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High-fidelity spin entanglement using optimal
control
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Precise control of quantum systems is of fundamental importance in quantum information
processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum
registers, several challenges arise: individual addressing of qubits while suppressing cross-
talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally
demonstrate optimal control of a prototype spin qubit system consisting of two proximal
nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate
single electron spin operations with a fidelity Fa 0.99. With additional dynamical decoupling
techniques, we further realize high-quality, on-demand entangled states between two elec-
tron spins with F>0.82, mostly limited by the coherence time and imperfect initialization.
Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously elimi-
nated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin
quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm.
This experiment underlines the importance of optimal control for scalable room temperature
spin-based quantum information devices.

13rd Institute of Physics, University of Stuttgart, IQST and SCOPE, Pfaffenwaldring 57, 70569 Stuttgart, Germany. 2|S| Foundation, Via Alassio 11/c, Torino
10126, Italy. 3 Institute for Quantum Optics and 1QST, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany. 4 Institute for Experimental Physics |,
LinnéstraBe 5, University of Leipzig, 04103 Leipzig, Germany. ° Department of Chemistry, Technical University Munich, 85747 Garching, Germany. * These
authors contributed equally to this work. Correspondence and requests for materials should be addressed to F.D. (email: f.dolde@physik.uni-stuttgart.de) or
to V.B. (email: ville.bergholm@isi.it) or to Y.W. (email: y.wang@physik.uni-stuttgart.de).

| 5:3371| DOI: 10.1038/ncomms4371| www.nature.com/naturecommunications 1

© 2014 Macmillan Publishers Limited. All rights reserved.


mailto:f.dolde@physik.uni-stuttgart.de
mailto:ville.bergholm@isi.it
mailto:y.wang@physik.uni-stuttgart.de
http://www.nature.com/naturecommunications

ARTICLE

igh-fidelity quantum operations, including gates,

on-demand entangled state generation and coherent

control in general, represent a fundamental pre-
requisite for all quantum information technologies such as
error correction, quantum metrology and of course quantum
information processing, wherein the hardware and its control
must satisfy the DiVincenzo criterial. A very promising class of
quantum information devices are spin qubits in solids, such as
phosphorus in silicon (Si:P)?, rare earth ions in a solid state
matrix’, quantum dots* and defects in diamond or silicon
carbide™®. Although there have been recent experimental
advances in increasing the number of coherently interacting
qubits”>, gate quality has been limited. Optimal control, often
seen as a central tool for turning principles of quantum theory
into new technology®, seems to be the only practical way to
ensure functionality even in the light of device imperfections, and
to overcome several impactful features found when scaling up the
register size, such as unwanted cross-talk between control
fields designed for individual qubit control. It is gradually being
exploited in many other experimental settings, including ion
traps’, optical lattices', solid-state devices'!™'> and NMR.

Nitrogen-vacancy (NV) centres in diamond are unique and
interesting building blocks for implementing solid state quantum
technologies!>~2°. More precisely, each such block comprises the
NV centre’s electron spin and the nuclear spins of the nitrogen
and proximal '3C nuclei, forming a small quantum register®”.
Even without optimal control, several hallmark demonstrations of
their properties have been fossible, including coherent single
qubit operation and readout’®?°, controlled qubit gates**?* and
entanglement generation>>>727-3l at ambient conditions. NV
centres have been shown to exhibit coherence times on the order
of milliseconds in isotopically purified diamond®? or through
dynamical decoupling®®*4, This has to be compared with
coherent control in the nanosecond regime. Particularly, the
nuclear spins have proven to be a valuable resource for high-
fidelity readout?”*®3” and non-volatile memory3®. As such, NV
centre registers can act as a prototype for any other spin qubit
system.

For spin quantum registers, scalability can be achieved through
coherent interaction between neighbouring nodes in arrays of
fundamental building blocks. The most straightforward approach
is to place the blocks sufficiently close to each other’*4% and use
the dipolar interaction between electron spins as a quantum bus.
The effective magnetic dipolar interaction range is limited by the
coherence lifetime (here:~2ms) to about ~50nm for electron
spins and ~5nm for nuclear ones. The readout method depends
strongly on the system. While for Si:P single-spin readout is
performed with single-electron transistors?, in the case of NV
centres in diamond optical super-resolution techniques facilitate
individual optical spin readout with nanometer-scale resolution®.
In contrast to optical techniques, microwaves cannot be focused

Table 1 | Fidelity comparison.

