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Abstract Opinion dynamics concerns social processes through which populations or
groups of individuals agree or disagree on specific issues. As such, modelling opinion dy-
namics represents an important research area that has been progressively acquiring relevance
in many different domains. Existing approaches have mostly represented opinions through
discrete binary or continuous variables by exploring a whole panoply of cases: e.g. indepen-
dence, noise, external effects, multiple issues. In most of these cases the crucial ingredient
is an attractive dynamics through which similar or similar enough agents get closer. Only
rarely the possibility of explicit disagreement has been taken into account (i.e., the pos-
sibility for a repulsive interaction among individuals’ opinions), and mostly for discrete
or 1-dimensional opinions, through the introduction of additional model parameters. Here
we introduce a new model of opinion formation, which focuses on the interplay between
the possibility of explicit disagreement, modulated in a self-consistent way by the existing
opinions’ overlaps between the interacting individuals, and the effect of external informa-
tion on the system. Opinions are modelled as a vector of continuous variables related to
multiple possible choices for an issue. Information can be modulated to account for promot-
ing multiple possible choices. Numerical results show that extreme information results in
segregation and has a limited effect on the population, while milder messages have better
success and a cohesion effect. Additionally, the initial condition plays an important role,
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with the population forming one or multiple clusters based on the initial average similarity
between individuals, with a transition point depending on the number of opinion choices.

Keywords Opinion dynamics · Interaction · Disagreement · External information ·
Numerical simulations

1 Introduction

Opinion formation is an important property of social systems. People are driven by their
choices in many moments of their lives, based on opinions formed in time under the influ-
ence of many factors, such as their own personality, the culture they belong to, peer inter-
action, mass-media effects, etc. These choices range from selecting a lifestyle, a specific
behaviour, a phone company, or a supermarket, to the city to leave in or whom to vote for.
The way opinions form and choices are made is of interest to many classes of researchers,
with implications in many fields from politics to economics, to marketing. Probably the most
immediate example is represented by political opinions: here the question is how people syn-
thesise the different sources of information and biases, to come up with a specific position to
be eventually expressed as a vote whenever required. Another important example concerns
marketing strategies. These strategies are typically devised using social research, under the
assumption that in order to attract clients, the products have to be presented in an appealing
way. An example is described in [10], where a supermarket chain, after careful analysis of
the purchases of their clients, send customised promotional leaflets. By sending early adver-
tising about products people need, they attract them before other chains, and increase sales
also in departments other than that advertised. For a different client type, the advertising
looks different, even though the supermarket is the same. This is one classical example of
shaping external information and advertising in such a way as to attract as many individuals
as possible. Yet another example is the decision to buy a specific product in a market seg-
ment, e.g. a mobile phone, a car, a book, etc. It is again a matter of opinion formation and
evolution, based on an evaluation of how the product matches the needs, attitude and possi-
bilities of an individual. For instance, while until a few years ago, the smart phone market
was very narrow, nowadays it has extended significantly [9]. It would be interesting to know
what changes people’s opinion, and leads to a large propagation of a new technology.

Traditionally studied by sociologists, opinion formation has become an important topic
for physicists and different classes of models have been investigated in the past years [5].
Models with opinions or options modelled through discrete variables, such as the voter, lo-
cal majority rule [13], Sznajd [38], Axelrod [2], social impact [26, 33, 40] and their various
extensions, have been applied to explain aspects of elections, strikes, dynamics of mobile
markets, changes in the number of privately owned companies, financial crises and culture
formation [14, 15, 25, 27, 32]. Although discrete variables are very suitable for modelling
choices, the internal state of individuals, based on which discrete decisions are taken, may be
continuous. Also, the opinion itself could take continuous values. The Deffuant-Weisbuch
[7, 42] and Hegselmann-Krause [18] models analyse one-dimensional continuous opinions.
Multiple dimensions are analysed in [28], where the opinion space is the unit simplex, and
in [8, 12, 29] where each dimension refers to an opinion on a different subject. The Contin-
uous Opinions and Discrete Actions approach (CODA) [31] analyses internal probabilities
for two or three discrete choices. Most of the original models deal with attractive dynamics,
where individuals follow their neighbours. However, in reality, both attractive and repulsive
interactions can be observed, and it has been argued that disagreement is a very important
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feature of a democratic society [21]. This element has been introduced in some of the ex-
isting models, by considering additional model parameters to control disagreement (e.g. [1,
20, 22, 23, 34, 37, 39, 41]). Additionally, the effect of external information is crucial when
modelling real social systems. Again, some approaches consider this effect [3, 6, 16, 19, 36,
41]. However, an analysis for multi-dimensional continuous opinions is missing, both for
external information and disagreement.

