrate this point, let us consider as a motivating

example the work of Liu and Terzi (2008). In that paper, the

authors devise algorithms for turning the input graph to a k-

degree anonymous one, namely, one in which every node

degree appears at least k times. If the adversary knows only the

degree of his target node, hewill not be able to trace it down to

a subset of less than k nodes in the released anonymized graph.

However, in typical real-world graphs, say ones where the

degree distribution follows a power law, almost all nodes

satisfy already the k-degree anonymity requirement, with the

possible exception of a small number of hubs. Thus, an

algorithm for k-degree anonymity has only to adjust the

degrees of those hubs (by adding or deleting edges) while

leaving the majority of the other nodes unaffected. Therefore,

the proposed algorithms inLiu andTerzi (2008)may leave the

majority of the nodes unaffected.Hence, anadversarywhohas

additional knowledge on his target node (say, connections

between that node’s neighbors), might be able to use such

information to identify the target node in the released graph.

Such attacks, as described in Backstrom et al. (2007), cannot
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be launched if all nodes are affected in a randomized manner,

as we do in obfuscation.

In addition, achieving k-anonymity in rich structures such

as topic-dependent social influence networks, without

stripping the data of its utility, seems to be a hefty challenge,

because any attempt to achieve that will bring about the

‘‘curse of dimensionality’’ (Aggarwal 2005). Namely, if the

node property that needs to be anonymized is high dimen-

sional (as is the case with the property Ið�Þ that we describe in
the next subsection, see Eq. (2)) then any attempt to

‘‘bucketize’’ them in buckets of size at least k and then

forcing the property of all nodes in the same bucket to have

the same value will require too many alterations to the input

graph and that can obliterate the graph’s utility.

3.3 Adversarial assumption

Our privacy model and obfuscation method are not limited to

any particular adversarial assumption.However, once the data

owner makes an assumption regarding the property that the

adversary knows about his target individual, heneeds toderive

the corresponding probability ensemble, fXv : v 2 Vg, to

assess the obtained level of obfuscation (namely, k and e).
Herein we assume that the property which the adversary

knows is the 1-neighborhood of v. Specifically, the adversary

knows the in- and out-degrees of the target node v; for

example, in Twitter it would mean that the adversary knows

how many followees and how many followers the target

individual has. In addition, he knows the weights per topic

along each of the edges in which v is involved.

Let v 2 V be a node in the network. Then the 1-neigh-

borhood assumption means that the knowledge of the

adversary about his target node v is

IðvÞ : ¼ ðd�ðvÞ; dþðvÞ;w�
1 ðvÞ; . . .;w�

d�ðvÞðvÞ;
wþ

1 ðvÞ; . . .;wþ
dþðvÞðvÞÞ;

ð2Þ

where

• d�ðvÞ and dþðvÞ denote v’s in- and out-degrees;

• w�
j ðvÞ is the vector of probabilities along the jth edge

that is in-coming to v, 1� j� d�ðvÞ. Specifically, if that
edge is e ¼ ðu; vÞ, then w�

j ðvÞ is a vector of the form

ðw1
e ; . . .;w

T
e Þ, where ws

e is the probability that v is

influenced by u on topic s, 1� s� T .

• Similarly, wþ
j ðvÞ is the vector of probabilities along the

jth edge that is outgoing from v, 1� j� dþðvÞ. If that
edge is e ¼ ðv; uÞ, then wþ

j ðvÞ is a vector of the form

ðw1
e ; . . .;w

T
e Þ, where ws

e is the probability that v

influences u on topic s, 1� s� T .

We note that this is a strong adversarial assumption, since

the adversary is assumed to have gained knowledge not

only on the number of influence links in which v is

involved, but also on the strength of each of those links per

each of the topics. Similar analysis can be carried out also

for other adversarial assumptions that are weaker. We

chose to focus on the above strong assumption to demon-

strate the capabilities of our proposed method of obfusca-

tion with respect to both obfuscation level and data utility.

4 Obfuscation by randomization

The method of obfuscation which we propose, analyze and

test here has two phases:

– Edge sparsification. The data owner selects a proba-

bility p 2 ð0; 1Þ. Then, for each edge e in E the data

owner performs an independent Bernoulli trial,

Be 	Bð1; pÞ. He will remove the edge in the graph in

case of success (i.e., Be ¼ 1) and will leave it otherwise

(Be ¼ 0). We let E0 ¼ fe 2 E j Be ¼ 0g be the subset

of edges that passed this selection process.

