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Abstract In order to define a new method for analyzing

the immune system within the realm of Big Data, we bear

on the metaphor provided by an extension of Parisi’s

model, based on a mean field approach. The novelty is the

multilinearity of the couplings in the configurational vari-

ables. This peculiarity allows us to compare the partition

function Z with a particular functor of topological field

theory—the generating function of the Betti numbers of the

state manifold of the system—which contains the same

global information of the system configurations and of the

data set representing them. The comparison between the

Betti numbers of the model and the real Betti numbers

obtained from the topological analysis of phenomenologi-

cal data, is expected to discover hidden n-ary relations

among idiotypes and anti-idiotypes. The data topological

analysis will select global features, reducible neither to a

mere subgraph nor to a metric or vector space. How the

immune system reacts, how it evolves, how it responds to

stimuli is the result of an interaction that took place among

many entities constrained in specific configurations which

are relational. Within this metaphor, the proposed method

turns out to be a global topological application of the

S[B] paradigm for modeling complex systems.

Keywords Immune system � Multilinear mean field �
Pattern discovery � Complex systems � Adaptive models �
S[B] paradigm � Topology of data � Betti numbers � Big
Data

1 Introduction

The objective pursued in this note is to frame the research

on the immune system as part of data science. Such

research is naturally complex and articulated and our

contribution intends to be here along the lines of seeing it

as a viable candidate for topological data analytics and an

example of the S[B] paradigm for modeling complex sys-

tems. We recall that data science is the practice to deriving

valuable insights from data by challenging all the issues

related to the processing of very large data sets, while Big

Data is jargon to indicate such a large collection of data

(for example, exabytes) characterized by high-dimension-

ality, redundancy, and noise. The analysis of Big Data

requires handling high-dimensional vectors capable of

weaning out the unimportant, redundant coordinates. The

notion of data space, its geometry and topology are the

most natural tools to handle the unprecedentedly large,

high-dimensional, complex sets of data (Carlsson 2009;

Edelsbrunner and Harer 2010); basic ingredient of the new

data-driven complexity science (TOPDRIM 2012; Merelli

and Rasetti 2013).

Topology, the branch of mathematics dealing with

qualitative geometric information such as connectivity,

classification of loops and higher dimensional manifolds,

studies properties of geometric objects (shapes) in a way

which is less sensitive to metrics than geometric methods:

it ignores the value of distance function and replaces it with

the notion of connective nearness: proximity. All these
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features make topology ideal for analysing the space of

data.

Starting from the notion of a mean field proposed by

Parisi in his simple model for idiotypic network (Parisi

1990), we propose a more sophisticated version that is

multilinear in the configurational variables (the antibody

concentrations) instead of being constant or at most linear.

Multi-linearity allows us to recognize in the partition

function Z of the model, that embodies all the statistical

properties of the system at equilibrium, features similar to

those of a particular functor of a topological field theory.

The latter contains indeed the same global information

about the topological properties (specifically its global

invariants) of the system configuration space and can be

identified with the generating function of Betti numbers,

namely the Poincaré polynomial of data space (Atiyah and

Bott 1983). Once the homology of the space of data has

been constructed, and its generating cycles have been

defined, the related two sets of Betti numbers can be

compared. In this way, self-consistent information is

obtained, regarding 2-ary, 3-ary; . . .n-ary relations among

antibodies. Comparison between the Betti numbers of the

model and the real Betti numbers, obtained by constructing

the topology of phenomenological immune system space of

data, will unveil the hidden relations between idiotypes and

anti-idiotypes; in particular, those relations where compo-

nents interact indistinctly and therefore can not be reduced

to a mere subgraph, but rather they bear on a new concept

of interaction, scale-free and metric-free. The analysis of

Betti numbers on phenomenological data can be dealt with

techniques based on persistent homology (Carlsson 2009;

Petri et al. 2013).

The challenge we are facing is to unveil whether in

natural, multi-level complex systems, n-body interactions

can drive the emergence of novel qualia in these systems.

In physics, the interactions between material objects in real

space are binary. This means that mutual forces and

motions are produced by two-body interactions, the

building blocks of any many-particle system. Thus at the

atomic or molecular level description of matter (living or

not) the total force acting on any given particle is the result

of the composition of binary interactions. However, how

can we discover if n-body interactions do exist? What we

are proposing here is to use the IS metaphor, i.e. a complex

system whose adaptivity is driven by data, as a global

topological application of the S[B] paradigm. S[B] allows

us to entangle in a unique model the computational com-

ponent with the coordination. In particular, B accounts for

the computation while S describes the global computation

context (Merelli et al. 2013). The adaptation phase occurs

when a machine can no longer compute in a given state of

the system, thus the system changes state, i.e. the global

context of computation. In the IS metaphor the

computation context can be identified by the global

invariants while the computation with the model of inter-

actions, a sort of interactive machine. Each time we dis-

cover new global invariants, a new context of computation

arises and with it a new IS model must be generated; we

call this step the adaptation phase.