Here, the interplay between disagreement and external information in opinion dynamics
is analysed, by the introduction of a new modelling approach. The model considers the prob-
abilities that an individual will make a specific choice out of multiple possibilities (such as
voting or choosing a market product). It includes both attractive and repulsive interactions,
in a self consistent way, without the addition of a further parameter to the model. Modulated
information is also possible, which promotes multiple choices at the same time. Addition-
ally, an analysis of the effect of the initial condition is performed.

2 Methods

A fully connected social network of N individuals is considered, where each agent has to
make a choice between K possible opinions on a given subject. Each individual maintains a
set of probabilities for the K possibilities: x = [p1,p2, . . . , pK ] with

∑K

k=1 pk = 1, i.e., an
element in the simplex in K − 1 dimensions. We define the similarity between two individ-
uals i and j as the cosine overlap between the two opinions’ vectors:

oij = xi · xj

|xi ||xj | =
∑K

k=1 pi
kp

j

k√∑K

k=1 (pi
k)

2
∑K

k=1 (p
j

k )
2
. (1)

At each time step a randomly selected pair of individuals, (i,j ), interacts, either by agreeing
or disagreeing, based on their instantaneous overlap:

pij
agree = min

(
1,max

(
0, oij ± ε

))
, (2)

p
ij

disagree = 1 − pij
agree, (3)

where ε is a noise term which avoids lack of interaction due to null overlap, with the choice
between the plus and minus signs (Eq. (2)) made randomly at each time step. Interaction here
means not only observing the actions of others, but represents discussions between agents
where opinions on the different choices are exchanged. Hence ε can be also considered
interaction noise, accounting for the fact that a discussion might not provide a fully accurate
view over the other’s internal probabilities. The rule (2) (and (3)) corresponds to imagine
that, during the interaction, each individual perceives how close (or distant) he/she is from
another individual and consistently agrees or disagrees. It is important to note here that our
model does not impose “bounded confidence”: individuals with low overlap will tend to
disagree, with an effect on their state, and it is however possible that two individuals agree
even though their overlap is null (with low probability). Furthermore, the model introduces
the possibility of both agreeing and disagreeing in a self consistent way. Interaction causes
one of the individuals in the pair to change a random element l in the opinion vector:

pi
l (t + 1) =

{
pi

l (t) ± α sign(p
j

l − pi
l ) if |pj

l − pi
l | > α

pi
l (t) ± 1

2 (p
j

l − pi
l ) otherwise,

(4)

where the plus sign occurs when the interaction results in agreement and the minus sign
when the interaction results in disagreement. Hence, the position is changed by a small fixed
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Fig. 1 Example of pairwise interaction. We consider a generic interaction between an individual A and
an individual B, in a dynamics where the number of possible opinions is fixed to K = 3. In particular, the
individual A changes its opinion according to its interaction with the individual B. We depict both the cases of
agreement (left) and disagreement (right). Left: The individual A changes its status according to an agreement
with individual B. In this case, the opinion they discuss is the opinion l = 1, and its probability is decreased
by the value α = 0.1 in the individual A to become more similar to the individual B (and, as such, the mutual
overlap increases). The probabilities of the rest of the opinions are increased by equal amounts (in this case,
α
2 ) to conserve the unity sum. Right: the same dynamics in case of disagreement. In this case, the individual
A increases the probability of opinion 1 by the amount α = 0.1, decreasing its overlap with the individual B.
Equivalently, the probabilities of the rest of the opinions are decreased by equal amounts to conserve the unity
sum

step α > 0, unless differences to the other individual are too small, in which case the change
is half the difference. This allows complete agreement between individuals. The parameter
α determines the flexibility of agents since it fixes the time scale for local agreement or
disagreement. The larger α is, the faster the two individuals will agree or get separated.
This method allows for the absolute value of the change on position l to be the same for
agreement and disagreement. The rest of the elements in x i are adjusted to preserve the unit
sum, by equally redistributing the change in element l. For instance, if position l has been
increased by α, the other positions will change by − α

K−1 . If some elements in the vector
become negative, these will be set to 0, after a similar redistribution of their value to the
other non-null positions (except for l). This procedure is repeated until no negative position
is obtained. Figure 1 demonstrates graphically the update rule employed.