– Random weight reduction. Let q be some preset integer

and let /ð�Þ be a probability distribution over

Xq :¼ fj=q : 0� j� qg. Then for every edge e 2 E0

and topic 1� s� T , the data owner randomly selects

re;s 2 Xq according to the probability distribution /ð�Þ
and then he replaces ws

e, the s-weight of e, with the

reduced weight re;sw
s
e. We let W 0 denote the resulting

reduced vectorial weights over the edges of E0.

The data owner then releases the topic-dependent social

influence network G0 ¼ ðU ¼ V;E0;W 0Þ. A good choice

for /ð�Þ would be a monotonically increasing function,

since such functions favor reduction factors closer to 1, and

therefore they are expected to harm less the utility of the

resulting graph G0. Namely, if r1 \ r2, it is desirable that r2
will have more chances to be selected than r1, since using

r2 changes the weights less than using r1. A simple family

of such probability distribution functions / consists of

functions that are zero up to some threshold and then they

are linearly increasing. Specifically, fix an integer

0� b� q� 1 and then define /ðj=qÞ ¼ 2ðj�bÞþ
ðq�bÞðq�bþ1Þ for all

0� j� q, where ðxÞþ :¼ maxðx; 0Þ. That function is zero

for all j ¼ 0; . . .; b and then linearly increases for

j ¼ bþ 1; . . .; q. The scaling parameters were chosen so

that / is a probability distribution over Xq, in the sense thatP
x2Xq

/ðxÞ ¼ 1. Hence, the two parameters that control

the strength of randomization are p, which controls the

strength of edge sparsification, and b, which controls the

strength of the random weight reduction. Algorithm 1

details our obfuscation method. Its computational cost

depends linearly on the number of edges |E| and the number

of topics T, and is bounded by OðjEj � TÞ.
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Algorithm 1 GenerateObfuscation
Input: G = (V, E, W ), p, and b
Output: G′ = (U = V, E′, W ′)
1: E′ ← E
2: for all e ∈ E do
3: draw Be at random from Bernoulli trial B(1, p)
4: if Be = 1
5: then E′ ← E′ \ {e}
6: end for
7: Compute probability distribution φ(·), using b
8: W ′ ← W
9: for all e ∈ E′ do
10: for all 1 ≤ τ ≤ T do
11: draw re,τ at random from φ(·)
12: wτ

e ← re,τ wτ
e

13: end for
14: end for
15: return G′ = (U = V, E′, W ′)

We focus here on randomization methods that are based

on edge sparsification.We do not consider edge perturbation,

an operation that consists of edge deletions as well as edge

additions, since edge additions requires also ‘‘inventing’’

fake weights for the added edges. Those weights should be

selected in a manner that will not enable identifying the fake

edges. While such a selection is not hard to make, the pri-

vacy-related probability analysis that follows becomesmuch

more intricate. The study of methods that are based also on

random addition of edges and the potential benefits from

such an extended framework of random perturbations is left

for future research.Moreover, wemention in this context the

study of Mathioudakis et al. (2011); they apply (non-ran-

dom) edge sparsification as a pre-processing step for the

influencemaximization problem, showing that computations

on sparsified models give up little accuracy, but yield sig-

nificant improvements in terms of efficiency and scalability.

5 Quantifying the level of obfuscation

Here we describe how to compute the probability distribu-

tions fXv : v 2 Vg with respect to the 1-neighborhood

property. Let v 2 V be a target node in V and assume that the

adversary knows the information Iv :¼ IðvÞ about it (see

Eq. (2)). Let u 2 U be a candidate node in U with property

Iu :¼ IðuÞ. In Sect. 3.2 we defined f(v, u) as the probability

that a node with the known property P(v) was converted

under the known randomization method to a node with

property P(u). Then in our case, where Pð�Þ ¼ Ið�Þ, f(v, u)
equals the following conditional probability,

f ðv; uÞ ¼ PrðIðuÞ ¼ Iu j IðvÞ ¼ Iv; v 7!uÞ; ð3Þ

where v 7!u means that u is the image of v in G0. Namely,

given that v has property IðvÞ ¼ Iv and its image in G0 is u,
f(v, u) is the probability that u’s property is IðuÞ ¼ Iu. (to

avoid cumbersome notations we shall drop the notation

v 7!u from the conditional probabilities henceforth; it is

always assumed that v and u are a preimage and image

pair.) That probability is given by

f ðv; uÞ ¼
Y

s¼�
½PrðdsðuÞ j dsðvÞÞ � Prðws

1ðuÞ; . . .;ws
dsðuÞðuÞ j

ws
1ðvÞ; . . .;ws

dsðvÞðvÞÞ
;
ð4Þ

where

– PrðdsðuÞ j dsðvÞÞ is the probability that a node with an s

degree dsðvÞ was converted in the edge sparsification

phase to a node with an s-degree dsðuÞ, where s ¼ �
(referring to either in-coming or out-going edges).