Control Standard Optimized Limit of Limit,
sequence control control current optimum
fidelity pair* valuest
NOT gate 0.94 0.99 >0.99 >0.999
Entangling 0.67+0.04°> 0.824+0.015 0.849 >0.993
sequence

PSWAP gate 0.87 0.97+£0.01 0.97 >0.999

*The upper limits are due to imperfect initialization and dephasing during the sequence.
TOptimum values refer to the current record values for initialization fidelity (>0.99), coherence
lifetime (T, =4 ms) and spin state eigenbasis.

down to these length scales. Individual spin addressability via
magnetic resonance can be achieved by separating the spins’
resonance frequencies, for example, by applying local magnetic
field gradients (~2puTnm ~!) or by exploiting different crystal
field directions. Coherent control of individual electron and
nuclear spins is then conducted via resonant mw and rf fields.
The nuclear spins can be additionally controlled via their
hyperfine interaction with the neighbouring electron spin;
effectively, the electron spin state sets the axis and speed of
nuclear Larmor precession*2. Note that the dipolar interactions
between spins are always on, and the unavoidably crowded
spectrum leads to non-negligible control cross-talk.
Consequently, it becomes challenging to perform strictly local
operations. While all these are minor issues for standard
spectroscopy techniques, the fidelity of quantum operations can
be drastically affected, especially for repeated gate application.

In this work, we demonstrate a decisive step towards mastering
the aforementioned challenges by developing optimal control
methods for solid state spin registers to markedly increase their
utility. We explore a prototype of such a quantum register,
operating at ambient conditions, based on two neighbouring NV
centres in diamond. These fundamental building blocks each
comprise one electron spin qutrit and one nuclear spin qubit. We
implement optimal control on this system of 36 levels to realize a
fully functional four-qubit register. High-fidelity single- and
multiqubit operations are demonstrated (Table 1). These include
generating high-fidelity entanglement between the electron spins
and entanglement storage in nuclear spin memory. The
numerical control optimization simultaneously cancels cross-talk
and unwanted dipolar couplings to a high extent. Our results will
find further applications in any high-fidelity gate synthesis
necessary for various scaling approaches devised so far (for
example, refs 43,44).

Results

Optimal control. Improving gate fidelity is a non-trivial task; the
main reason for this being the high spectral density of individual
qubit control fields. The interaction of a single microwave field
with a spin can be described by the Rabi formula

o’ L VO A

o 1 A2 sin 5 ,

ptarget(t) - (1)
giving the probability peyrge for a spin flip into a target state. Here
the Rabi frequency Q is the strength of the applied mw field and
A is the detuning of the mw frequency from the actual spin
transition. While it seems that high-fidelity control of a single
transition (that is, piarget = 1) can be achieved by a large ratio Q/A,
in the case of single-qubit gates on the electron spin (that is,
irrespective of the nuclear spin state), the hyperfine interaction
sets a lower bound for the detuning A and the spectral density
sets an upper bound for Rabi frequency Q to avoid cross-talk. In
our particular case, the hyperfine interaction is ~3 MHz and the
spectral separation of individual NV transitions is ~30 MHz (see
Fig. 1b). This limits the fidelity of a ‘standard’ single-pulse single-
qubit NoT gate to FX0.9. During the finite duration of electron
spin control, additionally, the nuclear spins undergo rotations
dependent on the respective electron spin projection. While this
will be exploited for nuclear spin control (see below), it further
reduces the fidelity of single-pulse electron spin gates (see Fig. 1c).
These limitations can, however, be overcome using numerically
optimized composite control sequences.

For designing high-fidelity experiments, optimal control
methods are gradually establishing themselves as valuable means
to get the most out of an actual quantum experimental
setting®>#0, The general scenario involves minimizing a cost
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Figure 1 | Optimal control of a single qutrit. (a) Schematic of the NV-NV pair used in this work. (b) Optically detected magnetic resonance (ODMR)
spectrum of the NV pair. The outer pairs of transitions correspond to NV1 and the inner pairs to NV2. The splitting within one pair of ~3 MHz is due to the
hyperfine coupling with the 5N nucleus. Spin transitions of separate NV centres are separated by ~30 MHz. (¢) Concatenated representation of the 36
dimensions of the Hilbert space e; ® e, ® n, ® m corresponding to two coupled NV centres. (left) Subsystem e; ® e; is shown with blue arrows
illustrating electron spin manipulation on NV1 (bold, solid arrows) and its cross-talk on NV2 (dashed arrows). (centre) The subspace |0), ® e ® n,

is shown and green arrows of different tones illustrate the detuning due to hyperfine interaction. (right) The always-on nuclear spin precession by external
static magnetic fields in subspace |0),, ®|0),, ®n; ® ny is illustrated (curved arrows). The colouring of the squares denotes the different electron