External information, e.g. mass-media, is introduced as a static agent I = [I1, I2, . . . , IK ]
with:

∑K

k=1 Ik = 1. After interacting with a peer, an individual interacts also with the in-
formation with probability pI , following the same interaction rules. Hence, interacting with
the external information does not imply less peer communication. In previous models, exter-
nal information biased individuals towards one choice out of all possibilities (e.g. Axelrod,
Sznajd). Here, this means setting one position in I to 1 and others to 0. In reality, however,
sources of information are so wide that only one possibility is never promoted. Our approach
has the ability to model such complex influence, by choosing non zero values on more po-
sitions of I, i.e., a modulated information. This was also true for the Deffuant model: if we
consider that the continuous opinion is actually a probability to make a choice between two
discrete options, then milder external information can be introduced by using information
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values far from the extremes of the opinion interval. In fact, similarities between informa-
tion effects in the Deffuant model and the one introduced here will be discussed in a later
section.

3 Results

3.1 Role of the Initial Condition

An important parameter to take into account is the initial average overlap of the population,
defined as:

ō = 2
∑

i,j oij

N(N − 1)
. (5)

This value represents the probability that a randomly chosen pair of individuals will follow
agreement dynamics, so it may have a large influence on the final state of the population.
Thus, it is interesting to see how the dynamics depends on this feature of the initial condition,
and we perform this analysis when no external information is present (pI = 0). A random
sampling of the simplex in K − 1 dimensions yields a population with a relatively large
average overlap. In order to generate populations with different initial ō, we consider the
entropy S associated to the opinions probability, defined as:

S = −
K∑

i=1

pi log2(pi) (6)

and we remove from the random sampling some individuals that have S larger than a spe-
cific threshold. Specifically, we construct a population of N individual by random sampling
each individual from a simplex in K − 1 dimensions. In order to decrease the population av-
erage overlap, we compute for each sampled individual its entropy S and remove it from the
population with probability 0.9 if S is above the chosen threshold. We continue to sample
points in the K − 1 simplex and to apply the above procedure till we reach a population of
the desired size N . Decreasing the threshold, populations with decreasing ō can be obtained.
Figure 2 shows the distribution of populations with different ō for K = 3. Throughout the
rest of this paper, more fragmented or compact population will be generated in this man-
ner, with the most compact initial condition corresponding to the random sampling of the
simplex.

In order to study the effect of the initial condition, we have performed numerical simu-
lations (N = 300, ε = 0.1, pI = 0) for different K ∈ {3,5,10,20,30}, with corresponding
α ∈ {0.0167,0.01,0.005,0.0025,0.00167}. Hierarchical clustering of the final population
has been performed, using complete linkage clustering [30]. This is an agglomerative clus-
tering technique that starts with each agent in one cluster, and then merges clusters, two by
two, based on how similar they are, i.e. the closest ones are merged first. Complete linkage
means that the similarity between two clusters is defined by the most distant agents in each
cluster. The procedure produces a tree, which contains an increasing number of clusters with
increasing compactness, when moving from the root to the leaves. Here, to obtain the agent
clusters, we have cut the tree at 0.8 similarity level. This ensures that if two agents i and j

are in the same cluster then oij > 0.8. The effective number of clusters has been computed
as the cluster participation ratio (PR):

PR = (
∑C

i=1 ci)
2

∑C

i=1 c2
i

(7)
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Fig. 2 Initial conditions for K = 3—distribution of opinion values for a population of 300 individuals, with
different average population overlap. The entropy threshold values used to generate these populations are,
from left to right, 1.2, 1.5 and 1.6

Fig. 3 Effect of initial condition
on the effective number of
clusters in the final population.
Dots represent individual
instances, while lines are
averages. Simulations have been
performed with N = 300,
ε = 0.1, pI = 0 for different
K ∈ {3,5,10,20,30}, with
corresponding α ∈ {0.0167,0.01,

0.005,0.0025,0.00167}
The curves, from right to left,
correspond to increasing K

values. (Colour figure online)

with C the number of clusters and ci the size of cluster i. This measure is more significant
than the number of clusters itself, as it also considers cluster sizes. For instance, if the popu-
lation consists of two clusters, PR would be 2 only if the clusters are equal in size, and very
close to 1 if one of the clusters is extremely small compared to the other.