In the following, after giving a brief description of the

antigen-free immune system and recalling Parisi’s mean

field model, we formally define the new topological field

model, and, finally, discuss the S[B] paradigm. An

appendix is provided with a general introduction to the

fundamental tool of persistent homology and Betti

numbers.

2 The antigen-free immune system

Cells and molecules of the immune system not only rec-

ognize foreign substances; they react and regulate each

other, so that the immune system can be seen as a network

of interacting cells and antibodies. This perspective is

known as the idiotypic or immune network theory (Jerne

1974). It refers to the immune system as a complex process

that takes place at the cellular level for protecting organ-

isms from infectious agents (the antigens), which are

antibody generators. In the scheme proposed by Jerne, it is

the antigen that provokes an immune response and each

antibody is represented as a large Y-shaped protein. The

immune system uses this protein to identify and neutralize

foreign objects. The antibody can recognize and bind a

specific part of the antigen; resorting to this binding

mechanism it can block the attack. Moreover, in Jerne’s

network theory, antibodies are capable of being recognized

by other antibodies; whenever this happens the former is

suppressed and its concentration is reduced while the latter

is stimulated and its concentration increases (see Fig. 1).

The mechanism whereby the production of a given

antibody elicits or suppresses the production of other

antibodies that, in turn, elicit or suppress the production of

other antibodies like a concatenation of events, hints to a

strict analogy of the immune system function with memory

in the brain. It recalls the way in which a firing neuron may

induce or inhibit the firing of other neurons, and so forth.

On the assumption that a functional network of antibodies

is possible, several models have been constructed, among

which Parisi’s model. The latter studies the persistence of

immune memory in the absence of any driving effect of

external antigens and it offers a robust, though simple,

theoretical framework without providing detailed descrip-

tion of the system (Parisi 1990).

The model we propose is a preliminary test of data field

theory; it aims at a deeper understanding of the functional

properties that the global and persistent topological
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properties of an antibodies data space can imply. In par-

ticular, it targets at discovering the existence of n-ary

relations among antibodies and determining how the

ensuing configurations influence the immune system reac-

tion to the presence of antigens. The extraction of global

qualitative information from an antibodies data space

(e.g. concentrations), should lead to the discovery of

those characteristics that are shared in a group of

immunoglobulin receptor molecules. This means not only

discovering a single idiotype, but the capacity of being

active in the presence of n others. We want to prove that

topological data analysis, through persistent homology and

its Betti numbers, allows us to determine the effective n-

antibody configurations. Note that the models proposed in

literature to describe the relationship between structure and

function in biological networks are all based on the concept

that any relation can be reduced to a set of binary rela-

tion (Hart et al. 2009): we argue that this is not necessarily

the case. We start thinking of models as relationships, i.e.

facts in logical space of forms. Forms that can be directly

classified by Betti numbers, extracted by calculating the

Betti numbers through the persistent homology of the space

of data and used in the frame of a conceptual model able to

bear on those topological features.

2.1 Parisi mean field model for IS

The simplest and most efficient network of the immune

system is represented by a model that can be easily for-

mulated in the absence of antigens. Although it is well

known that the number of specific lymphocytes plays a

crucial role, the variables of the network model are limited

to the antibody concentrations.

The mean-field idiotypic network model of antigen-free

Immune System, proposed by G. Parisi and inspired by an

earlier Hopfield’s model conceived to represent the brain

and many other similar models (Hopfield 1982; Hoffmann

1975, 2010; Farmer et al. 1986; Varela et al. 1988),

describes essentially an iterated cascade of events, in which

the production of a given antibody provokes, or possibly

inhibits, the production of other antibodies, which in turn

induce, or possibly impede, the production of other anti-

bodies, which in turn give rise to or prevent the production

of other antibodies, etc..

In the Parisi model, the concentration ciðtÞ of antibody i

is assumed to have, in absence of external antigens, only

two values, conventionally 0 or 1 (in the presence of

antigen concentrations ci might become � 1); t is time.