– Under the assumption that v, of an s-degree dsðvÞ, was
converted to u that has an s-degree dsðuÞ, Prðws

1ðuÞ;
. . .;ws

dsðuÞðuÞ j ws
1ðvÞ; . . .;ws

dsðvÞðvÞÞ is the probability that
the random weight reduction phase changed the weights

on the s-going edges adjacent to v (those are given by

ws
1ðvÞ; . . .;ws

dsðvÞðvÞ) to the weights on the s-going edges

adjacent to u (those are given by ws
1ðuÞ; . . .;ws

dsðuÞðuÞ).

For either s ¼ �, dsðuÞ	BðdsðvÞ; 1� pÞ, where

BðdsðvÞ; 1� pÞ is the Binomial distribution over dsðvÞ
experiments and success probability 1� p. Hence, the

probability that the s-degree of u is dsðuÞ, given that the s-

degree of v is dsðvÞ, is

PrðdsðuÞ j dsðvÞÞ ¼ dsðvÞ
dsðuÞ

� �

ð1� pÞd
sðuÞ

pd
sðvÞ�dsðuÞ: ð5Þ

Note that the probability in Eq. (5) is zero when

dsðuÞ[ dsðvÞ.
Next, we compute the probability Prðws

1ðuÞ; . . .;ws
dsðuÞ

ðuÞ j ws
1ðvÞ; . . .;ws

dsðvÞðvÞÞ. We may assume that

dsðuÞ� dsðvÞ since, otherwise, f ðv; uÞ ¼ 0 in view of

Eqs. (4) and (5). The adversary does not know the mapping

between the dsðvÞ s-going edges adjacent to v and the dsðuÞ s-
going edges adjacent to u. When he considers the possibility

that v 7!u, he needs to take into account all possible map-

pings. There are A
dsðvÞ
dsðuÞ ¼ dsðvÞ!=ðdsðvÞ � dsðuÞÞ! mappings

from the dsðvÞ s-going edges adjacent to v to the dsðuÞ s-
going edges adjacent to u, because such a mapping consists

of first selecting dsðuÞ edges out of the dsðvÞ s-going edges

adjacent to v and then ordering them (by choosing which of

the dsðuÞ selected s-going edges adjacent to v corresponds to
which of the dsðuÞ s-going edges adjacent to u).

Let W be the set of all A
dsðvÞ
dsðuÞ possible mappings from the

dsðvÞ s-going edges adjacent to v in G to the dsðuÞ s-going
edges adjacent to u in G0, and let w be any of the mappings

inW. Assume that the mapping wmaps dsðuÞ s-going edges
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adjacent to v in G, with vectorial weights ðŵ1; . . .; ŵdsðuÞÞ,
to the s-going edges adjacent to u in G0 that have vectorial
weights ðws

1ðuÞ; . . .;ws
dsðuÞðuÞÞ. (Note that ðŵ1; . . .; ŵdsðuÞÞ

is any of the A
dsðvÞ
dsðuÞ ordered selections of dsðuÞ vectors out

of ðws
1ðvÞ; . . .;ws

dsðvÞðvÞÞ.) Then the probability of reducing

the ordered set of vectorial weights ðŵ1; . . .; ŵdsðuÞÞ to

ðws
1ðuÞ; . . .;ws

dsðuÞðuÞÞ is given by

Cw :¼ Prðws
1ðuÞ; . . .;ws

dsðuÞðuÞ j ŵ1; . . .; ŵdsðuÞÞ ¼
Yd
sðuÞ

i¼1

YT

s¼1

/
ws
i

ŵs
i

� �

;

ð6Þ

where for any 1� i�dsðuÞ, ws
i ðuÞ ¼ ðw1

i ; . . .;w
T
i Þ and

ŵi ¼ ðŵ1
i ; . . .; ŵ

T
i Þ. The equality in Eq. (6) stems from the fact

that the weight reduction along any of the edges e in any of

the topics s is done by an independent selection of a reduction
factor re;s, as explained in Sect. 4. Now, we conclude that

Prðws
1ðuÞ; . . .;ws

dsðuÞðuÞ jws
1ðvÞ; . . .;ws

dsðvÞðvÞÞ ¼
1

A
dsðvÞ
dsðuÞ

X

w2W
Cw :¼ l:

ð7Þ

In summary, the probability f(v, u) is given by Eqs. (4), (5), (6)

and (7). Given the probabilities f(v, u) for all v 2 V and u 2 U,

we can derive the probability distributions Xv onU by Eq. (1).