Figure 3 displays PR values for different realisations of the model, depending on the
initial ō. This shows that the initial condition has a large effect on the final population,
with a transition in the number of clusters obtained. Specifically, above a certain value of
the initial overlap, the population forms one cluster, while below this value the population
divides into K clusters, each of the form (1,0, . . .). The value of ō marking the transition
decreases with K , showing that agreement in the population is facilitated by the existence of
more opinion choices. This has also been observed for the model in [28], although without
performing an analysis of the initial condition effect. However, it is important to note that
in the case of agreement (and in the absence of external information), agents maintain a
probability different from zero for (almost) all options, which means a generalised state of
indecision. On the other hand, when clusters form, these adopt a more decided option with
pl = 0 for many values of l. More details about the structure of the opinions in the different
cases will be discussed in Sect. 3.4.

3.2 Effect of Information

We now analyse the effect of external information on the final state of the population.
Numerical simulations have been performed for N = 300 K = 5, α = 0.01, ε = 0.1 and
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Fig. 4 Numerical results for a population of 300 individuals, K = 5, ε = 0.1 and α = 0.01 are presented
(100000 population updates (refer to Fig. 15 for the time needed for a population of size N to reach a station-
ary state), 20 instances for each parameter value). Four different information values are used, corresponding
to each column. The top graphs show the histogram of the information, the middle the average number of
clusters as a function of pI while the bottom the average information overlap again as a function of pI . The
individual points correspond to pI ∈ {0,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. Error bars are
displayed as well, showing standard deviation for each point. Where error bars are not visible, the standard
deviation is within graphic point limits or null (Colour figure online)

pI ranging from 0 to 1. Four types of information have been investigated, in order to
study the effect of extreme and mild external messages on the population (specifically I ∈
{[1,0,0,0,0], [0.8,0.2,0,0,0], [0.4,0.2,0.2,0.1,0.1], [0.2,0.2,0.2,0.2,0.2]}). Since, as
shown in Sect. 3.1, the initial condition plays a very important role in the number of clusters
obtained, four different initial conditions have been used, with ō ∈ {0.49,0.55,0.57,0.62}.
These values cover situations before, around and after the transition occurs (Fig. 3), with
ō = 0.62 corresponding to the random sampling of the simplex.

The effective number of clusters has been determined as in the previous section, using
the PR measure. The effect of information has been quantified by computing the average
information overlap (IO) once the population has reached a stationary state:

IO = 1

N

N∑

i=1

oIi (8)

where oIi represents the cosine overlap between agent x i and the external information I.
This average measure is an indicator of the percentage of individuals in the population ad-
hering to the information.

Figure 4 displays IO and the effective cluster number PR for the different parameter
configurations, each point being an average over 20 realisations of the process. Several pat-
terns can be observed. In general, extreme information is less successful in the population
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Fig. 5 Histograms of cluster sizes obtained over 20 simulations runs for K = 5, N = 300, ε = 0.1 and
α = 0.01. Four information types and four initial conditions are displayed, for pI ∈ {0,0.01,0.5} (Colour
figure online)

compared to milder messages, as IO values indicate. Additionally, mild information favours
cohesion in the population, i.e., a decreased number of clusters compared to the pI = 0 situ-
ation, while extreme information induces segregation (increased PR). These effects increase
with pI . Of course, the extent of the two effects observed depends on the initial condition.
That is, the segregation effect of extreme information is small when the population starts
from a tight community, i.e., large ō, with the number of clusters increasing when ō de-
creases. Similarly, the success of mild information is smaller when the initial population is
not very compact and larger in the opposite case.

Several other interesting details can be observed. In general, even when the frequency of
interaction with the external information (pI ) is very large, the success in the population (IO)
is bounded. This bound depends both on the initial condition and on the type of information,
with a small value for extreme information and low initial ō, and (nearly) complete success
for mild information and large ō. This is due to the disagreement dynamics based on the
overlap between individuals and the external information, and is observable also in real life,
where no matter how much propaganda there is, if the individuals do not agree enough with
an idea, this is not adhered to.

To analyse in more detail the clustering patterns obtained, Fig. 5 displays histograms
of cluster sizes obtained in 20 runs, for pI ∈ {0,0.01,0.5}. This shows that, in general,
as expected, PR values of 5 correspond to clusters of similar size (around 60 individuals),
while PR values close to 1 are generated by one very large cluster and one or several ex-
tremely small groups. The figure shows very clearly how the fraction of very large cluster
sizes increases as the initial condition becomes more compact (red to blue lines) and as the
information becomes milder (left to right columns).