The immune system state at time t is determined by the

values of all ci’s for all possible antibodies ði ¼ 1; . . .;NÞ.
The dynamical process is typically described by a dis-

cretized time (the time step s being the time needed to

implement the immune response). The dynamical variable

hi (the mean field) represents the total stimulatory/inhibi-

tory (depending on its sign) effect of the whole network on

the i-th antibody. hi is positive when the excitatory effect of

the other antibodies is greater than the suppressive effect

and then ci is one. Otherwise hi is negative and ci is zero.

The mean-field is expressed typically as

hiðtÞ ¼ Sþ
X

k¼1

N

k 6¼i

JikckðtÞ; where ciðtÞ ¼ H½hiðt � sÞ� ð1Þ

HðxÞ denotes the Heaviside function that is zero for

negative x and 1 for positive x, while Jik (Jii ¼ 0; Jki ¼ Jik)

represents the influence of antibody k on antibody i. If Jik is

positive, antibody k triggers the production of antibody i,

whereas if Jik is negative, antibody k suppresses the pro-

duction of antibody i. Jikj j is a measure of control effi-

ciency that the antibody k exercises on antibody i. The Jik
are distributed in the interval ½�1;þ1�. S is the threshold

parameter; it regulates the dynamics when the couplings Jik
are all very small; otherwise S is equal to zero. At equi-

librium, when the concentrations of antibodies are time

independent, the Eq. (1) simplifies to

hi ¼ Sþ
X

k¼1

N

k 6¼i

Jikck ; ci ¼ HðhiÞ 2 f0; 1g : ð2Þ

This idiotypic network model has the advantage of being

simple and easy to analyze. The phenomenon of depen-

dence of the immunity/tolerance pathway on the amount of

antigens suggests that the concentration of any given

antibody is crucial to determine the effects on the other

Fig. 1 Jerne’s idiotypic network; 2-body interactions
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antibodies. The assumption of two levels of concentration

(0 or 1) bypasses the problem of the choice of a pathway.

However, this model is elementary in view of testing the

perspectives of a data field theory. We need to increase its

complexity in order to reach a description of the system

sufficiently detailed to catch the global features of its data

space. We generalize the mean field in such a way that it

crucially depends on those topological features of the space

of antibody concentrations that will be reflected in the

topological properties of the system space of data. We

construct a model sensitive to global features, designed to

benefit of the advantage of lending itself to a kind of

reverse engineering of the process of field construction. In

the model, the antibodies with positive ci ð¼ 1Þ are actually
produced by the system while those absent ðci ¼ 0Þ are

suppressed. Suppression due to clonal abortion is

neglected.

3 The topological field model for antigen-free immune

system

In this section, we generalize the way how Parisi’s linear

model represents immunological memory by a linear mean

field. The antibodies of the idiotypic cascade are denoted

by Abi; during the production of Ab1, ignited directly by the

antigen, the environment of lymphocytes is modified by

Ab2: the life-span of the Ab1-producing cells and the

population of helper cells specific for Ab1 increase. The

symmetry of the couplings ðJik ¼ JkiÞ implies that Ab3
should be rather similar to Ab1, the internal image of Ab2
should persist after it disappeared, its presence induces the

survival of memory cells directed against the antigen. The

process continues by iteration. In the extended model, we

assume the production of Abi is conditioned to different

extents and also by the simultaneous presence of a subset

of 2; 3; :::;N, antibodies.

A weakness of this representation is that the possible

equilibrium configurations of the network are fixed,

whereas we want the network to be capable of learning

which antibodies should be produced without assuming

that only a fraction of all antibodies have physiological

relevance. Therefore, whilst we maintain the global cost

function

E ¼
XN

i¼1

hici; ci ¼ HðhiÞ 2 ½0; 1� ; ð3Þ

we consider in the space of antibodies A, the points of

which are labelled by i ¼ 1. . .;N, the graph G generated by

the Jik 6¼ 0 (for simplicity we assume here that Jik 2
½�1;þ1� when Jik 6¼ 0). We next extend G to the simplicial

complex C, obtained from G by completion, constructing

the simplicial complex C which has G as 1-skeleton

(scaffold), see Fig. 5. Each n-cycle in C cannot be seen as

composition of two-body interactions, but represents a true

n-body interaction; in other words, any relationship

expressed in the cycle is unique in its configuration. We

denote by CðnÞð½l1; . . .lðnþ1Þ�) the cycles of C, and by dk;i the
presence or the absence of i in the cycle (dk;i ¼ 1 if k ¼ i,

dk;i ¼ 0 if k 6¼ i) and we generalize then the standard linear

form for the mean field hi to the form:

hi ¼ Sþ
XN

k¼1

X

CðnÞð½‘1;...‘ðnþ1Þ�Þ
1� n�N�1

J‘1...‘k ...‘nþ1

Yn

j¼1

c‘j dk;i ð4Þ

In the partition function

ZðxÞ¼:
X

c‘f g
e�xE c‘f gð Þ x 2 R; ð5Þ

the sum runs over the set of all possible valuations

c‘ ¼ 0; 1 ; 8‘, subdivides the set of states in classes of

equivalence, giving different statistical weights—depend-

ing on a parameter x 2 R ; x[ 0—to those states which

are invariant with respect to a given set of transformations.