The computational bottleneck is Eq. (7), since the

number of possible mappings is exponential in dsðuÞ.
Hence, we suggest replacing the exact computation of the

probability in that equation with a corresponding estimate.

Instead of averaging over all A
dsðvÞ
dsðuÞ possible mappings, we

randomly sample a multiset Ŵ of mappings from W and

then average over the sampled mappings. Therefore,

instead of the average l that is given on the right-hand side

of Eq. (7), we suggest computing the approximate average

~l :¼ 1

jŴj
P

w2Ŵ Cw. In this approximate computation there

is a trade-off between the efficiency of the computation and

its accuracy. Larger sample sets Ŵ will result in better

estimates ~l at the cost of higher computational costs.

Invoking the Chernoff bound we arrive at the conclusion

that for every d� 0, Pr½~l�ð1þ dÞl
 � exp � d2jŴjl
2þd

� �
and

Pr½~l�ð1� dÞl
 � exp � d2jŴjl
2

� �
. We see that for a given

setting of the desired accuracy level d, the effect of jŴj on
accuracy is exponential. Using the above bounds it is

possible to determine the required sample size jŴj such
that the probability of ~l deviating from l by a fraction of at

most d would not be larger than some desired threshold.

Algorithm 2 tests a given target node v 2 V for being k-

obfuscated in G0. (For simplicity, we assume that the ran-

domization parameters p and b are known, hence we do not

specify them as input parameters.) Algorithm 3 uses

Algorithm 2 as a subroutine to test the level of obfuscation

provided by G0 for G. Specifically, it accepts an obfusca-

tion level k and outputs the fraction e of nodes in V that are

not k-obfuscated in G0. The computational cost of Algo-

rithm 3 is bounded by OðjV j2 � T � jŴjÞ. In large graphs

such a cost may be prohibitive, in which case the testing of

obfuscation could be restricted to a small subset of V, being

either a random subset or a subset of nodes whose privacy

is considered to be more sensitive. Given k and e, it is
impossible to determine analytically what are the best

values of p and b that would yield a ðk; eÞ-obfuscation.
However, the data owner can search for such values

numerically. To that end, he may start with some setting of

p and b and then compute the ðk; eÞ parameter curve of the

resulting obfuscation. (Note that any given obfuscation G0

is a ðk; eðkÞÞ-obfuscation of G, for any setting of k� 1,

where eðkÞ is as computed by Algorithm 3 on the input

parameters G, G0, and k.) If the resulting obfuscation level

is not satisfactory, then he may increase p or decrease b to

achieve higher obfuscation levels. If, on the other hand, the

obfuscation level is higher than needed, he may decrease

p or increase b to preserve more utility.

A concluding remark We assume above that the value of

q, as introduced in Sect. 4, is known to the adversary. As a

result, the adversary knows that the possible weight

Algorithm 2 Testing a node for being k-obfuscated
Input: I(v) for a v ∈ V , {I(u) : u ∈ U}, k
Output: 1 if v is k-obfuscated and 0 otherwise
1: for all u ∈ U do
2: f(v, u) ← Pr(d−(u) | d−(v)) · Pr(d+(u) | d+(v))
3: if f(v, u) = 0 then continue
4: for all s = ± do
5: generate Ψ̂ , a random sample from Ψ
6: for all ψ ∈ Ψ̂ do
7: set the vectors ŵ1, . . . , ŵds(u) as selected by ψ
8: compute Cψ by Equation (6)
9: end for
10: μ̃ ← 1

|Ψ̂ |
∑

ψ∈Ψ̂ Cψ

11: f(v, u) ← f(v, u) · μ̃
12: end for
13: end for
14: for all u ∈ U do
15: Xv(u) =

f(v,u)∑
u′∈U f(v,u′)

16: end for
17: compute the entropy of Xv

18: return {entropy(Xv) ≥ log k}

Algorithm 3 Testing the obfuscation level of a graph
Input: G = (V, E, W ), G′ = (U = V, E′, W ′), k
Output: The minimal ε such that G′ is a (k, ε)-obfuscation of G