Another very interesting phenomenon can be observed for compact initial conditions,
i.e., random sampling of the simplex (Figs. 4/5, star/blue lines). When the information is
not too extreme I = [0.8,0.2,0,0,0], the entire population adheres to it provided pI is very
small, while as pI increases, the media success decreases. On the other hand, when the in-
formation is very peaked (I = [1,0,0,0,0]), very small pI leads to complete disagreement
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Fig. 6 Average information overlap for compact populations of 300 individuals, K ∈ {3,5,10,20,30},
ε = 0.1 and corresponding α ∈ {0.0167,0.01,0.005,0.0025,0.00167} (values for α have been scaled to
maintain the scale, compared to the average value of pi , when K increases). The graph includes 10 instances
for each parameter value. Error bars show one standard deviation from the plotted mean. The individual
points correspond to pI ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1} (Colour figure online)

to the population, while larger pI increases agreement. Cluster sizes, however, do not show
a large change when increasing pI from 0 to 0.01, showing that group composition is ba-
sically the same, even though IO values change significantly. This indicates that a very low
pI allows for the dynamics to proceed in a similar manner as without information, and after
groupings are formed, these are slowly swayed towards or away from the information. In the
specific case here, a compact initial population forms first one cluster, which moves close to
the information if this is mild, or far from it if peaked. This shows that, when facing a com-
pact group, an external message is more efficient if presented gradually, provided it is not
extremely different from the current convictions of the population. This suggests that peer
influence is more effective than that from an external static source. This can be explained by
the fact that peers are flexible, and move towards others freely, while external information
is too rigid. An agent that is facing an external message which she does not agree with,
will move away from it, while when the direct exposure to the external message is small,
the interaction with other peers can sway her towards accepting the message. However, for
this to happen, the message has to be close enough to the initial state of the population, i.e.,
acceptable by a large number of individuals. When this is not true, as is the case with an
extreme external information, the entire population will disagree with the message, and the
media campaign will have no effect.

It is important to note that the overlap of the external information with the population,
which, as our results show, is one of the most important determinant for the success of a
campaign, depends also on K . For instance, an extreme message [1,0, . . .] has an average
overlap with a random population of 0.447 when K = 5 and 0.577 for K = 3. Figure 6
shows average overlap with the information obtained for different K values. Each initial
population has been obtained by random sampling of the simplex, being thus a compact
population. Three information types have been used. It is obvious that the three types of
information have a very different effect depending on K . While for K = 3, information
[0.5,0.3,0.2] is very mild, having complete success, for K = 30 [0.5,0.3,0.2,0, . . . ,0]
would be quite extreme, since only three out of thirty options are promoted, so the infor-
mation overlap obtained decreases drastically. We can conclude that the success of all three
information types in the population decreases with K . This indicates that it is easier to con-
vince the public about a specific option when there are few choices, compared to when
the number of choices is large. When pI is small ( �= 0), the phenomenon explained in the
previous paragraph for compact populations can be observed, for all K . Specifically, when
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Fig. 7 Effective number of
clusters obtained for different
initial conditions and α values
for K = 5. The curves, from right
to left, correspond to increasing
values of α (Colour figure online)

information is mild enough, complete agreement in the population is obtained (IO = 1),
while extreme information fails completely in attracting individuals (IO = 0). Again, mild-
ness of information depends on K . For example, for low pI �= 0, information [0.8,0.2, . . .]
obtains full agreement for K ∈ {3,5} and full disagreement for K ∈ {10,20,30}.
3.3 Robustness with Respect to the Choice of α

The role of the value of the parameter α is analysed to identify the effect of changing agent
flexibility. In Fig. 7 we report the effective number of clusters PR resulting from simulations
with different values of the flexibility α, for K = 5. The same dependence of the results
on the initial condition observed in Sect. 3.1 is conserved as long as α is small enough
(α < 0.05 in simulations with K = 5), whereas when α is too large (α > 0.1), the population
converges to one cluster, regardless of the initial condition chosen. These results show that
the model is robust with respect to α, as long as the change in opinion is not forced to be
very large, which is what is expected. A very large α favours agreement in the population,
since individuals that are very different can become very close on a single interaction, while
for similar individuals which disagree, the change is not as drastic, since the difference
between their opinions is very likely to be smaller than α (and hence use the second rule
in Eq. (4)). It is important to note that decreasing α further below a certain value (thus
increasing simulation times) is not necessary since results are very similar.