A phase transition, if any, would allow us to pass from one

class of equivalence to the other when the state symmetry

is (partially or fully) broken. This turns the model into a

theoretical framework where, given a parameter—for

example the average specific antibody concentration—we

can predict when and if a configuration may break into

another, giving rise to a different immunity type, i.e.

change the adaptive immunity. In terms of formal language

theory, going from one configuration to another belonging

to a different class of equivalence has the following

meaning: if we associate to the space of data a group of

possible transformations preserving its topology (e.g., its

mapping class group), and the related regular language, the

general semantics thus naturally generated describes the set

of all transformations and hence of all ‘phases’ in the form

of relations.

We consider then the functor partition function, ZðxÞ.
We might of course access more information (patterns) by

considering higher (k-th) order correlation functions,

CkðxÞ¼:
1

ZðxÞ
X

c‘f g
c‘1 . . .c‘k e

�xE c‘f gð Þ ; ð6Þ

for any given set of points ‘1. . .‘k 2 A. We can represent

with strings of N dichotomic variables the set of fc‘g, 2N�1

possible configurations.

A crucial assumption we add to the model is that the

coupling constants J‘1...‘k ...‘nþ1
are taken to be proportional

to a linear combination (with negative coefficients) of the

simplex n-volume V ðnÞ, the simplex corresponding to the
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cell defined by the set
�
‘1; . . .; ‘n

�
in the cells of cycle

CðnÞð½‘1; . . .; ‘ðnþ1Þ�Þ, with the volume of the cell boundary

of dimension n� 2, weighted by the curvature at that

boundary. The latter measures the ease with which the n-

body interaction is favored by the manifold bending. The

ensuing action is expected to measure reasonably well the

probability that the n-body process described by that cou-

pling takes place.

When the model with such interaction form is dealt with

as a statistical field theory it turns out to be fully isomor-

phic with a Euclidean topological field theory describing a

totally different physical system: gravity coupled with

matter in a simplicial complex setting, consistent with

general relativity. We think back to the standard example

of the Ising model, which also has variables in Z2 (Parisi

1998) and recall that a statistical field theory is any model

in statistical mechanics where the degrees of freedom

comprise a field; i.e. the microstates of the system are

expressed through field configurations. The features of the

ensuing theory are quite general and far reaching. The

topology of the associated moduli space depends only on

the manifold genus g, on the dimension n of the (vector)

bundle over it used to define the field, and on the dimension

dðmod nÞ of the associated determinant bundle. Such space

is a projective variety, smooth only if ðd; nÞ ¼ 1. The

recursive determination of the Betti numbers in this case is

given by the Harder and Narasimhan and Atiyah and Bott

recursions (Harder and Narasimhan 1975; Atiyah and Bott

1983). The former explicitly counts points of the moduli

space, the latter resorts to an infinite-dimensional Morse

theory with the field action functional as Morse function.

These recursions lead to a closed formula for the Poincaré

polynomial, i.e. for the Betti numbers of the moduli space.

These implicit methods were successively made explicit

(Desale and Ramanan 1975).

What is intriguing is that our field theory turns out to be

isomorphic to Z2 (quantum) gravity, dealt with in non-

perturbative fashion by standard Regge calculus (Regge

1961).

Let us recall here that the construction of a consistent

theory of quantum gravity in the continuum is a problem in

theoretical physics that has so far defied all attempts of a

rigorous formulation and resolution. The only effective

approach to try and obtain a non-trivial quantum theory

proceeded via discretization of space-time and of the

Einstein action, i.e., by replacing the space-time continuum

by a combinatorial simplicial complex and deriving the

action from simple physical principles.