spin states |+ ),/0) and | —). For NV2 this corresponds to blue, purple and light orange. For NV1 this corresponds to dark blue, light blue and orange.
(d) Schematic Bloch sphere representation of the action of standard control (blue) and optimal control (green) considering the above mentioned effects.
(left) Manipulation of spin e; should not affect the state of spin e, via cross-talk, (centre) despite hyperfine interaction the spin e, should be inverted
regardless of the state of nuclear spin n,, and (right) always on rotation of nuclear spins ny,n; for electron spin states |O>ew, |O)e2 should be avoided if not
exploited. (e) Repeated application of a NoT gate targeted on spin e;, implemented using a standard m-pulse (stars) as compared with an optimized gate
(filled circles). With an odd number of applications, the effect should always be the same (spin flipped for e;, unchanged for e;). The fidelity with respect to
these target states is displayed for both spins (orange and blue). Where optimal control pulses allow for at least 20 repetitions without a significant loss of
fidelity and negligible cross-talk within our measurement error, w-pulses show low fidelity and strong cross-talk already after the first gate application.

Error bars are given by the photon shot noise of the measurement used to calculate the fidelity.

functional under the constraint that the system follows a given
equation of motion. For state transfer or quantum gate synthesis in
a closed system (neglecting decoherence for the moment), this
amounts to the controlled Schrodinger equation. The control
sequence is usually taken to be piecewise constant, so the pulse
shapes can easily be fed to a digital pulse shaper. With these
stipulations, effecting a desired quantum gate is (in principle) a
standard task that can be conveniently addressed, for example, by
the GRAPEY optimization algorithm in the DYNAMO numerical
optimal control toolbox*®. To handle non-idealities like cross-talk,
we use a modified rotating wave approximation (RWA), taking
sufficiently slowly rotating Hamiltonian components into account
in addition to the static ones (see Methods). Our optimization
framework also allows for Markovian*® and non-Markovian®
relaxation to be included. The final quality of the optimized control
is of course limited by any deviation between the equation of
motion used and the actual physics of the system.

Please note that optimal control systematically goes beyond
strict adiabaticity. This is of utmost importance in a dense
spectrum of spin transitions of a potentially much larger register
where it is almost impossible to avoid cross-talk effects. More
precisely, for those unwanted transitions that are significantly
detrimental to achieving the target, it suffices that they are
effectively undone or refocused at the end of the control
sequence, while intermediately they can be allowed for. While a
paper-and-pen analysis of how this scales in dozens of qubits
seems daunting, recursive use of optimal-control-based building
blocks (of say up to 10 qubits) has proven promising>’.

The NV diamond spin system. Our experimental system consists
of two I°NV centres separated by a distance of 25 + 2 nm, with an
effective mutual dipolar coupling of v4;, = 4.93 £ 0.05 kHz (ref. 5)
(see Fig. 1a). Each NV centre has an electron spin-1 (denoted S)
and a >N nuclear spin-1/2 (denoted I), hence the system exhibits
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(3-2)%=36 energy levels in total. We label the mg= 41,0, —1
eigenstates of the S, spin operator with the symbols (+,0,—),
and the m;= + 1/2, — 1/2 eigenstates of I, with (7,]). We use the
states | - ) of the electron spin qutrit as an effective qubit and |0)
as an auxiliary state. Individual addressing of both NVs’ spin
transitions is realized by different crystal field directions and
proper magnetic field alignment resulting in a spectral separation
of ~30 MHz between the individual NV transitions (see Fig. 1b).
Although the crystal field and the external magnetic field are not
parallel, spin states |+ ),|0) remain approximate eigenstates
because of the much stronger crystal field along the NV axis. The
hyperfine interaction of spin states | + ) with the >N nuclear spin
aligns the latter along the NV axis and splits |1) and ||) by
3.01 MHz allowing for electron spin operations controlled by the
nuclear spin (see Fig. 1b). While the product states |[{ +, — }) ®
[{T,1}) are approximate eigenstates and form the computational
basis of each individual NV centre, the auxiliary states |0) ®
[{T,1}) are not eigenstates and therefore facilitate electron spin-
controlled nuclear spin rotations. Therefore, it is preferable to
choose |+) as qubit levels and use the |0) as ancilla level for
nuclear spin control. By this choice also unwanted electron-
nuclear spin dynamics are suppressed®2. Please note that the
spin transition frequencies of the two 1nd1v1dual NV centres are
sufficiently far detuned (30 MHz) to avoid mutual flip-flop
dynamics induced by the dipolar interaction (5kHz). Instead, a
decoupling sequence is used to realize a controlled phase gate
among the two NV centres. The dephasing times of NV1 are
Ty4q = 27.8 £ 0.6 us and Trgq=150+ 17 s, and those of NV2
are Ty, = 22.6 &+ 2.3 us and Thqq =514 £ 50 ps.