3.4 Temporal Patterns

In order to get a further insight on the dynamics of the system, this section discusses tem-
poral patterns for two initial conditions (ō = 0.49 and ō = 0.62) and two information types
(I = [1,0,0,0,0] and I = [0.4,0.2,0.2,0.1,0.1]), each for pI ∈ {0,0.01,0.5} and K = 5.
Figures 8, 9, 10 and 11 show single simulation instances for each pI . Plots display the evo-
lution in time of each of the five elements of the opinion, for every individual in a population
of 300. Each row corresponds to one position pi in the opinion vector, while each column
represents a different value of pI . The value of the information is shown by the straight
horizontal line (red online). Individual opinions are displayed in colours corresponding to
the cluster they belong to at the end of the simulation. The relative cluster sizes ( ci

N
) are also

shown at the top, as a legend.
As figures show, opinions start in random position spanning the interval [0,1], and sta-

bilise around a particular value. The system never reaches a frozen state, with small fluctu-
ations preserved even after the clusters are formed (see Fig. 4 for the effective number of
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Fig. 8 Opinion values for K = 5, N = 300, ō = 0.49, I = [1,0,0,0,0]. Each row corresponds to the posi-
tions in the opinion vector x = [p1,p2,p3,p4,p5], while each column represents a different pI . Individual
opinions are coloured based on the cluster membership, with cluster sizes included in the legend. The infor-
mation value is represented by the straight horizontal line (red online). In this case five clusters are formed
(Colour figure online)

clusters in the different regimes). This is due to the parameter ε, which allows for agree-
ment even when the overlap between two individuals is zero, or disagreement even when
the overlap is one.

For the case of segregated initial populations, Figs. 8 and 9 show the formation of five
clusters within the population, for pI = 0. These five clusters are maintained for extreme
information, regardless of the value of pI , due to the segregation effect of such informa-
tion. For milder external message, on the other hand, the five clusters are only maintained
when the frequency of exposure is small. In this situation, however, although the average
overlap with the information is quite large (Fig. 4), no individuals agree completely with the
information. Larger pI causes a large cluster to form around the external information value,
showing the cohesion effect of a mild message (which appears only when the frequency of
exposure is large enough).
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Fig. 9 Opinion values for K = 5, N = 300, ō = 0.49, I = [0.4,0.2,0.2,0.1,0.1]. Each row corresponds to
the positions in the opinion vector x = [p1,p2,p3,p4,p5], while each column represents a different pI .
Individual opinions are coloured based on the cluster membership, with cluster sizes included in the legend.
The information value is represented by the straight horizontal line (red online). In this case five clusters are
formed for pI = 0 and pI = 0.01 and three for pI = 0.5 (Colour figure online)

Figures 10 and 11 show similar graphs for a compact initial population. When no in-
formation is present, all individuals form one cluster. Plots for pI = 0.01 validate the ex-
planation of the total agreement/disagreement observed in Figs. 4 and 5. Specifically, low
exposure to the information allows the population to initially form one cluster, similar to no
exposure, which is afterwards slowly affected by the external message. When this is extreme
(Fig. 10), the cluster shifts away from the external information, since it is too dissimilar. On
the contrary, when the information is mild, the cluster moves towards it resulting in complete
agreement (Fig. 11). For pI = 0.5, the group, determined previously by the initial condition,
does not form, and part of the population adheres to the information directly. For extreme in-
formation, the cluster overlapping with the information is small, while for the mild message,
this dominates the population.
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Fig. 10 Opinion values for K = 5, N = 300, ō = 0.62, I = [1,0,0,0,0]. Each row corresponds to the posi-
tions in the opinion vector x = [p1,p2,p3,p4,p5], while each column represents a different pI . Individual
opinions are coloured based on the cluster membership, with cluster sizes included in the legend. The infor-
mation value is represented by the straight horizontal line (red online). In this case one cluster is formed for
pI = 0 and pI = 0.01 and two for pI = 0.5 (Colour figure online)

All in all, we observe that a small pI allows for dynamics to be determined by the initial
condition at the beginning of the system’s evolution. Clusters are influenced by information
after they are formed: these move away or close to the information value, depending on the
cluster overlap with the external input. For larger pI , the initial overlap of each individual
with the external information is important: individuals who are far away form additional
clusters that are then too distant from the rest of the population and from the information to
be attracted back.