Quantum Regge calculus, based on the well-explored

classical discretization of the Einstein action due to Regge,

and the essentially equivalent method of dynamical trian-

gulations are the tools that proved most successful. Regge’s

method consists in approximating Einstein’s continuum

theory by a simplicial discretization of the space-time (in

gravity a four-dimensional Lorentz manifold) resorting to

local building blocks (simplices) and then constructing the

gravitational action as the sum of a term depending on the

(hyper)volumes of the different simplicial complexes and

another reflecting the space-time curvature. The metric

tensor associated with each simplex is expressed as a

function of the squared edge lengths, which are the

dynamical variables of this model. Summing over all

interpolating geometries (state sum) generated by the

simplicial complex construction in the embedding higher-

dimensional ones (filtration), allows us to derive both the

Einstein action and the equilibrium configurations simply

by means of counting procedure (entropy estimate).

The Z2 version of the model is one in which represen-

tations of SUð2Þ labeling the edges in quantum Regge cal-

culus are reduced to Z2. The power of the method resides in

the property that the infinite degrees of freedom of Rie-

mannian manifolds are reduced by discretization; and the

theory can deal with PL spaces, described by a finite number

of parameters. Moreover, for the manifolds approximated

by a simplicial complex (or by dynamically triangulated

random surfaces), the local coordination numbers are

automatically included among the dynamical variables,

leaving the quadratic link lengths q‘, globally constrained by

triangle inequalities, as true degrees of freedom.

More precisely, the model adopted here for the immune

system is isomorphic to the Z2 Regge model, where the

quadratic link lengths q‘ of the simplicial complexes are

restricted to take on only two values: q‘ ¼ 1þ lr‘, where
r‘ ¼ �1 ¼ 2c‘ � 1. Such model has been exactly solved

(in the case of quantum gravity) via the matrix model

approach (Ambjørn et al. 1985) and with the help of con-

formal field theory (Knizhnik et al. 1988). A crucial

ingredient is the choice of functional integration measure,

whose behavior, with respect to diffeomorphisms, is fun-

damental. The very definition of diffeomorphism is a heavy

constraint in constructing the PL space exactly invariant

under the action of the full diffeomorphism group (Menotti

1998), and only the recent construction of a simplicial

version of the mapping class group made it viable (Merelli

and Rasetti 2013).

As Regge regularization leads to the usual Liouville

field theory in the continuum limit based on a description

of PL manifolds with deficit angles, not edge lengths, we

may assume that also in our case the correct measure has to

be nonlocal. Starting point for the Z2 Regge model is a

discrete description of general relativity in which space-

time is represented by a piecewise flat, simplicial manifold

(Regge skeleton). The procedure works for any space-time

dimension d, metrics of arbitrary signature, and action
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AðqÞ ¼ x
X

sd

V ðdÞ sd
� �

� f
X

sd�2

dðsd�2ÞV ðd�2Þ sd�2
� �

 !

ð7Þ

with the quadratic edge lengths q‘f g (more precisely, the

r‘’s) describing the dynamics of the complex. x and f
denote free constants (in the discrete time picture, with

uniform time step s, energy functional and action are

merely proportional). The first sum runs over all d-sim-

plices sd of the simplicial complex, while VðsdÞ is the d-

volume of sd. The second term represents the curvature of

the simplicial complex, concentrated along the ðd � 2Þ-
simplices, leading to deficit angles dðsd�2Þ. The physical

meaning of the terms entering action A is what makes it

acceptable for a consistent description of the immune

system with higher order (‘many body’) interactions: the

lower the volumes and the higher the curvature, the lower

is the action ðx; f[ 0Þ.
At equilibrium, i.e. in the absence of an explicit time-

dependence of the expectation values of the variables, the

partition function for our antigen-free IS model is nothing

but the field propagator of the theory, expressed via path

integral

Z ¼
Z

D ½q� e�AðqÞ ð8Þ

Functional integration should extend over all metrics on all

possible topologies, hence the path-integral approach,

typically suffers from a nonuniqueness of the integration

measure and a need for a nonlocal measure is advocated.

The standard ‘simplicial’ measure
Z

D ½q� ¼
Y

‘

Z
dq‘

qa‘
FðqÞ; where a 2 R ð9Þ

allows exploring a family of measures, as FðqÞ can be

designed to constrain integration to those configurations

which do not violate triangular inequalities, and moreover

can be chosen so as to remove non realistic simplices. The

characteristic partition function of the model becomes then

Z ¼
YN

‘

Z1

0

dq‘ q
�a
‘

2
4

3
5FðqÞ e�

P
s
AsðqÞ ;

where N is the number of links and As is the contribution

to the action of simplex s.