1: n ← 0
2: for all v ∈ V do
3: x ←k-obfuscated(I(v),{I(u) : u ∈ U}, k)
4: if x = 0 then n ← n + 1
5: end for
6: ε ← n

|V |
7: return ε
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reduction factors are only of the form j/q for some integer

j� q. The adversary may then rule out possible links

between edges in the original and perturbed graphs, if the

ratio between one of the observed weights and the corre-

sponding known original weight is not of the form j/q for

some integer j� q. (Namely, in Eq. (6) / ws
i =ŵ

s
i

� �
¼ 0 if

the ratio ws
i =ŵ

s
i does not equal j/q for an integer j.) Using a

large value of q reduces the significance of such a back-

ground knowledge. (We used in our experiments q ¼ 1000,

see Sect. 6.1.) However, we may also assume that q is a

random and secret parameter to deprive the adversary from

that background knowledge. By doing so we may increase

the privacy guarantees of our method.

6 Experiments

In this section, we report our experimental assessment of

the effects of random sparsification and random weight

reduction on the structure of the perturbed graph, as well as

on the level of obfuscation achieved.2 In all experiments

we assume an adversary that uses Iv as the re-identification

property (as defined in Sect. 3), knows the randomization

method and the value of the randomization parameters p,

q and b. We also assess the utility of the perturbed topic-

dependent social influence network w.r.t. the influence

maximization task compared to the original one. We next

explain how our datasets (the social network and the topic

model on the edges) are generated from real data.

One important problem in the area of social influence

and the phenomenon of influence-driven propagations is to

exploit the synergy of topic modeling and influence anal-

ysis to take into account the characteristics of the item

propagating through the links of the social network. For

example, some people are more likely to buy a product

than others, e.g., teenagers are more likely to buy video-

games than seniors. Similarly, a user who is influential with

respect to classic rock music is not very likely to be

influential for what concerns techno music too. To that end,

Barbieri et al. (2012) introduce a topic-aware influence-

driven propagation model, the Topic-aware Independent

Cascade (TIC) model, that experimentally turns out to be

more accurate in describing real-world cascades than the

standard (topic-blind) propagation models studied in the

literature (more details are given later in Sect. 6.3). In our

work we adopt this model of social influence network. In

the TIC model, given the social graph G ¼ ðV;EÞ and a

number of topics T, the topic-dependent influence

probabilities we ¼ ðw1
e ;w

2
e ; . . .;w

T
e Þ for each directed edge

e 2 E can be learned from a log of past propagations

D ¼ fðUser; Item; TimeÞg, where User 2 V . Learning

these parameters, to maximize the likelihood of D given

the TIC model over the social graph G, is done by means of

the expectation-maximization method developed in Bar-

bieri et al. (2012).

For our experiments, we use two real-world publicly

available datasets, both containing a social graph G and a

log of past propagations D, and apply the above-men-

tioned method to learn the topic-dependent influence

probabilities.

The datasets come from Digg (http://www.digg.com)

and Flixster (http://www.flixster.com). Digg is a social

news website, where the users vote for stories. In this case

D contains information about which user voted for which

story (item) at which time. If we have user v vote for a

story about the new iPhone, and shortly later v’s friend u

does the same, we consider the story as having propagated

from v to u, and v as a potential influencer for u. Flixster is

one of the main players in the mobile and social movie

rating business. Here, an item is a movie, and the action of

the user is rating the movie. The main characteristics of the

datasets are provided in Table 1, while Fig. 2 plots the

distribution of the influence probabilities ws
e for all the

e 2 E and all 1� s� T for the two datasets.

6.1 Obfuscation level

The first objective of our experimental evaluation is to

show the level of obfuscation achieved for the different

values of p and b. We compute the obfuscation level of

the perturbed graph obtained by random sparsification and

weight reduction and averaged over 50 random runs, and

compare with the original graph. Figure 3 reports the

level of k-obfuscation on Flixster (left) and Digg (right)

for various settings of the parameters b and p. Each curve

corresponds to a given setting of p and b, where one of

the curves corresponds to p ¼ 0 and b ¼ q� 1, namely,

to the trivial perturbation that retains the original graph

unchanged. (In all of our experiments we used q ¼ 1000.)

A point (k, n) on any of those curves means that n percent

nodes did not reach the obfuscation level k, or, alterna-

tively, that the corresponding perturbed graph respects

ðk; eÞ-obfuscation with e ¼ n
jV j. From these plots we can

observe that the number of non-obfuscated nodes in the

original topic-dependent social influence networks is very

high. This is the consequence of publishing also the topic

model, which essentially makes every individual in the

social network unique. This also motivates the substantial

need for applying perturbation before publishing such rich

graphs.