The ‘coherent manipulation of quantum states is separated
from the optical readout process. There is no need for
instantaneous readout after gate application. Hence coherent
control of individual spins might be performed in a serlal
manner. Since individual optical addressing is challenging®!
this short distance, here the readout is performed s1multane0usly
on both NV centres. Therefore, the observed fluorescence is
correlated with the sum of populations in the |0) states of both
NV centres. Individual spin state readout is achieved by local spin
operations and repeated readout (see Supplementary Methods).

Optimal control with spin qubits. Before implementing optimal
control, a proper characterization of the spin Hamiltonian and
the control fields is essential. This includes hyperfine interaction
strengths, Zeeman shifts and control field transfer functions.
In particular, the response of the NV electron spin to different
frequencies and amplitudes of the control field is calibrated,
compensating for non-linearities and spectral inhomogeneities.
To compare standard and optimal control, we repeatedly apply a
NoOT gate to the electron spin of NV1 interrupted by a small free

. . 2%k+1

evolution  time ([noptimal/ standard — Tfree evolution — } ) (See
Fig. 1le). First, the system is initialized into the state
|myV1, myV?) = |00). If the applied gate is perfect, the state of

NV1 always results in |+ ) and that of NV2 in |0), neglecting
decoherence. However, for standard control with rectangular
time-domain pulses with Qp,,;=10MHz, the experimental
results show a fast decay of population in |+ ) for NV1 and a
strong cross-talk effect on NV2 (that is, decrease of population in
|0)) (Fig. le). In contrast, for optimal control the decay is much
slower and almost no cross-talk is observed for 35 applications of
the NoT gate. To quantify the precision of optimal control, we use
a randomized benchmarking protocol and assume independent
error sources for all applied optimal gates. A fidelity between
0.9851 and 0.9920 for the optimal NoT gate on NV1 and 0.9985
for the identity gate on NV2 are achieved by fitting the experi-
mental results.

4

Electron-nuclear spin operations. The !N nuclear spins
couple to magnetic fields much more weakly than the NV
electron spins, and consequently have much longer coherence
times. Therefore, they are ideal long-lived storage qubits’®,

which are easily integrated into a register via their hyperﬁne
coupling to the electron spin. Various methods have been worked
out for controlled nuclear spin operations. A particularly
convenient one utilizes hyperfine interaction between electron
and nuclear spins. To this end, the state |0) acts as an ancilla level
for nuclear spin manipulation. In contrast to |+), state |0)
exhibits no hyperfine coupling to the nuclear spin. Therefore, in
state |0) the nuclear spin is mainly susceptible to the external
magnetic field and consequently undergoes Larmor precession

around it with the angular frequency wp =yy,/Bj +nBj,,

where yy is the nuclear gyromagnetic ratio. More precisely, the
latter field is an effective one, where n describes the enhancement
due to dressed nuclear-electron spin states*>2. In the current
experiment, this effective field is almost perpendicular to the NV
axis (see Methods). Therefore, the precession is a coherent
oscillation between states |T) and ||), which realizes a fast
controlled rotation gate on the nuclear spin. Having at hand
controlled rotations for electron and nuclear spins, we can design
a partial swap gate (pswap, exchanging the states |+ 1) and
| — 1)) for quantum information storage. The standard approach
is a sequence of rectangular time-domain pulses (Fig. 2a).
However, the imperfections of each operation will accumulate
and largely reduce the performance of the gate. We define the
storage efficiency as the ratio of qubit coherences after and before
storage and retrieval. For the standard pswap gate, we found the
storage efficiency to be Effyq=0.50+0.07, which is mainly
limited by cross-talk. With optimal control, we tailored a pswap
gate with a significantly better performance compared with the
standard approach (Fig. 2c). A storage efficiency of
Eff,,;=0.89+0.01 was measured. Eff,,, is limited by
decoherence during the pswap operation. The oscillation of
the storage efficiency shown in Fig. 2c reveals the Ramsey
oscillation e = ' of the nuclear spin due to the axial Zeeman shift
with w, =y,B).

Entanglement generation. So far we have demonstrated coherent
control within one NV centre node. However, scalability arises
from coherent interaction of neighbouring NV nodes. The two
NV centres of our register interact very weakly compared with
their mutual detuning owing to Zeeman interaction. Thus, they
only influence the phase accumulation on the other NV. To
generate an entangled state, we therefore design and apply a
controlled phase gate. Specifically, after initialization to |00) , a
local superposition state |+)+|—) is created on both NV
centres. Free evolution under the Hiy /A = 27vg;pS; ® S, term
of the Hamiltonian will then make the states accumulate a
relative phase ¢ := 4mvgp7, where T is the evolution time,
effecting a non- -local phase gate, which entangles the electron
spins. T = 8,— ~ 25.4 ps will yield ¢ =7/2, at which point
the state can' be locally mapped into the Bell-type entangled
state }(qu

00) S L () +1 =) @ (1+)+]-)
U—’"'>Ul(<\++>+\f7>>+e'¢<\+7>+|7+>>> @
Chk (| + +) +il = =) = |Pag).