3.5 Biased Population

In the simulations presented until now, the population was random, i.e., not biased, on av-
erage, towards any opinion. Information, on the other hand, was considered extreme if it
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Fig. 11 Opinion values for K = 5, N = 300, ō = 0.62, I = [0.4,0.2,0.2,0.1,0.1]. Each row corresponds
to the positions in the opinion vector x = [p1,p2,p3,p4,p5], while each column represents a different pI .
Individual opinions are coloured based on the cluster membership, with cluster sizes included in the legend.
The information value is represented by the straight horizontal line (red online). In this case one cluster is
formed for pI = 0 and pI = 0.01 and three for pI = 0.5 (Colour figure online)

promoted strongly one of the possible choices. Extreme information was shown to have
limited effect on such populations. However, there can be situations where the initial popu-
lation is already biased towards one of the possibilities, in which case, extreme information
can still have a large effect. Figure 12 shows the effect of different information types for
such a biased population. It is obvious that if the bias in the population coincides with the
opinion that the information promotes, then even an extreme information can induce com-
plete (for low pI ) or wide (for larger pI ) agreement. However, if the choice promoted by
extreme information is different, then all individuals disagree. Agreement with information,
in the latter situation, increases when information becomes milder. This shows that it is the
similarity of the information to the original population that determines its success, and not
the information structure in itself. In these conditions, the previous observations for extreme
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Fig. 12 Effect of extreme information on a biased population, with a positive bias for the first opinion
choice (average opinion value for the population around b = [0.4,0.15,0.15,0.15,0.15]). The individual
points correspond to pI ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1} (Colour figure online)

Fig. 13 Effect of the initial
condition for different population
sizes and K = 5. Dots represent
values for individual runs, while
the lines show average number of
clusters (computed by binning).
The curves, from left to right,
correspond to increasing values
for N (Colour figure online)

information can be extended to any situation, if we consider information “extremism” as a
feature dependent on the state of the population, i.e., information with low overlap to the
population.

3.6 Population Size

All previous simulations presented have been performed using a limited population size,
i.e., N = 300. Some effects seen in the results can be artifacts of the small population size,
hence in this section we are analysing some of the previous simulation settings for increasing
population sizes i.e., N ∈ {100,300,1000,2000}. Due to increased running times for larger
populations, only the situation K = 5 has been studied, with ten instances for each parameter
set.

A first such analysis involves the effect of the initial condition, i.e., the average initial
overlap in the population. Figure 13 shows the number of clusters for different instances
with various initial ō. This shows that the transition between K clusters obtained for low
ō and one cluster for large ō, observed in Sect. 3.1, is conserved for different populations
sizes. Further this transition becomes steeper as N increases, with less frequent intermediate
values at the transition point. This indicates that the intermediate number of clusters obtained
for N ∈ 100,300 could be an artifact of the small population size; however, the curves
overlap very well, especially for larger N . These observations indicate a low dependence
between the effect of the initial condition and the population size. As long as the population
is not extremely small, (as seen for N = 100, where the curve seems more different than the
others), results do not change much, at least qualitatively, by increasing the population size.
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Fig. 14 Effect of extreme information (I = [1,0,0,0,0]) on K = 5 and two different initial conditions, for
different population sizes. The individual points correspond to pI ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}
(Colour figure online)

In a similar fashion, the external information effect has been studied for different pop-
ulation sizes, for K = 5. Figure 14 displays the average number of clusters and the final
average IO for four population sizes, I = [1,0,0,0,0] and two initial conditions (compact
and dispersed initial population). This shows an extremely good overlap between the curves
corresponding to each population size, indicating, for external information as well, that re-
sults are not influenced by N . Cluster sizes, in the case of segregated initial population
(ō ∼ 0.49), become more uniform as the population grows, i.e., PR value is closer to 5. This
suggests that, for an infinite such population, extreme external information would produce
equally sized clusters in the population.

Further, we study relaxation times depending on N and information type. Since opinions
do not converge to one value during simulations, relaxation time is defined as the number
of updates (total number of interactions) required to obtain stable clusters and information
agreement, even though opinions will still fluctuate. Figure 15 displays the scaling, averaged
over 100 simulation runs, of the relaxation times vs. N for two information types (with
pI = 0.5) and two initial conditions. This shows that, in general, clusters form faster when
the initial population is more compact (right vs. left plot). The scaling of the relaxation time
with N features a linear behaviour in all cases. An exception is a segregated population
exposed to mild information, where the scaling is slightly more than linear with a fitted
exponent ∼ 1.11. Finite-size effects are visible for small populations sizes, which features
also larger error bars. These finite-size effects can be explained by the sparser sampling of
the opinion space during initialisation, for small populations.