2 The datasets we use for experiments, as well as our random

obfuscation software and the software for quantifying the level of

obfuscation achieved, are available at http://bit.ly/1pt9NJp.
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As shown in Fig. 3, the level k of obfuscation that each

of the nodes has in the perturbed data is significantly higher

than the level of obfuscation that it has in the original

topic-dependent social influence network. As expected, the

levels of obfuscation increase with larger p and smaller b.

In the Digg dataset, more nodes are easily obfuscated

thanks to the many more topic-dependent probabilities

which are close to 0 (as reported in the caption of Fig. 2).

Note that Fig. 3 reports the level k of obfuscation as

computed using a sample size of jŴj ¼ 100. We performed

the same experiments for sample sizes 200, 300 and 400

and we obtained similar results. That similarity of results

shows that a small sample size is sufficient to capture the

probability l (see Eq. (7)).

6.2 Graph structure statistics

The second objective of our experimental evaluation is to

show that our randomization technique can preserve to a

large extent the structure properties of the original social

graph. Thus, we first compare some graph statistics when

measured on the original graph and on its perturbed ver-

sions, for varying values of p. We measure the following

statistics:

– Average in(out)-degree: 1
jV j

P
v2V d

�ðvÞ ¼ 1
jV j

P
v2V

dþðvÞ.
– Clustering coefficient: the fraction of closed triplets of

nodes among all connected triplets (when considering

the graph as undirected).

– Average distance: the average distance among all pairs

of nodes that are directed path connected.

– Diameter: the maximum distance among all directed

path-connected pairs of nodes.

In Fig. 4, we report all of the above statistics, for different

values of p, on the Flixster and Digg datasets, averaged

over 50 random runs. It is worth noting that in this

Table 1 Dataset characteristics

Dataset # Nodes # Edges # Topics

Flixster 6353 84,607 10

Digg 11,141 99,845 10
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Fig. 2 Distribution of ws
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Flixster (left), Digg (right).
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histograms is cut: in Flixster
89 % of the probabilities are

� 0:05, while in Digg this

number grows to 96 %
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Fig. 3 The level of k-obfuscation on Flixster and Digg, for b ¼ 600

and varying values of p (left), and for p ¼ 0:2 and varying values of

b (right). The x-axis shows the obfuscation level and the y-axis shows

the percentage of nodes that did not reach such obfuscation level. The

minimum and maximum standard deviations of the reported values

over 50 random runs are (0.0002, 0.083), (0.0001, 0.0038),

(0.0018, 0.0780) and (0.0002, 0.0037), from the left to right plots,

respectively
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experiment the value of the parameter b is not relevant as

we focus only on the graph structure and not on the asso-

ciated topic model (edge weights).

Note that changing p has an effect on the resulting

parameters ðk; eÞ of the obfuscation. Therefore, for the sake
of illustration, the legend of the x-axis in the plots in the

first column has three rows: the value of p (top), the cor-

responding values of ðk ¼ 20; eÞ (middle), and ðk; e ¼ 0:2Þ
(bottom). As expected, the average in(out)-degree and

clustering coefficient decrease with larger p (as we sparsify

the graph), while average distance and diameter tend to

increase with larger p. Only diameter on Digg has a non-

monotone behavior, but this is due to the fact that diameter

is a very sensitive measure, as the removal of just one edge

can change substantially the maximum distance. From

these plots we conclude that random perturbation (espe-

cially for smaller value of p) can preserve to a large extent

the structure properties of the original graph. These find-

ings are in line with those of Bonchi et al. (2011) (who

dealt with simple undirected graphs).

These statistics consider only the graph structure and

ignore the topic model. Next, we evaluate the impact of

random sparsification and random weight reduction on the

topic-dependent influence probabilities ws
e. Let we ¼

ðw1
e ;w

2
e ; . . .;w

T
e Þ be the topic-dependent influence proba-

bilities associated with the edge e of the original network,

and ŵe ¼ ðŵ1
e ; ŵ

2
e ; . . .; ŵ

T
e Þ be the same probabilities after

the perturbation. We measure the weight reduction error,

which is the average distance between all the original

vectorial weights and the perturbed ones,
1
jEj
P

e2E kwe � ŵek2. If one edge e is removed during the

random sparsification, then it is counted as having ŵs
e ¼ 0

for each 1� s� T . In Fig. 5, we report that weight

reduction error for different values of p and b ¼ 600 (left

plot) and for different values of b and p ¼ 0:2 (right plot),

on both datasets, averaged over 50 random runs. As

expected, the cost of obfuscation increases with larger

p and smaller b. We can observe that the distances are

generally small, especially on Digg that, as discussed

before, has smaller input probabilities: in this dataset the

average distance is below 0.025 even under the strongest

settings of the perturbation parameters p and b.