It is worth recalling that in (Desale and Ramanan 1975)

arithmetic techniques and the Weil conjecture were used,

and a crucial ingredient was the property that the volume of

a particular locally symmetric space attached to SLn with

respect to the canonical measure—an invariant known as

the Tamagawa number of SLn—equals 1. The simplicial

volume is a homotopy invariant of oriented, closed,

connected manifolds defined in terms of the singular chain

complex with real coefficients. Such invariant measures the

efficiency of representing the fundamental space class

using singular simplices. Since the fundamental class is

nothing but a generalized triangulation of the manifold, the

simplicial volume can be interpreted as well both as a

measure for the complexity of the manifold and as a ho-

motopy invariant approximation of the Riemannian vol-

ume. ZðxÞ provides then the generating function (Poincaré

polynomial) of the Betti numbers of A.

The final step is to compare the Betti numbers obtained

empirically from the data against such generating function,

thus determining [simply through the solution of a system

of (non-linear) algebraic equations] the set of non-zero

J‘1...‘k ...‘nþ1
. This fully determines which antibody influences

which, including ‘many-body’ influences, i.e. when and if

it may happen that a given set of (two or more than two)

antibodies play a role only when simultaneously active.

A short discussion of Regge calculus, meant to introduce

in simple way, accessible also to readers not familiar with

the notion of geometry over discrete spaces (simplicial

complexes), and some of the notions actually used in the

derivation can be found in Battaglia and Rasetti (2003),

where some of the preliminary ideas of the scheme are

described, successively developed in extended way for

present and other applications. As for the work in Z2

quantum gravity which our generalized model of immune

system is isomorphic to, a more articulated and complete

set of references is available in Giulini (2007) and Bittner

et al. (1999).

4 A global topological application of the S[B] paradigm

In this section we introduce the S½B� paradigm for modeling

complex adaptive systems and we discuss the IS metaphor

as a global topological application of the adaptation phase;

the aim is to contribute to understand the adaptability

feature that, as addressed in the paper of Stepney et al.

(2005), still remains ‘poorly understood’.

In the S½B� paradigm a complex system consists of two

components, the computation level from where its behavior

B emerges, the interactive machine, and the context of the

computation, its global structure S. Both levels are distinct

but entangled in a unique computational model that evolves

by learning and adapting. The computational model asso-

ciated to the S½B� plays a crucial role in the characterization
of the adaption phase, it can be represented by any

mathematical model of computation, provided that it

allows to express the dependency between different levels

of abstraction.

Figure 2 shows a simple adaptive system represented by

finite state machines, which is the most general among
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other models, such as complex automata, higher dimen-

sional automata, hypernetworks, recurrent neural network,

multiagent, etc. On the left hand side, the two components

are entangled in such a way that the emergent behaviour B

is subject to the global constraints while the global struc-

ture S is affected by the emergent behavior. On the right, an

S½B� system is depicted as a light oval S that embeds a dark

round B, showing the adaptation phase that takes place

whenever the computation can no longer evolve in the

current context (the S½B� on the lower right corner). The

adaptation phase allows S to relax the set of constraints so

as to permit further computations—in the figure the black

arrow drawn between the two S components, represents the

change of the global context, and the dashed arrow

between the dark rounds represents the unfolding of the

computation. The evolution of such a model relies on the

ability of the system to adapt its computation to global

requirements.

A full yet concise description of the formal definition of

S½B� on a finite state machine that encapsulates both the

computation ðBÞ and its controller ðSÞ follows. In this

framework, both B and S are classically described as a

finite state machine of the form B ¼ ðQ; q0;!BÞ (Q set of

B states, q0 initial B state and !B transition relation) and

S ¼ ðR; r0;O;!S; LÞ where R is a set of S states, r0 is the

initial S state, O is an observation function of B states, !S

is a transition relation and L is a state labeling function.

The function L labels each S state with a formula repre-

senting a set of constraints over an observation of the B

states. Therefore, a S state r can be directly mapped to the

set of B states satisfying LðrÞ. Through this hierarchy, S can
be viewed as a second-order structure ðR � 2Q; r0;!S�
2Q 	 2Q; LÞ where each S state r is identified with its

corresponding set of B states. An S½B� system is the com-

bination of an interactive machine B ¼ ðQ; q0;!BÞ and a

coordinator S ¼ ðR; r0;O;!S; LÞ such that for all q 2 Q,

OðqÞ 6¼?. In any S½B� system the initial B state must satisfy

the constraints of the initial S state, i.e. q0 
 Lðr0Þ.
During adaptation phase the B machine is no longer

regulated by the S controller, except for a condition, called

transition invariant, that must be fulfilled by the system

undergoing adaptation. The complete and formal definition

of the S½B� based on finite state machine, its semantics and

the adaptability checking can be found in Merelli et al.