To protect the phase accumulation from decoherence
and possible couplings to other spins and thus achieve a
higher fidelity, we additionally implement a Hahn echo © pulse
U; ® U, in the middle of the free evolution period (see Fig. 3a).
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Figure 2 | pswap gate between electron spin and nuclear spin.

(a) Quantum wire diagrams for (top) pswap gate between the states |+ 1)
and | — |) via standard control, utilizing the auxiliary state |0), and
(bottom) creation, storage, retrieval and readout of a superposition state
employing an optimized pswap gate. (b) Optimal control pswap gate
consisting of 15 rectangular pulses (grey bars) each 0.4 us long. Each pulse
has two frequency components, corresponding to transitions |0) < |+ )
(mw1, green) and |0) < | —) (mw2, blue). In addition, each frequency
component (mw1, mw2) has an in-phase and an out-of-phase amplitude
(dark, bright). All four contributions to a single pulse are applied
simultaneously during the whole pulse duration. (¢) The retrieved
superposition state reveals the free evolution during quantum state storage.
Here we show the | (/)| component of the stored coherence. The Larmor
precession of the nuclear spin superposition state leads to a phase
accumulation. Error bars are given by errors of the fit of the phase
amplitude and the shot noise of the reference measurement. The blue line
is a fit of the |(Ix)| component taking an exponential decay due to the
electron spin life time into account.
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Figure 3 | Electron spin entanglement. (a) Quantum wire diagram of the
entanglement sequence. (b) Density matrix of the created Bell state
|Paq) = |+ +) +i| — —) (F=0.824+0.015). The blue columns represent
measured values. Please note that except for the main four columns
representing the entangled state and the entries |+ —){+ —| and

| = +)(— +|, all values are consistent with the shot noise of the
measurement process. The grey columns are upper bounds given by the
measured main diagonal entries and the requirements for a physical state.

Phase disturbances due to any quasi-static detuning (for example,
hyperfine interactions with N nuclei or slow magnetic field
variations) are dynamically decoupled by the echo, allowing
for a T,-limited gate fidelity. Taking into account the modest
coherence time of NV1 (T,qq =150 17 pis) and the initial spin
polarization (here 0.97 for each electron spin), the theoretical
upper bound for the gate fidelity is F,,~0.849, which is in
agreement with our measurement results. In the previous
work on generating entanglement between two NV centres’,
the fidelity was severely limited by pulse errors in the 16 local
and m/2 pulses used in the sequence, reducing it down to
Fiqa=0.67 £ 0.04. By replacing these 16 rectangular mw pulses by
just three numerically optimized local gates, we were able to
improve the fidelity up to F,, = 0.824 + 0.015, which reaches the
limit set by decoherence and initialization fidelity (see Fig. 3b).

Entanglement storage. Finally, we shall demonstrate entangle-
ment storage on the nuclear spins using the pswap gate introduced
above. To this end, a control sequence was optimized to
execute simultaneous pswap gates on both NV centres yielding
a storage efficiency of Eff,,;=0.92+0.07 (compared with
Effyq = 0.39 achieved with standard pulses in previous work?).
The fidelity of the entangled state after storage and retrieval is
Fopt retrieved = 0.74 £ 0.04. It is important to note that during the
spin state storage the two remote nuclear spins are entangled.
Using reconstructed electron spin density matrices before, during
and after the entanglement storage (presented in Fig. 3b and
Supplementary Fig. 1), we can estimate the fidelity of the nuclear
spin state to be Fop¢ nuciear = 0.819. The corresponding estimated
density matrix of the entangled nuclear spins is shown in Fig. 4.
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Figure 4 | Nuclear spin entanglement. Using optimal control, we have
swapped the entangled electron spin state onto the nuclear spins
(F=0.819). The orange density matrix represents the entangled Bell state
|®) =[11) —i|ll) of the two remote nuclear spins. Please note that since
the entanglement was created on the electron spins and transferred to
nuclear spins using pswap gates, no polarization or postselection is
necessary to achieve nuclear spin entanglement.

The state clearly fails the Peres-Horodecki criterion®® (having a
negativity of Npycear=0.32), demonstrating its entanglement.
Please note that during entanglement storage the nuclear spins
are in a fairly pure entangled state, while the electron spins are in
a mixed unentangled state due to the pswap gate between
initialized electron spins and nuclear spins in a thermal state.
Therefore, no postselection is necessary. To quantify the
entanglement E(p) in our states, we numerically minimized
the relative entropy S(p||a) := Tr(p(logp —logs)) by sampling
over separable states o (ref. 54), yielding Egectron~0.37 and
Epudear®023 (out of the ideal E(|®gq)) =log2). This
demonstrates a significant improvement of the NV-NV electron
spin quantum entanglement in comparison with standard
control, yielding only E4~0.16.