6.3 Influence maximization queries

The last objective of our experimental evaluation is to

measure the impact of random perturbation on the utility of

the data for a concrete application: the influence maxi-

mization problem. In particular, we want to compare the

difference in the result obtained for the same Topic-aware

Influence Maximization (TIM) query, when run over the

original data and on the perturbed data. We first introduce

the needed background about the influence maximization

problem and TIM queries, and then we present the results.

Kempe et al. (2003) formalized the influence maxi-

mization problem based on the concept of a propagation

model, i.e., a stochastic model that governs how users

influence each other and thus how propagations happen.

Given a propagation model and a set of nodes S � V , the

expected number of nodes which are ‘‘infected’’ in the viral

cascade that starts with S is called the (expected) spread of

S and is denoted by rðSÞ. The influence maximization
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Fig. 4 Graph structure statistics for varying values of p: Flixster first
row and Digg second row. For Flixster, the minimum and maximum

standard deviations of the reported values over 50 random runs are

(0.0058, 0.0141), (0.00038, 0.0012), (0.0017, 0.0039) and

(0.44, 0.54), from left to right plots, respectively. For Digg, the

minimum and maximum standard deviations of the reported values

over 50 random runs are (0.0094, 0.028), (0.0002, 0.001),

(0.006, 0.020) and (0.447, 0.836), from left to right plots, respectively
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problem asks for a set S � V , jSj ¼ k, such that rðSÞ is

maximal, where k is an input parameter.

The most studied propagation model is the so-called

Independent Cascade (IC) model. We are given a directed

social graph G ¼ ðV;EÞ with edges ðu; vÞ 2 E labeled by

influence probabilities wu;v 2 ð0; 1
, representing the

strength of the influence of u over v. If ðu; vÞ 62 E, we

define wu;v ¼ 0. At a given time step, each node is either

active (an adopter of a product) or inactive. At time 0, a set

S of seeds is activated. Time unfolds deterministically in

discrete steps. As time unfolds, more and more neighbors

of an inactive node v become active, until, eventually, v too

becomes active. This event, in turn, may trigger further

activations of nodes that are connected to v. When a node u

first becomes active, say at time t, it has one chance to

influence each inactive neighbor v with probability wu;v,

independently of the history thus far. If the attempt suc-

ceeds, v becomes active at time t þ 1.

Now consider an advertisement platform allowing to

implement ‘‘viral ads’’ over social networks, where users, by

clicking on engaging ads, make them propagate to their

friends. Advertisers come to the platform with a description

of the ad (e.g., a set of keywords) to be promoted and they

compete for the attention of the users which are considered

influential w.r.t. the given description. Here we assume the

Topic-aware IndependentCascade (TIC) propagationmodel

introduced in Barbieri et al. (2012), the parameters of which

are learned from a log of past propagation traces. In partic-

ular for each edge ðu; vÞ 2 E and for each topic 1� s� T we

have a probability ws
u;v representing the strength of influence

that user u exerts over user v for topic s.
An item x is described by a distribution cx ¼ ðc1x ; . . .; cTx Þ

over the T topics, where csx is the correlation of the item x

with topic s, 1� s� T , and
PT

s¼1 c
s
x ¼ 1. A propagation in

the TIC model happens like in the IC model: when a node u

first becomes active on item x, it has one chance of influ-

encing each inactive neighbor v, independently of the

history thus far. The tentative succeeds with a probability

that is the weighted average of the link probabilities w.r.t.

the topic distribution of the item x, namely

wx
u;v ¼

PT
s¼1 c

s
xw

s
u;v. In this context a Topic-aware Influ-

ence Maximization (TIM) query Qðcx; kÞ, takes as input an
item description cx and an integer k and it requires to find

the seed set S � V , jSj ¼ k, such that the expected number

of nodes adopting item x, denoted by rðS; cxÞ, is maximum:

Qðcx; kÞ ¼ argmaxS�V;jSj¼krðS; cxÞ. It is important to

observe that a TIM query can always be processed by a

standard influence maximization computation in the IC

model. In fact, given the query item description, we can

derive a directed probabilistic graph where the probability

for each edge is defined as wx
u;v above.