(2013).

It is quite evident that the model described above can be

applied when the system requirements are known a priori

and the adaptation phase reduces to dynamic selection of

possible states with respect to environmental changes. To

overcome this limit and allow the definition of a model that

can change the set of global constraints and consequently

the set of computations at run-time, we adopt the IS

metaphor to characterize the adaptation phase of an S½B�
model. The global context is defined as a function of the

topological invariants extracted from the analysis of the

space of data: the Betti numbers. In the model proposed in

previous section the Betti numbers and the Jf‘g interaction

matrix faithfully represent the relations hidden in the cur-

rent space of data. Thus, the adaptation phase of an S½B�
system is indeed represented as the interplay capabilities of

the immune system to identify, classify and learn the new

relationship emerging among the actors of the system.

Figure 3 graphically mimics the adaptability checking

performed by an S½B� system; it starts on the upper left

corner of the figure with the actual model S½B� that, when
necessary, may be adapted to a new context provided by

the topological analysis of the space of data (set of

observations of real system). The changes in the context is

determined by comparing the Betti numbers of the space of

data with the Betti numbers of the actual model. If there is

no new knowledge, the model remains S½B� otherwise it

adapts to the new context by learning the knowledge pro-

vided by the Betti numbers, updating its computation with

new set of relations Jf‘g and becoming S0½B0�. This learning
process reminds us of what in literature is called recurrent

neural network, a process based on active exploration of an

unknown environment and the generation of a finite state

automata model of the environment.

Summarizing, inspired by the IS metaphor we present a

computational model as an higher order relational model

Fig. 2 S½B� model
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which deals with multilinear n-body interactions, the inter-

actions characteristic of the immune response. In such case,

the model adapts when it no longer fits the space of observed

data, and the construction of the topological field model

allows us to determine the values of the Jf‘g matrix, hence,

e.g., the classes of antibodies that are in relation in the current

immune response. We call this step a recursive construction

of a relational model that learns new antibody relations as

immune response to the presence of an antigene.

As future work, we aim to apply the proposed approach

to real-world IS phenomena treated bot in silico and in vivo

experiments and compare the results with other similar

models.

5 Concluding remarks

We have defined a new topology-based method suitable to

provide a benchmarking application of the S[B] paradigm.

The method relies on a multi-linear model of immune

system inspired by the topology of space of data. Starting

from the notion of an Ising model in a mean field, given by

Parisi and others in their seminal work, we proposed a

more sophisticated version that is multilinear in the con-

figurational variables (the antibody concentrations) instead

of constant or at most linear. This work is not intended to

be the study of the dynamics of the immune network in

view of establishing the equilibrium among antibodies, but,

instead, it has a prospective interest and strategic aim at

defining a new approach for the analysis of the immune

system as a metaphor of a real-life system represented in

terms of Big Data.
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Appendix

Persistent homology and Betti numbers

In this appendix we describe a general approach that allows

to extract global topological information from a space of

data. It is based on three basic steps: (i) The interpretation

of the huge collection of points that constitutes the space of

data; this is achieved by resorting to a family of simplicial

complexes (Fig. 4), parametrized by some suitably chosen

‘proximity parameter’ (Fig. 5). This operation converts the

data set into a global topological object. In order to fully

exploit the advantages of topology, the choice of such

parameter should be metric independent. In our context it

measures the expression of a possible relation. (ii) The

reduction of noise, affecting the data space, as the result of

the parametrized persistent homology. (iii) The encoding of

the data set persistent homology in the form of a parame-

terized version of topological invariants, in particular Betti

numbers, i.e. the invariant dimensions of the homology

Fig. 3 S[B] adaptability

checking
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groups. These three steps provide an exhaustive knowledge

of the global features of the space of data, even though

such a space is neither a metric space nor a vector space, as

other approaches require (Carlsson 2009).