Discussion

In conclusion, we have demonstrated that the implementation of
optimal control is a prerequisite for the realization of spin-based
quantum information technology. The implementation itself is
perhaps more challenging than in many other types of quantum
systems due to the high level of cross-talk present in a multi-spin
system. Such cross-talk has been identified as a limiting feature
that needs to be overcome to make spin-based registers scalable.
The present study offers strong supporting evidence that this
challenge can indeed be overcome by optimal control. Especially
for the nuclear spin storage (and thereby nuclear spin entangle-
ment), cross-talk becomes a major issue. Here, an entanglement
pswaP fidelity larger than 0.94 +0.03 is demonstrated, enabling
meaningful entanglement storage and nuclear spin entanglement
protocols. In this setting, our work may thus be envisaged as a
breakthrough, where it was demonstrated that optimal control is
an indispensable tool to achieve the combination of several highly
demanding tasks simultaneously: high-end control of transitions
in a crowed spectrum with 36 energy levels; suppression of cross-
talk; creation of entanglement between distant nuclear spins with

6

different quantization axes via control of electron-nuclear
interactions on several timescales; and decoupling from unwanted
interactions. Our control methods, though tailored for NV
centres, can easily be transferred to other types of experimental
systems as well. Thus, they are anticipated to find wide
application. At the moment, the performance is mainly limited
by the coherence times of the electron spins. However, this is a
material property and long coherence times for artificially created
NV centres have been demonstrated in isotopically purified
diamond®”. Recent advances in implantation techniques (that is,
low energy mask implantations®®) as well as coherence time
extension by growing an additional layer of diamond over the
implanted NVs%® will pave the way for a high-yield chip size
fabrication of NV arrays. The methods developed in this work
will play a crucial role in making the control of such spin arrays
feasible. The control fidelity could be further improved by robust
control sequences, which can automatically compensate for small
magnetic field, temperature and control power fluctuations. Since
the achieved control fidelity depends on the accuracy of the
simulation used in optimization, accurate measurement of the
system parameters (for example, the hyperfine tensor) is of
paramount importance. In principle, the pulses could also be
improved using closed-loop optimization where measurement
data are immediately fed back to the optimizer to improve the
pulses without full knowledge of the system?®->6,

Methods

Sample characteristics. The diamond sample is grown by microwave-assisted
chemical vapour deposition (CVD). The intrinsic nitrogen content of the grown
crystal is below 1p.p.b. and the 12C content is enriched to 99.9%. °N ions were
implanted with an energy of 1MeV through nano-channels in a mica sheet.

A characterization of this method was published recently”>>.

Measurement setup. The two NV centres of this work are optically addressed by
a home-built confocal microscope. Microwave radiation was guided to the NV
centres of interest using a lithographically fabricated coplanar waveguide structure
on the diamond surface. Microwave control was established with an home-built IQ
mixer and an arbitrary waveform generator (Tektronix AWG 5014C) to generate
arbitrary microwave amplitudes, frequencies and phases. With the microscope and
mw devices optically detected magnetic resonance (ODMR) of single NV electron
spins is performed. To this end, a laser is used to initialize the electron spin into its
|0) state by laser excitation and subsequent decay. Next, the spin is manipulated by
mw fields. Finally, the fluorescence response to a next laser pulse reports on the
spin state (that is, low level for | +) and high level for |0)).

Magnetic field alignment. The S=1 electron spin of the NV centre experiences a
strong crystal field of about 100 mT along the centre’s symmetry axis, splitting
apart the | £ ) levels from |0). As the symmetry axis has four possible orientations
in a diamond crystal lattice, NV centres might differ in crystal field direction

as for the present NV pair. A small magnetic field is used to lift the remaining
degeneracy of | £ ) to guarantee individual addressing of spin transitions. Here,
using magnetic field coils, a magnetic field of 3.41 mT with an angle of about 24°
to the NV1 axis and 125° to the NV2 axis was applied. To have no effect from
the different charge states of the NV centre charge state pre-selection was
implemented>’.

Simulating the NV system. A single >NV ~ centre in a static magnetic field
By = Byu, has the Hamiltonian

H/h=21AS* —9.By - S—y\Bo - I+21S - A - I
= ZnASE + weug - S+ wnug - I+ 27 Z AweSl, 3)
k

where S and I are the dimensionless spin operators for the electron pair and the
I5N nucleus, respectively, quantized along the NV symmetry axis. Lattice strain has
been neglected. A~2.87 GHz is the zero-field splitting. The anisotropic (but axially
symmetric) hyperfine coupling coefficients are A,,=A,,~3.65 MHz and
A,,~3.03 MHz (ref. 58). The Larmor frequencies are defined as wp: = — y1By,
where y; is the gyromagnetic ratio of the spin (electron or nuclear). In a typical
experiment w.~ 100 MHz.