7 Results

As discussed before, we generate the topic-dependent

influence probabilities for each edge from real data. The

same learning process also generates the description cx for
each item x contained in the propagation log D. From all

the items we have in the database, we select 10 items at

random to run the experiments. Then we run the influence

maximization greedy algorithm of Kempe et al. (2003) to

identify seed sets of size k ¼ 50. As a result, we measure

the expected spread of the identified seed set, i.e., the

number of active nodes at the end of the influence maxi-

mization process and, the precision, the percentage of the

overlap between the identified seed sets in the original

graph and the perturbed ones. We compute the precision

for the first 10, 20, 30, 40 and 50 seeds in the seed sets

extracted from the perturbed graph w.r.t. the ground-truth

seed set extracted from the original graph.3 Due to the
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Fig. 5 Weight reduction error for different values of p (left) and for

different values of b (right), on both datasets. For Flixster, the

minimum and maximum standard deviations of the reported values

over 50 random runs are (0.00023, 0.0006), respectively. For Digg,
the minimum and maximum standard deviations of the reported

values over 50 random runs are (0.00015, 0.00028), respectively
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Fig. 6 Average expected spread achieved by TIM queries for varying

values of p and b ¼ 600 (left) and for p ¼ 0:2 and varying values of

b (right). For Flixster, the minimum and maximum standard

deviations of the reported values over 50 random runs are

(29.23, 43.29), respectively. For Digg, the minimum and maximum

standard deviations of the reported values over 50 random runs are

(9.68, 12.86), respectively

3 It is worth noting that, although called ‘‘set’’, a seed set as output by

a TIM query is an ordered list of nodes.
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random nature of the perturbation, each experiment is run

50 times, and the average is reported.

In Fig. 6, we report the expected spread, for different

values of p and b ¼ 600 (left plot) and for different

values of b and p ¼ 0:2 (right plot) on the two datasets.

We can observe that, especially for Digg dataset, the

quality of the solution produced on the perturbed graph is

maintained high, very close to the quality on the original

graph even under strong perturbations. In Fig. 7, we

report the precision of the identified seed sets. Here the

quality which is maintained in the perturbed data is even

more striking. For instance in Flixster, under the standard

setting p ¼ 0:2, b ¼ 600, the solution extracted on the

perturbed graph contains in average 36 of the first 50 seed

nodes (influential users) that would be selected by the

algorithm on the original graph. In Digg, in average 8 of

the top 10 most influential users computed in the original

network are extracted also from the obfuscated network,

even under the strongest settings of the perturbation

parameters.

8 Conclusions and future work

We studied the problem of privacy-preserving publication

of topic-dependent social influence networks. Ours is the

first study that considers privacy preservation in social

networks of such semantic richness of data. That semantic

richness poses a prominent challenge for individual pri-

vacy, because the data have to be altered significantly to

achieve meaningful levels of privacy. We formulated the

privacy notion of k-obfuscation and showed how to achieve

meaningful levels of identity obfuscation while maintain-

ing high-quality data. In particular, we showed that in the

specific application of topic-aware influence maximization,

the random perturbation maintains very high quality in the

solution.

Following this work we intend to look into the following

research directions: (a) Examining the applicability of our

analysis and method also for other applications in which

there is a social network enriched by auxiliary data, either

of the type which we considered here (directed edges and

vectorial edge weights) or of other types (e.g., vectorial

node weights, non-numerical labels, or hypergraphs).

(b) Extending our framework to methods that are based on

random deletions as well as additions of edges. (c) Ex-

ploring the possibility of achieving k-anonymity in such

networks; as it is hard to achieve uniform k-anonymity

without stripping the data of its utility, one may consider

relaxations of that notion and assume weaker adversarial

assumptions. (d) Considering a non-uniform obfuscation

model in which the level of obfuscation applied depends on

node properties (say, degrees, betweenness centrality, or

sum of outgoing weights) or edges properties (say, weights,

or characteristic of its two end points).
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Schifanella R, Menczer F, Flammini A (2013) The role of

information diffusion in the evolution of social networks. In:

KDD, pp 356–364

Wu X, Ying X, Liu K, Chen L (2010) A survey of privacy-

preservation of graphs and social networks. In: Aggarwal CC,

Wang H (eds) Managing and mining graph data, 1st edn.

Springer, Berlin, pp 421–453

Xiao Q, Chen R, Tan K-L (2014) Differentially private network data

release via structural inference. In: KDD, pp 911–920

Ying X, Wu X (2008) Randomizing social networks: a spectrum

preserving approach. In: SDM, pp 739–750

Ying X, Wu X (2009) Graph generation with prescribed feature

constraints. In: SDM, pp 966–977
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