In order to better comprehend the scheme, it is necessary

to recall that homology is a mathematical tool that ‘mea-

sures’ the shape of an object (typically a manifold). The

result of this measure is an algebraic object, a succession of

groups. Informally, these groups encode the number and

the type of ‘holes’ in the manifold. A basic set of invariants

of a topological space X is just its collection of homology

groups, HiðXÞ. Computing such groups is certainly non-

trivial, even though efficient algorithmic techniques are

known to do it systematically. Important ingredients of

these techniques, and outcomes as well of the computation,

are just Betti numbers; the i-th Betti number, bi ¼ biðXÞ,
denotes the rank of HiðXÞ. It is worth remarking that Betti

numbers often have an intuitive meaning, for example, b0
is simply the number of connected components of the space

considered. While oriented 2-dimensional manifolds are

completely classified by b1 ¼ 2g, where g is the genus (i.e.

number of ‘holes’) of the manifold; bj with j� 2 classifies

the features (number of higher-dimensional holes) of

higher-dimensional manifolds. What makes them conve-

nient is the fact that in several cases knowing the Betti

numbers is the same as knowing the full space homology.

Sometimes to know the homology groups it is sufficient to

know the corresponding Betti numbers, typically much

simpler to compute. In the absence of torsion, if we want to

distinguish two topological objects via their homology,

their Betti numbers may already do it.

Data can be represented as a collection, unordered

sequence, of points in a n-dimensional space En, the space

of data. The conventional way to convert a collection of

points within a space such as En into a global object, is to

use the point cloud as the vertex set of a combinatorial

graph, G. The edges of the graph are exclusively deter-

mined by a given notion of proximity, specified by some

weight parameter d. The parameter d should not fix a

‘distance’, that would imply fixing some sort of metric, but

rather provide information about ‘dependence’, i.e. corre-

lation or, even better, relation. If dependence had to do

with distance, it should be a non-metric notion, rather a

chemical distance or ontological distance just to mention

an example. A graph of this sort, while capturing pretty

well connectivity data, essentially ignores a wealth of

higher order features beyond clustering. Such features can

instead be accurately discerned by thinking of the graph as

the scaffold (1-skeleton) of a different, higher-dimensional,

richer (more complex) discrete object, generated by com-

pleting the graph G to a simplicial complex, C. The latter is
a piecewise-linear space built from simple linear constit-

uents (simplices) identified combinatorially along their

faces. The decisions as how this is done, implies a choice

of how to fill in the higher dimensional simplices of the

proximity graph. Such choice is not unique, and different

options lead to different global representations. Two

among the most natural and common ones, equally effec-

tive to our purpose, but with different characteristic fea-

tures, are: (i) the Čech simplicial complex, where k-

simplices are all unordered ðk þ 1Þ-tuples of points of the
space En, whose closed

1
2
d-ball neighborhoods have a non-

empty mutual intersection; (ii) the Rips complex, an

abstract simplicial complex whose k-simplices are the

collection of unordered ðk þ 1Þ-tuples of points pairwise

within distance d. The Rips complex is maximal among all

simplicial complexes with the given 1-skeleton (the graph),

and the combinatorics of the 1-skeleton completely deter-

mines the complex. The Rips complex can thus be stored as

a graph and reconstructed out of it. For a Čech complex, on

the contrary, one needs to store the entire boundary

operator, and the construction is more complex; however,

this complex contains a larger amount of information about

the topological structure of the data space.

Algebraic topology provides a mature set of tools for

counting and collating holes and other topological pattern

features, both spaces and maps between spaces, for sim-

plicial complexes. It is therefore able to reveal patterns and

Fig. 4 Simplices in R
3. 0-simplex is point or vertex, 1-simplex is an

edge, 2-simplex is a triangle, and 3-simplex is a thetrahedron

Fig. 5 Simplicial complex C from the graph G
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structures not easily identifiable otherwise. As persistent

homology is generated recursively, corresponding to an

increasing sequence of values of d. Complexes grow with

d. This leads us to naturally identifying the chain maps

with a sequence of successive inclusions. Persistent

homology is nothing but the image of the homomorphism

thus induced. The available algorithms for computing

persistent homology groups focus typically on this notion

of filtered simplicial complex. Most invariants in algebraic

topology are quite difficult to compute efficiently. Fortu-

nately, homology is exceptional under this respect because

the invariants arise as quotients of finite-dimensional

spaces.

Topological information is contained in persistence

homology, that can be determined and presented as a sort

of parameterized version of the set of Betti numbers. Its

role is just that of providing summaries of information over

domains of parameter values, so as to better understand

relationships among the geometric objects constructed

from data. The emerging geometric/topological relation-

ships involve continuous maps between different objects,

and therefore become manifestations of functoriality, i.e,

imply the notion that invariants can be extended not just to

the objects studied, but also to the maps between such

objects. Functoriality is central in algebraic topology

because the functoriality of homological invariants is what

permits one to compute them from local information. We

recall the K€unneth theorem that allows to consider the

Poincaré polynomial of the space X as the generating

function of the Betti numbers of X.
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