The effect of external information on the relaxation time is also displayed in Fig. 15. The
two initial conditions show different trends. For a segregated starting point (left panel) the
two types of information have opposite effects on the relaxation time. Specifically, exposure
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Fig. 15 Relaxation times for two initial conditions (left and right plots, respectively) and two information
types, vs. N . Times shown represent the number of pairwise interactions. Points represent averages over 100
simulation runs, with error bars corresponding to one standard deviation from the mean. The continuous
lines show distributions of t for large population sizes, fitted to the simulation times for N ≥ 5000. The
distributions are of the form t = αNβ , with β = 1 (i.e., linear dependency) for all situations except ō ∼ 0.49
and I = [0.4,0.2,0.2,0.1,0.1], when β = 1.11 (left panel, triangle curve) (Colour figure online)

to mild information (which, as we saw before, has a cohesive effect) increases significantly
the relaxation time, due to the contrasting effects of the initial condition and information type
(i.e., segregation vs. cohesion). For a compact initial condition (right panel) both information
types have the same effect.

4 Conclusions

A new model for opinion dynamics was introduced, considering the internal probability of
individuals to choose between several discrete options, i.e., with opinions represented as a
vector of continuous values with unity sum. Both attractive and repulsive dynamics are con-
sidered, through a standalone mechanism, i.e., based on pairwise similarity and not intro-
ducing further model parameters. An important feature of the model is the ability to expose
the system to modulated external information, so that more possibilities can be promoted
(e.g. by mass media).

Numerical results showed that extreme information causes fragmentation and has limited
success, while moderate information causes cohesion and has a better success in attracting
individuals. This coincides to the success of marketing or election campaigns, where coali-
tions and milder messages are more effective. Additionally, information success is max-
imised when individuals do not interact too much with the information, showing the impor-
tance of the social effect in information spreading. An important factor driving the capacity
of information to influence the population appears to be the initial similarity to the agents.
This is a known fact in devising marketing strategies, for instance, where information is
displayed in a way appealing to the target audience.
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Similar effects of external information have been observed previously for other models
(either discrete or non-vectorial opinions). For instance, [16] observed that aggressive media
campaigns are not effective, using the Deffuant model with external information, and that
individuals should be exposed to the external influence gradually in order to optimise its
success. Further, in [19, 24], for the Hegselmann-Krause model, it was shown that extreme
information causes formation of antagonistic clusters, while mild messages are more suc-
cessful. A segregation effect from external information has been also observed for the Axel-
rod model [17, 35, 36], similar to our observations for extreme information (information in
discrete models, such as Axelrod, is equivalent to the extreme information in a continuous
model, i.e., promoting one option only).

The initial condition proved to be of large importance in the dynamics, with compact
populations resulting in one cluster, while less compact starting points yielding more group-
ings. A similar large effect of the initial condition has been recently shown in [4], for the
Deffuant model. Additionally, for our model, the decrease in the transition point with K

indicated that agreement is easier to obtain for a larger number of choices (with no external
information). This is similar to the findings for the model in [28], which shares similarities
to our approach. This uses a bounded confidence threshold d , and it was shown that the
critical value of d , for which complete agreement is obtained, decreases as K increases. In
our model, bounded confidence is not present, however the initial condition plays a similar
role in determining the number of clusters, and we observe a very similar effect of K on the
critical ō for which complete agreement is obtained.

A scaling analysis showed that results for both the effect of the initial condition and
external information are robust with respect to the population size. Additionally, relaxation
time (total number of updates), was shown to become linear in the population size as the
size increases.

Several further analyses of the model presented are envisioned for the future. These in-
clude changing the dynamics to allow individuals to interact on more than one opinion
choice, considering non-homogeneous individuals, with personal preferences in interacting
with others, and including interaction noise to account for the fact that a discussion between
two individuals can expose their internal probabilities with an error. Additionally, we will
introduce a version of the model where the different opinion choices are related to one an-
other (i.e. define an ordering rule that expresses which choices are more similar), which is
the case for political views, for example. The analytical study of the model will also be ex-
plored. Furthermore, an analysis of different social network topologies is envisioned (here,
all results are presented on a complete network). Application to real data, in order to simu-
late observed social processes and be able to make predictions, is required to further validate
the model. In the context of the EveryAware project [11], the model will be also applied to
simulate behavioural and opinion changes on environmental issues, based on subjective data
which will be collected during test cases.
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