The system can be controlled using oscillating magnetic fields of the form

Be(t) = By(t)cos(@nt + by (1) wi, @)
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where @y are the carrier frequencies (in the microwave region). The amplitudes By
and the phases ¢, can be changed in time to steer the system. The unit vectors uy,
representing the polarization of the control signal, are determined by the antenna
setup. In our case uy|| [001]. The control fields add additional Zeeman terms for
both the electron and the nuclear spins:

H(t)/h = = Bi(t) - (7S + 51
—7eB(t) u ? ~
== |u,ﬂ\/§|u}H . S+%I cos(@kt + )
Qu(t):= [
= Qi (t)Crcos(@xt + ¢y.), (5)

where Q(#) is the driving Rabi frequency, Cy is the corresponding control operator
and |uj | is the length of the perpendicular component of uy. The reason for this
normalization is that when B, is aligned with the NV axis, only the perpendicular
component of the control field drives a population transfer.

The system of two coupled NV centres is then described by the Hamiltonian

H = Hyxvi + Hxva + Hint, (6)

where Hyyv, and Hyy, are the Hamiltonians of the individual NV centres, NV 1
and NV 2, respectively, and H;,, describes the dipolar interaction between them:
uo hy? R R
P (81 82— 3(81 - 1)(S: - 7). )
The two NV centres are separated by a distance of =25+ 2nm, and the

strength of the dipole-dipole interaction between them is found to be

Vaip =4.93 £ 0.05kHz. Because of the strong, local zero field splitting and Larmor
terms, the effect of all the H;,,, terms but the S,;S,, one are strongly suppressed and
may be neglected. Thus, we obtain

Hint/h = 27v4ipS1 S22 (8)

The dipolar interactions between S,,, and I,;, and between the two nuclear
spins are weaker by factors of = ~ 6,500 and (2=)?, respectively, and can be safely
ignored. ™ ™

In the experiment, the two NV centres have different axis orientations, [111]
and [111], which makes them individually addressable even in a uniform magnetic
field. The static magnetic field B, makes the angle 0; ~0.1337 with z; and the angle
0,~0.6957 with z,. Such alignment leads to considerable hyperfine splitting in the
mg=0 level (see Fig. 5) due to a small admixture of levels mg= = 1, which leads to
small magnetic moment roughly perpendicular to the NV axis. As the hyperfine
field at the nitrogen nucleus for the mg= 0 level is almost perpendicular to the ones
for levels mg= * 1 different nuclear spin quantization axes arise. The latter can be
utilized for coherent nuclear spin control in the in mg= 0 subspace via the electron
spin, for example, to perform a (partial) swap operation between the electron spin
and the nuclear spin.

Hint/h =

Calibration. Once the Hamiltonian parameters are known (by fitting them to the
measured hyperfine ODMR peaks such as the ones in Fig. 5), we determine the (in
general nonlinear) dependence between the amplifier setting o and the corre-
sponding driving Rabi frequency € for each carrier frequency @y separately. This
is done by finding, for a set of values of o, the Qs that yield the best match
between simulated and measured single driving data, and doing, for example,
monotonous cubic spline interpolation between the points.

Rotating wave approximation. We use two independent methods to simulate our
system. Both yield high-fidelity pulses. One approach is to apply perturbation

18.75 T v T v T v T T T

18.50 [ _

18.25 b

Fluorescence (kcounts s™")

18.00 - .

1 1 1 1
2,818 2,819 2,820 2,821

MW frequency (MHz)

1
2,817

Figure 5 | High-resolution ODMR spectrum. The spectrum was recorded
for the my=0—->m;= —1 transition of NV2.

theory first to remove non-secular terms in the free evolution Hamiltonian®2.

When moving into a rotating frame the control Hamiltonian still has time-
dependent terms, which can be made time-independent by using Floquet theory™.
The second approach directly employs the rotating wave approximation and drops
any terms with a small amplitude-to-rotation-frequency ratio. Here, we will
describe the second method in detail.

A rotating frame is an interaction picture defined by a time-independent,
typically local, Hamiltonian H,. Given a system with the Hamiltonian H, we
have in the Schrodinger picture ih0;|y) = H|j). We then define the interaction
picture ket

W) = g™ty ©)
Uo(t)

At t=0, the rotating frame coincides with the lab frame. The corresponding

transformation for operators is A" := Uo(t)AUJ (t).

Assume H, has the spectral decomposition Hy/fi = Y, wPx, where wy are
unique and arranged in increasing order, and the orthogonal eigenspace projectors
Py sum to identity. Now

A= eiHUt/h (Z Pu>A<Z Pb) e—iHl,t/h _ Z ei(m‘,—an,)rPuAPb. (10>
a b ab

Assume that the system Hamiltonian is of the form

H=Hy+ Y Q(t)Cecos(nt + y), (11)
k
where the carrier frequencies @y > 0 by convention. The rotating frame
Hamiltonian is given by
H = Z Qk(t)PuCkaei<"’“ "”“)tcos(d)kt + o)
kab
= Z Qi ()P, CiPycos(ixt + ¢y
- (12)

+ % Z Qk([) (chkpb (ei(("m:vf*’()’k) +e’i(("m:t+¢k)) Jrl'l,(Z.)7
ka<b

where 0, : = @, — @y, and we have further defined wil;;“’

wi”‘;}; = (Dk — Oab.

We use equation (12) to approximate the rotating frame Hamiltonian H' using
the static term and a small number of slowly rotating terms. For each carrier
frequency, all the terms that rotate at the same frequency o (collected in the

ordered pair index set Q(w)) are added together and retained if

1= @k + dgp and

$Qax|| D PuCP| > [ |, (13)

(a,b)eQ(w) B

where s =300 is a cutoff parameter. The maximum control amplitude Q,,,y is
chosen such that no fast mode is kept.

We apply the control microwaves at four distinct carrier frequencies, each in the
centre of the observed hyperfine peaks of a single-NV [0) — |+ ) or [0) — | —)
transition. A convenient rotating frame is thus obtained by choosing H, to consist
of the electron Zeeman and zero-field splitting terms, which makes the highest-
magnitude control terms static. However, because of the relatively high spectral
transition density in the NV-NV system, we will have some cross-talk, manifesting
itself as non-negligible slowly rotating terms in the rotating frame Hamiltonian
H'(t), which need to be taken into account.

Since an off-axial B, field makes H, slightly non-diagonal, the Uy(t)
transformation does not keep our observable O = a|0) (0|, + b[0)(0|, + c1 perfectly
invariant in time. This introduces a small additional error to the measurement.

Numerical pulse optimization. To implement a high-fidelity quantum gate G,
that is, a specific unitary propagator of the system, we resort to optimal control
techniques. The procedure involves defining an equation of motion for the system
(in our case the Schrédinger equation in a rotating frame under the Hamiltonian in
equation (6)), a set of control fields (the driving Rabi frequencies Q(t) and the
phases ¢,(t) in equation (5)), and a cost functional to be numerically minimized.
For reasons of computational efficiency and ease of implementation, the control
fields are taken to be piecewise constant in time. The cost functional is simply the
error function

B0, 6,0, T =1~ S[ictum)| epa, g
where U(T) is the propagator obtained by integrating the Schrodinger equation of
the system from 0 to T under the control sequence, and D the total dimension of
the system. This choice of error function automatically absorbs unphysical global
phases.

In some cases, we are only interested in what happens to a specific subsystem,
that is, we wish to obtain a propagator of the form G ® W where G is the gate to
be implemented and W is an arbitrary unitary. The fact that we do not care what
happens to the other subsystem(s) as long as the total propagator remains
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factorizable can make the optimization task much simpler. In this case the
appropriate error function is

By Q6(0), 6,0, ) = 1 - 5[ TG @ DYu(ry| - efo), 09)

where the trace norm ||A|| = Y_, ok is given by the sum of the singular values of
A. Tt is easy to see how this reduces to equation (14) when the second subsystem
is trivial.

Because of the rapid oscillation of the control Hamiltonian equation (5), it is
much faster to perform the integration in a suitable rotating frame, discarding all
the non-static terms in the rotating frame Hamiltonian and thus making it time
independent. This way we may utilize the GRAPE?’ algorithm to efficiently
compute the gradient of the error function and a standard optimization algorithm
(such as BFGS) to minimize it, using a customized version of the DYNAMO*
optimization framework. However, this is an approximation that does not take into
account cross-talk, which in our case can be significant. To push the gate fidelity
higher, it needs to be accounted for. Hence, we only use the fast, rough method in
the initial phase of the optimization. Once the gate error is low enough, we switch
over to a more accurate time-dependent rotating frame Hamiltonian, which
includes slowly rotating terms representing the most significant cross-talk
components.

The fidelities of the control sequences obtained in this way are ultimately
limited by the accuracy of the simulation, the approximations used, and
decoherence. The specific decoherence mechanisms can also be included in the
optimization, but in our scenario (generation of full quantum gates) we did not
deem it worthwhile.
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